多功能碳材料的制备及新工艺路线的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业生产上,按鳞片石墨尺寸的大小可将其划分为50目、80目和-100目三种规格的鳞片石墨。其中-100目鳞片石墨的含碳量相对来说是比较低的,不利于制备出大膨胀体积的多功能碳材料,尽管它的原料价格非常低,但是也很少有厂家愿意去利用,所以工业生产上几乎把-100目鳞片石墨视为丢弃物。而50目和80目的天然鳞片石墨都是含碳量均比较高的,很容易制备出大膨胀体积的多功能碳材料,因此在工业生产上有很重要的应用价值。但是目前,多功能碳材料的生产成本较高,制备过程中的洗涤用水被全部排放掉,很浪费水资源,对环境的污染也很严重。
     本论文以含碳量较低的、廉价的-100目的鳞片石墨为原材料,采用化学氧化法和超声波法制备出了较大膨胀体积的多功能碳材料(又称石墨层间化合物Graphite Intercalation Compounds, GIC)。这将工业上很少有人使用的-100目鳞片石墨原料进行了有效的利用,为多功能碳材料的生产提供了生产技术,更重要的是节约了生产多功能碳材料的原料成本。
     本论文还将现有的制备多功能碳材料的生产工艺路线进行了改进。现有的制备多功能碳材料的生产工艺路线与我们改进后的新工艺路线的两大不同点为:现有的生产工艺路线是一次性投料,而新工艺路线是将原料分次分批的投入;现有的工艺路线的洗涤用水是没有被再利用的,而新工艺路线的洗涤用水是被重复利用的。因此制备多功能碳材料的新工艺路线的优点我们可以看到:首先,新工艺路线是在原有生产工艺路线的基础上进行的改进,不会增加生产设备的投入;其次,将洗涤用水进行重复利用,节约了生产成本,节约了水资源;再次,减少了含酸废水的排放量,降低了对环境的污染程度。
     本论文的研究工作可以被分成以下几个方面:
     1、分别以-100目、80目鳞片石墨为原料,采用化学氧化法和超声波法制备了多功能碳材料
     2、对以-100鳞片石墨为原料的制备多功能碳材料的反应条件的优化及探索。
     3、对现有的制备多功能碳材料的生产工艺路线进行改进,降低生产成本,节约水资源,降低含酸废水对环境的污染程度。
     4、采用扫描电镜、透射电镜、X衍射等方法对制备出的多功能碳材料进行表征,并分析它们的内部结构、外观形貌和相关性能。
     5、进一步优化制备多功能碳材料的条件,对新工艺路线的更多的探究与展望。
On the industry production, the flake graphite can be decided into 50, 80 and -100 mesh according to the flake size. Among them, the carbon content inside the flake graphite is different, and -100 mesh of the flake graphite owns the lowest carbon content, and it makes against being used to prepare the multifunction carbon material which has the bigger expansion volume. Although the price of raw materials is cheaper, -100 mesh of the flake graphite has been used little in the process of the productions. Thereby, -100 mesh of the flake graphite is treated almost as doffing thing. Accordingly, 50 and 80 mesh of the flake graphite have the bigger carbon content, and it makes for being applied to produce the multifunction carbon material. So they have an important application worth on industry production. Yet so far the costs of the multifunction carbon material have been the bigger. In the process of washing, water wealth has been also wasted and the environmental pollution caused.
     In the dissertation, -100 mesh of the flake graphite which has the lower carbon content and the lower price is used as raw materials. The methods of the chemistry oxidation and the ultrasound irradiation are applied to prepare the multifunction carbon material (Graphite intercalation compounds, GIC) which has the bigger expansion volume. In the process, -100 mesh of the flake graphite used little on industry production has been utilized effectively. Not only this supplies a production technology on industry production, but also it is more important that the cost of raw materials has been saved in the process of producing the multifunction carbon material.
     In addition, the existing technics route to prepare the multifunction carbon material has been improved in the dissertation. Comparing the existing technics route with the improving technics route, there are two differences: the existing technics route is that the raw materials are pitched once in the process; the improving technics route is that the raw materials are done in batches. In addition, water washed in the existing technics route has not been recycled, but water washed in the improving technics route has been recycled. This shows that there are merits in the process of the improving technics route to prepare the multifunction carbon material. Firstly, the new technics route is improved on the base of the original technics route, and the production facility is not essential to be augmented. Secondly, water used in the production process has been recycled, and the production cost can be saved, and the water wealth can be economized as well as. Thirdly, the amount of wastewater containing acids can be decreased in the process of washing, and the environmental pollution can be also reduced.
     The research works in the dissertation can be divided in the several aspects below:
     1. The multifunction carbon materials have been prepared by -100 and 80 mesh of flake graphite, and the methods of the chemistry oxidation and the ultrasound irradiation have been used in the processes.
     2. The reaction conditions to prepare the -100 mesh of the multifunction carbon material have been probed into and optimized as well as.
     3. The existing technics route to prepare the multifunction carbon material has been improved, and the production cost has been reduced. Meanwhile, the water wealth has been also economized, and the amount of wastewater containing acids has been decreased as well as.
     4. SEM, TEM and XRD have been applied to characterize the multifunction carbon material, and the inner structure, the outer morphology and the correlative properties have been analyzed as well as.
     5. The reaction conditions to prepare the multifunction carbon material have been optimized further, and the exploration and expectation to apply the new technic route has been also finished.
引文
[1]熊俊威,曹晓燕,程小爱,等.天然石墨及其表面化学修饰的研究进展[J].电池,2005,35(2):150-151.
    [2]庞秀言,董兆洋,晓雷.细鳞片石墨化学氧化法制备可膨胀石墨技术问题探讨[J].炭素,2007,(2):35-37.
    [3] Chen X L. Preparation of lower-sulfur content expandable graphite [J]. Carbon,1996,34(12):1599-1600.
    [4]沈万慈.柔性石墨一个新产业的发展与展望[J].新型炭材料,1996,11(4): 24-27.
    [5]传秀云.膨胀石墨CuCl2—EGICs的微观结构TEM研究[J].无机材料学报, 2000,15(1):79-85.
    [6]邬长斌.石墨层间化合物的研究与应用[J].北京矿冶研究院学报, 1993, 2 (4): 96-102.
    [7]任京成,沈万慈等.柔性石墨材料和膨胀石墨材料的现状及发展趋势[J].非金属矿,1999,22(5):5-9.
    [8]赵云霞,任京城,张建阔,沈万慈,张保法.低含碳量柔性石墨研制[J].非金属矿,2002,25(4):24-25.
    [9] Zhao H J, Liu L, Wu Y T, H u W B. Investigation on wear and corrosion Behavior of Cu–graphite composites prepared by electroforming[J]. Composites Science and Technology,2007,67(6):1210-1217.
    [10]任崇桂,刘丽娟.低碳含量石墨制备可膨胀石墨研究[J].非金属矿,2007, 30(6):35—37.
    [11]尹伟,金为群,权新军,等.复合插层剂制备可膨胀石墨研究[J].非金属矿,2006,29(1):35-36.
    [12]时虎,胡源.石墨层间化合物的合成和应用[J].炭素技术,2002(2):29-32.
    [13]李冀辉,黎梅,扈海英,高风格.新型碳材料[J].1999,1(14):65-67.
    [14] Kang F Y, Zheng Y P, Wang H N, Yoko N S, Michio I. Effect of preparation Conditions on the characteristics of exfoliated graphite [J]. Carbon, 2002, (40):1575-1581.
    [15] Kang F Y, Leng Y, Zhang T Y, Li B S. Electrochemical synthesis and Characterization of ferric chloride-graphite intercalation compounds In aqueous solution[J]. Carbon, 1998, (36):383-390.
    [16] Chen X L, Song K M, Li J H, Liu J P. Preparation of lower-sulfur content And expandable graphite[J]. Carbon, 1996, (34): 1599-1600.
    [17] Li J H, D an H F, Liu Q, Liu S F.Preparation of sulfur-free expanded graphite with 320μm mesh of flake graphite[J]. Mater Lett, 2006, (60):3927-3930.
    [18] Li J H, Liu Q, Da H F. Preparation of sulfur-free exfoliated graphite At a low exfoliation temperature[J]. Mater Lett, 2007,(61): 1832-1834.
    [19] Li J H, Feng L L, Jia Z X. Preparation of expanded graphite with 160μm mesh of fine flake graphite[J]. Mater Lett, 2006, (60):746-749.
    [20] Li J H, Li J, Li M.Preparation of expandable graphite with Ultrasound irradiation[J]. Mater Lett, 2007, (61): 5070-5073.
    [21] Li J, Li J H, Li M. Ultrasound irradiation prepare sulfur-free and Lower exfoliate-temperature expandable graphite[J]. Mater Lett, 2008, (62): 2047-2049.
    [22]宋克敏路文义.制备低硫可膨胀石墨的研究[J].无机材料学报,1994,9 (4):55—460.
    [23] Diego Savoia,Claudio Trombini, Achille Umani-Ronchi[J]. J.Org.Chem, 1978,43(4):2907-2910.
    [24]聂有东.可膨胀石墨生产中pH值处理方法的探讨[J].碳素,2004, (3):35-36.
    [25]陈丹青,蔡金超,陈国华.聚氨酯/纳米石墨微片复合泡沫塑料的制备及导电性能研究[J].材料导报,2009,23(10):21、22、34.
    [26]应宗荣,杨坤,李静,董慧娟,张洪春.聚丙烯/低温可膨胀石墨阻燃复合材料的性能研究[J].塑料工业,2006,34(12):43-45.
    [27] Xiuqin Zhang, Guolun Yan, Hanming Ding, Yongkui Shah. Fabrication and photovoltaic properties of self-assembled sulfonated polyaniline/ TiO2 nanocomposite ultrathin films[J]. Mater Chem Phys, 2007, 102: 249-254.
    [28]高勇,顾家琳,沈万慈,康飞宇.溴一石墨插层化合物[J].炭素技术,2000(4):21—25.
    [29] Li M, Li J T, Sun H W. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation[J].Ultrasonics Sonochemistry, 2008,(15): 717-723.
    [30] Li M, Li J T, Sun H W. Sonochemical decolorization of acid black 210 In the presence of exfoliated graphite[J].Ultrasonics Sonochemistry, 2008,(15):37-42.
    [31] Li J T, Li M, Li J H, Sun H W. Decolorization of azo dye direct scarlet 4BS solution using exfoliated graphite under ultrasonicirradiation[J]. UltrasonicsSonochemistry,2007, (14):241-245.
    [32]林雪梅,潘功配.可膨胀石墨的应用研究进展[J].江苏化工,2005,33(6): 34-36.
    [32] Li J T, Li M, Li J H, Sun H W. Removal of disperse blue 2BLN From aqueous solution by combination of ultrasound and exfoliated graphite [J].Ultrasonics Sonochemistry, 2007,(14): 62-66.
    [33] Bryan Debelak, Khalid Lafdi. Use of exfoliated graphite filler to enhance polymer physical properties[J]. Carbon,2007,(45): 1727-1734.
    [34]Hidetaka Konno, Takahiro Morishita, Chuanyun Wan, Takashi Kasashima. Hiroki Habazaki,Michio Inagaki.Si–C–O glass-like compound/exfoliated Graphite composites for negative electrode of lithium ion battery[J]. Carbon, 2007, (45):477-483.
    [35] Sorokina N E, Redchitz A V, Ionov S G, Avdeev V V.Different exfoliated Graphite as a base of sealing materials[J]. Journal of Physics andChemistry of Solids, 2006, (67):1202-1204.
    [36] Sorokina NE, Leshin VS, Avdeev V V. Electrochemical intercalation In the graphite–H2SO4–R(R=CH3COOH, H3PO4) system[J]. Journal of Physics and Chemistry of Solids, 2004, (65):185-190.
    [37]李冀辉,徐洋,米彩莉.防静电聚乙烯/石墨复合物新材料的制备及表征[J].非金属矿,2008,(4): 29-31.
    [38]高俊刚,徐洋,李冀辉,刘谦,米彩莉,李晶.泡沫状聚苯胺/石墨复合物新材料的制备及导电性能[J].非金属矿,2009,32(1):48-50.
    [39] Sook-Wai Phang, Tetsuo Hino, M.H. Abdullah, Noriyuki Kuramoto. Applications of polyaniline doubly doped with p-toluene sulphonic acid And dichloroacetic acid as microwave absorbing and shielding materials [J]. Mater Chem Phys, 2007, 104: 327-335.
    [40] Fawn M. Uhla, Qiang Yaoa,b, Hiroyoshi Nakajimac,E. Maniasc, Charles A. Wilkiea, Expendable graphite/ polyamide-6 nanocomposites[J]. Polymer Degradation and Stability, 2005,(89):70-84.
    [41]李冀辉,冯莉莉,贾志欣.以膨胀石墨为填料的防静电涂料的研究[J].上海涂料, 2005,(12):1-2.
    [42]李冀辉,冯莉莉,贾志欣,一种防静电涂料的制备方法,专利号:2004 I 11119754X.
    [43]刘占荣,张萍,许保恩,武戈,李冀辉.可膨胀石墨催化合成乳酸正丁酯[J].化学试剂, 2007,(11): 693-694.
    [44]刘占荣,张萍,魏青,许保恩,李冀辉.可膨胀石墨催化合成三乙酸甘油酯,河北师范大学学报(自然科学版)[J]. 2006,(3):329-330,335.
    [45]李冀辉,武戈,杨丽娜.可膨胀石墨催化合成季戊四醇双缩苯甲醛[J].化学世界, 2004,(3):148-149.
    [46]李冀辉,刘占荣,刘巧云,可膨胀石墨催化合成乙酸苄酯[J].应用化学, 2003,20(4): 371-372.
    [47]任京成,沈万慈,杨赞中等.膨胀石墨一种新型环境材料[J].中国非金属矿工业导刊,1999,(3):25-26.
    [48] Liu P, Gong K, Synthesis of polyaniline-intercalated graphite oxide by an in situ oxidative polymerization reaction [J]. Carbon, 1999, 37(4): 706-707.
    [49] Peng Xiao, Min Xiao, Pinggui Liu, Kecheng Gong Direct synthesis of a polyaniline-intercalated graphite oxide nanocomposite Pinggui Liu[J]. Carbon, 2000, 38: 626-628.
    [50]汤中华周桂芝熊杰邹志强.炭/炭复合材料石墨化度的XRD均峰位法测定[J].有色金属学报,2003,13(6):1435-1440.
    [51]李冀辉,李晶,刘淑芬.使用50目鳞片石墨制备多功能碳材料[J].非金属矿, 2007,(4): 14-16.
    [52]刘国钦,肖开淮,何琳玲等.膨胀石墨及其制备技术攀枝花大学校报[J].1995,12(1):39-46.
    [53]李冀辉,刘淑芬.膨胀石墨与活性炭对工业油吸附性的对比研究[J].化学世界,2005,46(9):513-515.
    [54]刘志雄,沈万慈.膨胀石墨孔结构参数影响因素分析[J].新型炭材料,1996,11(3):33-37.
    [55]周伟,董建.膨胀石墨结构的研究[J].炭素技术,2000,(4):27-30.
    [56]徐子刚,吴洲.膨胀石墨对柴油吸附程度的分析[J].非金属矿,2000,23(4): 33-34.
    [57] Toyoda M, Umemura H, Inagaki M. Sorption and decomposition of heavy oil on exfoliate graphite loaded with TiO2[J]. New Carbon Matterial,2002,17(2):1-3.
    [58] Toyoda M, Inagaki M. Heavy oil sorption using exfoliated graphite new application of exfoliated graphite to protect heavy oil pollution[J].Carbon, 2000(38):199-210.
    [59]李冀辉,刘淑芬.膨胀石墨孔结构及其吸附性能研究[J].非金属矿,2004,2(4):44-45.
    [60]刘淑芬,李冀辉,杨丽娜,膨胀石墨对直接燃料废水吸附脱色研究[J].化工环保,2006,26(3):186-188.
    [61]刘淑芬,李冀辉,杨丽娜.膨胀石墨对活性艳红X-3B燃料的吸附脱色[J].城市环境与城市生态,2006.19(2):23-24.
    [62]黎梅,藏大乔,李冀辉.炭素[J].1997,(4):46-48.
    [63]刘淑芬,李冀辉.炭素,2005,(3):36-38.
    [64] Li J H,Feng L L,Jia Z X. Preparation of expanded graphite with 160μm mesh of fine flake graphite[J].Mater Lett,2006,60(6):746-749.
    [65] Li J H, Liu Q, Da H F. Preparation of sulfur-free exfoliated graphite at a low exfoliation temperature[J]. Mater Lett, 2007,61(8,9): 1832-1834.
    [66]李冀辉,米彩丽,李晶,贾志欣,刘淑芬,徐洋.纳米TiO2嵌入膨胀石墨处理甲基橙染料污水的研究[J].非金属矿,2008,31(2):21-23.
    [67]李冀辉,李晶,刘淑芬.使用50目鳞片石墨制备多功能碳材料[J].非金属矿,2007,30(4):14-16.
    [68] Li J H, et al. Preparation of sulfur-free expanded graphite with 320μm mesh of flake graphite [J]. Mater Lett, 2006, 60: 3927–3930.
    [69] Li J H, et al. Preparation of sulfur-free exfoliated graphite at a low exfoliation temperature [J]. Mater Lett, 2007, 61: 1832–1834.
    [70] J Li, etal. Ultrasound Irradiation prepare sulfur-free and low Exfoliate-temperature expandable graphite[J]. Mater Lett, 2008, 62: 2047-2049.
    [71]李冀辉,贾志欣,冯莉莉,刘淑芬.二氧化钛嵌入膨胀石墨材料制备[J].非金属矿,2006, 29(5):39-41.
    [72] Li J H, Li J, Li M.Preparation of expandable graphite with ultrasound irradiation[J], Mater Lett, 2007,61(28):5070-5073.
    [73]夏金虹,梁福沛,潘恩霆.稀土硫酸盐催化合成乳酸正丁酯化学世界,1998,39(4):199-201.
    [74]艾仕云.复合固体超强酸SO^2—4/ZrO2—Al2O3催化合成三醋酸甘油的研究[J].化学世界,1997,(12)633-635.
    [75]胡兴胜,郝建薇.可膨胀石墨在硬质聚氨酯泡沫阻燃性能中的研究[J].塑料,2004,33(1):45-47.
    [76]张克信.柔性石墨密封材料及其应用[J].炭素,1985(1):33-40.
    [77]连锦明,童庆松,等.电解氧化法制备膨胀石墨[J].福建师范大学学报,2000,16(3):43-45.
    [78]时虎,胡源,赵华伟.石墨插层化合物的合成及在塑料阻燃中的应用[J].消防技术与产品信息,2001,(10):27-31.
    [79]时虎,胡源,赵华伟.石墨层间化合物在阻燃防火上的应用[J].非金属矿,2001,24(5):31-33.
    [80]传秀云。石墨层间化合物的合成、结构、性能[J].新型碳材料,1996,12(2),36-42.
    [81]沈万慈,祝力.石墨层间化合物(GICs)材料的研究动向与展望[J].炭素技术,1993,(5),22—28.
    [82]传秀云,李贺军.CuCl2石墨层间化合物原子存在状态的XPS—ESCA研究[J].硅酸盐学报,1999,27(3),282—286.
    [83]李冀辉,史会卿,黎梅,刘淑芬.可膨胀石墨制备的新工艺路线[J].非金属矿,2009,32(4):51-53、58.
    [84] Li J H, Shi H Q, Li N, Li M, Li J.Ultrasound-assisted preparation graphite intercalation compounds[J]. Ultrasonics Sonochemistry,2010, 17(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700