星载多通道SAR高分辨宽测绘带成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球遥感和军事侦察大多要求星载SAR同时具备高分辨和宽测绘带(HRWS : High Resolution and Wide Swath)成像能力。传统的单通道星载SAR受“最小天线面积约束”的限制,分辨率和测绘带这两个指标相互制约,难以满足当前的应用需求。多通道体制可以有效缓解这个矛盾,在相同分辨率下,多通道体制SAR可以获得远大于单通道体制SAR的测绘带宽度。
     本文主要研究多通道体制SAR HRWS成像中的关键问题。首先,研究了一发多收(SIMO : Single Input Multiple Output)SAR距离/多普勒模糊抑制的问题,根据接收天线相对位置的差异,分为“单星SIMO-SAR”和“分布式SIMO-SAR”,它们的数据处理具有不同的特点。然后在一发多收研究成果的基础上,研究了多发多收SAR特有的正交波形设计和对应的成像处理等关键问题。具体研究内容安排如下:
     第二章对“单星一发多收SAR”的多种实现模式进行了系统的对比研究。首先根据“最小天线面积约束”给出了品质因子的定义,用于评价系统的HRWS成像能力。然后从品质因子、距离/多普勒模糊抑制能力、信噪比、数据量、信号处理复杂度、盲区等方面分析对比了五类多通道接收SAR系统的优劣异同,得出了综合性能最优的系统方案—距离多通道接收的多相位中心方位多波束(DPC-MAB)系统。
     第三章研究了单星距离多通道接收的DPC-MAB系统实现HRWS成像的问题。建立了一发多收DPC-MAB系统的信号模型,提出“谱分解法”完成回波的无模糊重构,并采用传统成像算法完成成像。在分析重构后回波的方位模糊比和信噪比的基础上,指出方位模糊比、信噪比与系统PRF的矛盾,提出利用相控阵天线并采用接收子阵列交叠接收以及宽发窄收两种方案予以妥善解决。给出了距离多通道接收的实现方案和信号处理方法,分析了其对信噪比的改善程度。
     第四章研究了分布式SAR实现HRWS成像的问题。针对只存在沿航向基线的“SAR-Train”构形,提出一种回波预处理方案,可消除由沿航向基线引起的回波去相关,将构形转化为“DPC-MAB”模式,进而利用谱分解法解多普勒模糊;针对类似“TanDEM-X”的双站多相位中心SAR系统,提出在进行相位补偿之后,将双站多通道回波转化为双站回波,继而可采用双站成像算法进行成像;针对接收通道间存在切航向基线的分布式卫星SAR系统,提出将通道间回波历程差进行二阶近似、再分别补偿的方法。特别指出回波历程差随目标距离迁徙曲线空变的特性并提出了频域补偿方法。
     第五章研究了多发多收(MIMO: Multiple Input Multiple Output)SAR改善HRWS成像性能的问题,主要集中在正交波形设计和相对应的成像算法。通过理论分析和仿真实验指出,同频带的相位编码信号和离散频率编码信号无法克服自相关函数和互相关函数积分旁瓣比之间的矛盾,不适合用于对地观测的MIMO-SAR;将正交性优良的步进频率LFM信号用于MIMO-SAR,给出了成像的信号处理方法和结果;进一步针对步进频率LFM信号各子带之间不能进行方位联合处理的缺点,将顺序发射的空-时正交波形用于MIMO-SAR,可获得更多的等效相位中心,显著改善系统的HRWS成像性能,同时避免了同频信号并发造成的相干暗斑,分析了空-时正交波形MIMO-SAR的模糊抑制性能,并给出了成像处理方法和仿真结果。
The capability of high resolution and wide swath (HRWS) imaging is desired by space based remote sensing and military reconnaissance. But for minimum antenna area constraint, there is an irreconcilable conflict between azimuth resolution and swath in single-channel SAR. This conflict can be mitigated via receiving with multiple channels. With the same resolution, multi-channel SAR can achieve much wider swath than single-channel SAR.
     Several key problems for multiple-channel SAR imaging are investigated in this paper. Firstly , with regard to single-input and multiple-output (SIMO) SAR, suppression means for range-Doppler ambiguities are studied for the two formation of single platform and distributed satellite SAR respectively because they have different characteristics of distinct baselines among phase centers. Secondly, to multiple-input and multiple-output (MIMO) SAR, problems such as orthogonal waveform design are researched based on studies above for SIMO SAR.
     Implementation form for SIMO SAR on single platform is comprehensively studied in Chapter 2. Firstly, merit factor for HRWS imaging evaluation is presented according to minimum antenna area constraint. Next, five multi-channel SAR systems are contrastively analyzed on several aspects, such as merit factor, capability for range-Doppler ambiguity suppression, signal to noise rate(SNR), data volume, complexity of signal processing, and blind swath. Conclusively, a reasonable system scheme, with displaced phase centers multiple azimuthal beam (DPC-MAB) and multiple receiving channel in range, is chosen as issue studied below.
     DPC-MAB SAR with multiple receivers in range is studied in Chapter 3. After building signal model of SIMO SAR, decomposition spectrum algorithm is proposed to ambiguity-free reconstruction for multi-channel SAR echo, by which conventional imaging algorithms can be carried out to achieve HRWS imaging. SNR and azimuth ambiguity signal rate (AASR) of reconstructed data are analyzed and conclusion is drawn that there is conflict among SNR, AASR and PRF. So application of multiple overlapped receiving subapertures with phased array antenna is presented to handle this problem.
     Distributed satellites SAR for HRWS imaging is studied in Chapter 4. For SAR-Train without cross-track baseline, preprocessing method is proposed for compensation for mutuality losing in echoes from multiple satellites. Then, the SAR-Train formation can be transformed to DPC-MAB and method given in Chapter 3 can be implemented in this formation. For the formation as“TanDEM-X”, an idea is presented to transform echoes from bistatic SAR multiple channels into echo from bistatic SAR with single channel equally. As regard to distributed SAR system with cross-track baseline, Phase history difference of two receiving channels is approximated by the second taylor expansion and compensated respectively. Range-dependent characteristic for phase histroy difference is analyzed and frequency compensation method is presented.
     MIMO-SAR is researched to improve performance of HRWS imaging in Chapter 5. Based on theory analysis and simulation, an impartant conclusion is drawn that phase-coded waveforms and Costas waveforms will fail to fulfill land mapping MIMO-SAR for the constraint between autocorrelation function and cross-correlation function. Stepped frequency LFM signal is proved to have ideal orthogonal performance and can be adapted to MIMO-SAR. Signal processing method for this kind of waveform and simulation results are presented. To break up the limitation of failing to jointly processing in azimuth dimension with different frequency band stepped frequency LFM signals, space-time orthogonal waveform is proposed to achieve more equivalent phase centers and better HRWS imaging performance. Besides these advantages, space-time waveform can avoid interference dark speckle on the ground scene brought by transmitting signals simultaneously at the same frequency. Performance for range-Doppler ambiguity suppression is analyzed and signal processing method is also researched.
引文
[1]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社, 1989.
    [2] John C. Curlander, Robert N. Mcdonough.韩传钊等译.合成孔径雷达——系统与信号处理[M].北京:电子工业出版社, 2006.
    [3] M. I. Skolnik.王军等译.雷达手册[M].北京:电子工业出版社,2003.
    [4]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [5]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社, 2001.
    [6]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社, 2004.
    [7]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [8] Ian G. Cumming and Frank H. Wong.洪文,胡东辉等译.合成孔径雷达成像——算法与实现[M].北京:电子工业出版社, 2007.
    [9] F.M Henderson and A. J. Lewis. Manual of Remote Sensing, Volume 2: Principles and Applications of Imaging Radar[M]. New York: John Wiley&Sons, 1998.
    [10] G. Krieger and A. Moreira. Spceborne bi- and multistatic SAR: potential and challenges [J]. IEE Proc.-Radar Sonar Navig, 2006, 153(3): 184-198.
    [11] K. Tomiyasu. Tutorial Review of Synthetic-Aperture Radar with Applications to Imaging of Ocean Surface[C]. Proc. IEEE, 66(5): 563-583, 1978.
    [12] F. Li andW. T. K. Johnson, Ambiguities in spaceborne synthetic aperture radar systems[J]. IEEE Trans. Aerosp. Electron. Syst., 19(3): pp. 389-397, 1983.
    [13] C. Elachi, Spaceborne Radar Remote Sensing: Applications and Techniques[M]. New York: IEEE Press, 1988.
    [14] J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: Wiley, 1991.
    [15] A. Freeman, W. T. K. Johnson, B. Huneycutt, R. Jordan, S. Hensley, P. Siqueira, and J. Curlander. The myth of the minimum SAR antenna area constraint[J]. IEEE Trans. Geosci. Remote Sens. 38(1): 320-324, Jan. 2000.
    [16] R.K.Moore, J.P.Claassen and Lin Y H, Scanning spaceborne synthetic aperture radar with integrated radiometer[J]. IEEE Trans on Aerospce and Electronic System. AES-17(1981), 410-421.
    [17] W.Carrara, R.Goodman and R.Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Agorithm[M]. Boston: Artech House,1995.
    [18] Francesco De Zan and Andrea Monti Guarnieri. TOPSAR: Terrain Observation by Progressive Scans[J]. IEEE Trans on Geoscience and remote sensing, 44(9): 2352-2360, 2006.
    [19] Ury Naftaly and Ronit Levy-Nathansohn. Overview of the TECSAR SatelliteHardware and Mosaic Mode[J]. IEEE Geoscience and remote sensing letters, 5(3): 423-426, July 2008.
    [20]唐禹等.滑动聚束SAR成像模式研究[J].电子与信息学报, 29(1):26-29.
    [21] Mittermayer Jisef, Lord Richard and Borner Elke. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. Proceedings of IGARSS Toulouse France, 2003, 1462-1464.
    [22] J.P.Claassen and J.Echerman, A system for wide swath constant incident angle coverage[C]. Proceedings of Synthetic Aperture Radar Technology Conference, Las Cruces, NM, 1978.
    [23] B.R.Jean and J.W. Rouse, A multiple beam synthetic aperture radar design concept for geoscience application[J]. IEEE Trans on Geoscience and Remote Sensing, GRS-21(1983), 201-207.
    [24] A.Currie and M.A.Brown,Wide-swath SAR[C]. IEE Proc. Inst. Elect. Eng. F., vol.139, no 2, pp. 122-135, 1992.
    [25] G.D.Callaghan and I.D.Longstaff, Wide swath spaceborne SAR using a quad element array[C]. IEE Proceedings—Radar Sonar and Navigation, 139, 2(1992), 122-135.
    [26] M.Younis and W.Wiesbech, SAR with digital beamforming on receive only[C]. IGARSS99, vol.3,1773-1775.
    [27] M.Suess, B.Grafmuller and R.Zahn, A novel high resolution, wide swath SAR system[C]. IGARSS01,1013-1015.
    [28] M.Suess, M.Zubler and R.Zahn, Performanc investigation on the high resolution, wide swath SAR system[C]. EUSAR02, 187-191
    [29] G.Krieger and A.Moreira. Potentials of digital beamforming in bi- and multistatic SAR[C]. IGARSS’03, 527-529.
    [30] C.Heer, F.Soualle, R.Zahn and R.Reber. Investigations on a new high resolution wide swath SAR concept[C]. IGARSS03, 521-523.
    [31] M.Younis, C.Fischer and W.Wiesbeck, Digital beamforming in SAR systems[J]. IEEE Trans on GRS, 2003, 41(7): 1735-1739.
    [32] J.Mittermayer and H.Runge. Conceptual studies for exploiting the TerraSAR-X dual receiving antenna[C]. IGARSS03, 2140-2142.
    [33] J.P.Aguttes. The SAR train concept: Required antenna area distributed over N smaller satellites, increase of performance by N[C]. IGARSS03, 542-544.
    [34]王小青,郭琨毅,朱敏慧,孺新庆.距离向多孔径接收宽测绘带SAR成像方法的研究[J].电子与信息学报, 2004, 26(5): 739-745.
    [35]郭琨毅,王小青,盛新庆.距离向多孔径接收宽测绘带SAR三种成像算法的比较[J].电波科学学报, 2005, 20(1): 119-l24.
    [36]郭琨毅,盛新庆.一种基于SCFT算法的距离向多孔径SAR成像算法[J].电子与信息学报, 2006, 28(5): 927-931.
    [37]吴顺华,向家彬,胡国旗.方位多相位中心SAR空时不等效的影响分析与仿真[C].第九届全国雷达学术年会论文集. 591-595
    [38]李世强,杨汝良.天线相位中心偏移方位多波束合成孔径雷达的误差分析[J].电子学报, 2004, 32(9): 1436-1440.
    [39]马晓岩,吴顺华,向家彬,速度与PRF失配对MPCSAR成像的影响及补偿方法研究[J],电子学报,Vol. 33 No. 12 Dec. 2005.
    [40]马晓岩,杨军,多相位中心SAR虚假目标成对回波定位与强度研究[J],电子学报,Vol.34 No. 3 Mar. 2006.
    [41]李世强,杨汝良.单相位中心多波束合成孔径雷达方位信号处理研究[J].电子与信息学报, 2005, 27(7): 1073-1076.
    [42]李世强,杨汝良.单相位中心多波束合成孔径雷达的方位模糊分析[J].电子与信息学报, 2005, 27(10): 1569-1572.
    [43]胡国旗,郭建平.星载SAR多相位中心多方位波束技术研究[J].空军雷达学院学报, 2005, 19(2): 37-39.
    [44]梁维斌,李春升,周荫清.基于多通道天线高分辨率星载SAR实现方法研究[J].北京航空航天大学学报, 2004, 30(9): 826-830.
    [45]赵伟,宋红军. PRF可变的星载方位向多相位中心多波束SAR[J].电子与信息学报, 2005, 27(6): 936-938.
    [46]赵伟.一种高分辨率连续宽测绘带星载SAR性能分析和算法研究[D].北京:中科院电子研究所,2004.
    [47]秦好强.多波束高分辨率星载合成孔径雷达仿真[D].北京:中科院电子研究所,2005.
    [48]王鹏波,周荫清,陈杰,李春升.高分辨率多通道天线星载SAR的MCCS成像算法[J].北京航空航天大学学报, 2006, 32(4): 440-444.
    [49]王鹏波,周荫清,陈杰,李春升.方位向非均匀采样对多通道天线星载SAR成像性能的影响[J].遥测遥控, 27(5): 8-14.
    [50] G.Krieger, N.Gebert and A.Moreira. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE GRS letters, 2004, 1(4): 260-264.
    [51] G.Krieger, N.Gebert and A.Moreira. SAR signal reconstruction from non-uniform displaced phase center sampling[C]. IGARSS04.
    [52] G.Krieger, N.Gebert and A.Moreira. Digital beamforming and non-uniform displaced phase center sampling in bi- and multistatic SAR[C]. EUSAR04.
    [53] N.Gebert , G.Krieger, and A.Moreira. SAR signal reconstruction from non-uniformdisplaced phase center sampling in the presence of perturbations[C]. IGARSS05.
    [54] N.Gebert , G.Krieger, and A.Moreira. High resolution wide swath SAR imaging—System performance and influence of perturbations. IRS05.
    [55] Zhenfang Li,Hongyang Wang,Tao Su and Zheng Bao, Generation of Wide-Swath and High-Resolution SAR Images From Multichannel Small Spaceborne SAR Systems[J]. IEEE Geoscience and Remote Sensing Letters[J]. 2005, 2(1):82-86.
    [56] Zhenfang Li, Zheng Bao, Hongyang Wang, and Guisheng Liao. Performance improvement for constellation SAR using signal processing techniques[J]. IEEE Trans on AES, 42, 2(2006), 436-452.
    [57] C.Fischer, C.Heer, G.Krieger and R.Werninghaus. A high resolution wide swath SAR[C]. EUSAR06.
    [58] N.Gebert, G.Krieger, and A.Moreira. High resolution wide swath SAR imaging with digital beamforming—Performance analysis, optimization and system design[C]. EUSAR06.
    [59] Nicolas Gebert, Gerhard Krieger, Alberto Moreira. Digital Beamforming for HRWS-SAR Imaging System Design, Performance and Optimization Strategies[C]. 2006, IEEE prcoceeding, 1836-1839.
    [60] Gerhard Krieger, Nicolas Gebert, Alberto Moreira. Digital Beamforming And Multidimensional Waveform Encoding for Spaceborne Radar Remote Sensing[C] 2007, Proceedings of the 4th European Radar Conference, 43-46.
    [61]杨凤凤,王敏,梁甸农.基于非均匀采样的小卫星分布式多通道SAR无模糊成像[J].电子学报, 2007, 35(9): 1754-1756.
    [62]宋岳鹏,杨汝良.应用多收发孔径实现高分辨率宽测绘带的合成孔径雷达研究[J].电子与信息学报, 2007, 29(9): 2110-2113.
    [63]郭振永,袁新哲,张平.一种多通道SAR高分辨率宽测绘带成像算法[J].电子与信息学报, 2008, 30(2): 310-313.
    [64]夏玉立,雷宏,黄瑶.分布式小卫星多中心频率SAR实现宽域二维高分辨率成像[J].电子与信息学报, 2009, 31(2): 501-504.
    [65] G.Krieger, N.Gebert and A.Moreira. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Trans on GRS, 2008 46(1): 31-46.
    [66] Gerhard Krieger, Nicolas Gebert, Marwan Younis, Alberto Moreira. Advanced Synthetic Aperture Radar Based on Digital Beamforming and Waveform Diversity[C]. 2008, IEEE prcoceeding, 767-772.
    [67] N.Gebert, G.Krieger and A.Moreira. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Trans on AES, 2009, 45(2): 564-591.
    [68] Wei Jing, Mengdao Xing, Cheng-Wei Qiu, Zheng Bao, and Tat-Soon Yeo.Unambiguous Reconstruction and High-Resolution Imaging for Multiple-Channel SAR and Airborne Experiment Results[J]. IEEE Geoscience and Remote Sensing Letters[J]. 2005, 2(1):82-86.
    [69] Prati C, Rocca F. Improving Slant-Range Resolution With Multiple SAR Surveys [J]. IEEE Trans. on Aerospace and Electronic Systems, 1993, 29(1): 135-143
    [70] F. Gatelli, et al. The wavenumber shift in SAR Interferometry [J]. IEEE Trans. on Geoscienceand Remote Sensing, 1994, 32(9):855-865
    [71] C. Jakowatz, et al. Spotlight-Mode SAR: A Signal Processing Approach[M]. Boston: Kluwer, 1996.
    [72]徐华平,周荫清等.基于频谱偏移估计的分布式星载SAR提高距离向分辨率的数据处理方法[J].电子学报, 2003, 31(12): 1790-1794.
    [73]闰鸿慧,王岩飞.利用频谱合成实现分布式卫星SAR高距离分辨力成像[J].电子与信息学报, 2005, 27(6).
    [74]闰鸿慧,王岩飞,张冰尘.利用频谱合成实现分布式SAR高分辨力成像[J].电子与信息学报.
    [75]李俐,王岩飞,张冰尘,闰鸿慧.基于编队卫星的SAR方位向高分辨率成像[J].系统工程与电子技术.
    [76]何峰,梁甸农,董臻.用星载寄生式SAR提高空间二维分辨率的信号处理[J].电子学报, 2005, 33(6): 1128-1131.
    [77]何峰.星载双/多基地SAR成像理论与信号处理研究[D].湖南长沙:国防科技大学博士论文, 2005.
    [78]李真芳,邢孟道,王彤,保铮.分布式小卫星SAR实现全孔径分辨率的信号处理[J].电子学报, 2003, 31(12): 1800-1803.
    [79]邢孟道等.分布式小卫星雷达空时频成像方法研究[J].宇航学报, 2005, 26(sup): 70-77.
    [80]马仑,李真芳,寥桂生.一种稳健的利用分布式小卫星获取宽域、高分辨SAR图像的方法[J].航空学报, 2007, 28(5): 1190-1194.
    [81]马仑,廖桂生,李真芳.利用分布式小卫星InSAR系统获取宽域、高分辨率、高精度三维地形[J].2009, 27(9): 1900-1906.
    [82] N.Goodman, D.Rajakrishna and J.Stiles, Wide swath, high resolution SAR using multiple receive apertures[C]. IGARSS99 1767-1769.
    [83] N.Goodman, Lin S, D.Rajakrishna and J.Stiles, Processing of multiple-receiver spaceborne arrays for wide area SAR[J]. IEEE Trans on GRS, 40, 4(2002).841-852.
    [84] Das, A. and R. Cobb. TechSat 21–Space Missions Using Collaborating Constellations of Satellites[C]. Proceeding of the 12th Annual AIAA/USU Conference on Small Satellites, Logan Utah, 31 August-3 September 1998.
    [85] M. Martin, P. Klupar, S. Kilberg, J. Winter. Techsat 21and Revolutionizing Space Missions using Microsatellites[C]. 15th American Institute of Aeronautics and Astronautics Conference on Small Satellites, Utah, 2001.
    [86] Cyrus D. Jilla. A Multiobjective, Multidisciplinary Design Optimization Methodology for the Conceptual Design of Distributed Satellite Systems[D]. Doctoral Thesis, Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2002.
    [87] M. Martin, P. Klupar, S. Kilberg, J. Winter. Techsat 21and Revolutionizing Space Missions using Microsatellites[C]. 15th American Institute of Aeronautics and Astronautics Conference on Small Satellites, Utah, 2001.
    [88] R. Burns, C.A. McLaughlin, J. Leitner, M. Martin. TechSat 21: formation design, control, and simulation[C]. IEEE Aerospace Conference Proceedings, 2000, Vol7: 19-25.
    [89] N. Evans,P. Lee,R. Girard. The RADARSAT-2&3 Topographic Mission[C]. EUSAR 2002:37-40
    [90] P. F. Lee,K. James. The RADARSAT-2/3 Topographic Mission[C]. IGARSS 2001
    [91] Werninghaus, R., W. Balzer, St. Buckreuss, J. Mittermayer, P.Mühlbauer. The TerraSAR-X Mission[C], EUSAR 2004, Ulm, Germany.
    [92] A. Moreira,G. Krieger,I. Hajnsek,et al. TanDEM-X: A TerraSAR-X Add-on Satellite for Single-Pass SAR Interferometry[C]. IGARSS 2004: 1000-1003
    [93] G. Krieger,A. Moreira. TanDEM-X:Mission Concept,Product Definition and Performance Prediction[C]. EUSAR 2006
    [94] H. Fiedler,G. Krieger,The TanDEM-X Mission Design and Data Acquisition Plan[C]. EUSAR 2006
    [95] A. Moreira,G. Krieger,I. Hajnsek,M. Werner,D. Hounam,S. Riegger,E. Settelmeyer. Single-Pass SAR Interferometry with a TanDEM TerraSAR-X Configuration[C]. EUSAR 2004: 53-54
    [96] G. KRIEGER , A. MOREIRA , I. HAJNSEK , A TanDEM TerraSAR-X Configuration for Single-Pass SAR Interferometry[C],RADAR 2004
    [97] N. Faller,M. Weber. TerraSAR-X and TanDEM-X: Revolution in Spaceborne Radar[C], IGARSS 2007.
    [98] M. Rothacher, B. D. Tapley, et. Al. The Tracking,Occulation and Ranging(TOR)Instrument Onboard TerraSAR-X and on TanDEM-X[C]. IGARSS 2007
    [99] H. Nies,O. Loffeld,K. Natroshvili,M. Kalkuhl. The Bistatic Aspect of the TanDEM-X Mission[C]. IGARSS 2007.
    [100] D. Massonnet. The Interferometric Cartwheel : A Constellation of Passive Satellites to Produce Radar Images to Be Coherently Combined[J]. Int. J. RemoteSensing, 2001, 22(12): 2413-2430
    [101] D. Massonnet. Capabilities and Limitations of the Interferometric Cartwheel[J]. IEEE Trans. on GRS, 2001, 39(3): 506-520
    [102] F. Martinerie,S. Ramongassie,B. Deligny. Interferometric Cartwheel Payload:Development Status and Current Issues[C]. IGARSS 2001: 390-392.
    [103] H. Fiedler,G. Krieger,F. Jochim,M. Kirschner,A. Moreira. Analysis of Bistatic Configurations for Spaceborne SAR Interferometry[C]. EUSAR 2002: 29-32.
    [104] H. Fiedler,G. Krieger,F. Jochim,M. Kirschner,A. Moreira. Analysis of Satellite Configurations for Spaceborne SAR Interferometry[C]. International Symposium of Formation Flying: Missions & Technologies, 2002.
    [105] G. Krieger, M. Wendler. Comparison of the Interferometric Performance for Spaceborne Parasitic SAR Configurations[C]. EUSAR 2002:467-470.
    [106] D' Errico, M., Grassi, M. and Vetrella, S. A bistatic SAR mission for earth observation based on a small satellite[J]. Acta Astronautica, 1996, 39(9-12): 837-846
    [107] A.. Moccia, N. Chiacchio, A. Capone. Spaceborne bistatic Synthetic Aperture Radar for Remote Sensing[J]. Int. J. Remote Sensing, 2000, 21(18):1153-1162
    [108] A.. Moccia, S. Vetrella. R. Bertoni. Mission analysis and design of a bistatic synthetic aperture radar on board a small satellite[J]. Acta Astronautica, 2000, 47(11): 819-829.
    [109] M. D'Errico, A. Moccia. The BISSAT mission: A bistatic SAR operating in formation with COSMO/SkyMed X-band radar[C]. IEEE Aerospace Conference Proceedings, 2002. 2-809 2-818
    [110]黄海风.分布式星载SAR干涉测高系统技术研究[D].国防科技大学博士学位论文,2005
    [111]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安电子科技大学博士学位论文,2006
    [112]杨凤凤.星载雷达GMTI系统与信号处理研究[D].国防科技大学博士学位论文,2007
    [113]王敏.天基分布式SAR系统多任务仿真研究[D].国防科技大学博士学位论文,2008
    [114] J. Dorey, G. Gamier, G. Auvray. SIAR, synthetic impulse and antenna radar[C], proceedings of International Conference on Radar, Paris, pp.556-562, 1989.
    [115]保铮,张庆文.一种新型的米波雷达——综合脉冲与孔径雷达[J].现代雷达, 1995,17(1): 1-13.
    [116] Luce A.Experimental results on SIAR digital beam-forming radar[C]. Proceeding of the IEEE International Radar Conference, 1992, Vol.1:505-510.
    [117] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela. MIMO Radar: An Idea Whose Time Has Come[C], Proc.IEEE Radar Conference, April. 2004: 71-78.
    [118] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela. Performance of MIMO Radar Systems: Advantages of Angular Diversity[C]. 38th Asilomar Conference on Signals, Systems and Computers, Nov, 2004: 7-10.
    [119] Nikolaus Lehmann, Some Contributions on MIMO Radar[D]. Doctor Dissertation of New Jersey Institute of Technology, Jan, 2007
    [120] D J. Rabideau, P Parker, Ubiquitous MIMO Multifunction Digital Array Radar[C]. 37th Asilomar Conference on Signals, Systems and Computers, Nov, 2003: 1057-1064
    [121]何子述,韩春林,刘波. MIMO雷达概念及其技术特点分析[J],电子学报,Vol.33,No.12A, 2005:2441-2445.
    [122] Min Gong, Xiaoming Wang, Shunji Huang. Performance Improvements in MIMO SAR[C]. Proceedings of IEEE, 2008, 1371-1373.
    [123] Wenqin Wang. Applications of MIMO Technique for Aerospace Remote Sensing[C]. Proceedings of IEEE, 2007.
    [124] Long Zhuang, and Xingzhao Liu. Coherent Synthesis Sparse Aperture Radar with Grating lobes Suppressed Using FrequencyMIMO Technique[C]. Proceedings of IEEE, 2008, 1378-1382.
    [125]李伟.分布式星载SAR干扰与抗干扰技术研究[D].国防科技大学博士学位论文, 2006.
    [126] B. Friedlander. On Data-Adaptive Waveform Design for MIMO Radar [C]. IEEE Proceedings, 2007, pp.187-191
    [127] B. Friedlander. Waveform Design for MIMO Radar with Space-Time Constraints [C]. IEEE Proceedings, 2007, PP.2168-2172
    [128] D.J. Rabideau. Adaptive MIMO Radar Waveforms [C]. IEEE Proceedings, 2008 pp.1349-1354.
    [129]陶海红,廖桂生,王伶.基于混合遗传算法的m-序列波形优化设计[J].电波科学学报, 2004, 19(3):1-5.
    [130]鲍坤超,陶海红,廖桂生.多发射体制下小卫星分布式雷达系统的波形设计[J].电子与信息学报, 2007, 29(9): 2117-2119.
    [131]王敦勇,袁俊泉,马晓岩.基于遗传算法的MIMO雷达离散频率编码波形设计[J].空军雷达学院学报, 2007, 21(2):105-107
    [132] Hai Deng. Polyphase Code Design for Orthogonal Netted Radar Systems[J], IEEE Transactions on Signal Processing, Vol.52, No.11, Nov, 2004: 3126-3135.
    [133] Hai Deng. Discrete Frequency-Coding Waveform Design for Netted RadarSystems[J], IEEE Signal Processing Letters, Vol.11, No.2, Feb.2004: 179-182.
    [134] Bo Liu, Zishu He, Jiankui Zeng, Benyong Liu. Polyphase Orthogonal Code Design for MIMO Radar Systems[C], International Conference on Radar, Oct.2006:113-116.
    [135] Bo Liu, Zishu He. Orthogonal Discrete Frequency-Coding Waveform Design for MIMO Radar[J], Journal of Electronics (China), Vol.25, No.4, May, 2008:472-476
    [136] Chun-Yang Chen, and P.P. Vaidyanathan. MIMO Radar Ambiguity Optimization Using Frequency-Hopping Waveforms[C]. 41th Asilomar Conference on Signals, Systems and Computers, Nov 2007, vol.4, pp.192-196
    [137] K.W. Forsythe and D.W. Bliss. Waveform Correlation and Optimization Issues for MIMO Radar[C]. 39th Asilomar Conference on Signals, Systems and Computers, NOV 2005, pp.1306-1310
    [138] J. Li, P. Stoica and Y. Xie. On Probing Signal Design for MIMO Radar[C]. 40th Asilomar Conference on Signals, Systems and Computers, Oct 2006
    [139] J. Li, P. Stoica and X. Zhu. MIMO Radar Waveform Synthesis[C]. IEEE Proceedings, 2008, PP.2125-2130
    [140] J. Li, P. Stoica and X. Zheng. Signal Synthesis and Receiver Design for MIMO Radar Imaging[J]. IEEE Transactions on Signal Processing, Vol.56, No.8 Aug 2008, PP.3959-3968
    [141] J. Mittermayer, J. M. Martinez, Analysis of Range Ambiguity Suppression in SAR by Up and Down Chirp Modulation for Point and Distributed Targets[C], Processings of IGARSS, July, 2003:4077-4079.
    [142] Shannon D. Blunt, K. Gerlach, Adaptive Pulse Compression via MMSE Estimation[J], IEEE Transactions on Aerospace and Electronic Systems, Vol.42, No.2, April, 2006:572-584
    [143] Nadav Levanon, Eli Mozeson, Radar Signals[M], A John Wiley & Sons, INC., 2004.
    [144]林茂庸,柯有安.雷达信号理论[M].北京:国防工业出版社, 1981.
    [145] D V. Sarwate, and M B. Pursley. Crosscorrelation Properties of Pseudorandom and Related Sequences[C], Proceedings of the IEEE, Vol.68, No.5, May.1980: 593-618.
    [146] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck, Discrete-Time Signal Processing[M], Prentice-Hall, Inc,1999.
    [147] Martin H. Achroyd, F. Ghani, Optimum mismatched filters for Sidelobe Suppression[J], IEEE Transactions on Aerospace and Electronic Systems, Vol.10, No.2, March, 1973:214-218.
    [148] J. M. Baden, M. N. Cohen, Optimal Peak Sidelobe Filters for Biphase Pulse Compression[C], Proceedings of IEEE International Radar Conference,1990:249-252.
    [149]白霞,袁运能,孙进平,毛士艺. 0.1米分辨率机载SAR系统的带宽实现和成像算法研究[J].电子学报, 35(9): 1622-1629.
    [150]井伟,武其松,邢孟道,保铮.多子带并发的MIMOSAR高分辨大测绘带成像[J].系统仿真学报, 2008, 20(16): 4373-4378.
    [151]宋岳鹏,柳祥乐,杨汝良.合成孔径雷达成像中频带分割与子带处理技术研究[J]. 2009, 31(1): 152-155.
    [152] Yuan-Pei Lin and Vaidyanathan, Periodically Nonuniform Sampling of Bandpass Signals[J], IEEE Transactions on Circuits and Systems-II:Analog and Digital Signal Processing, 1998, 45(3): 340-351.
    [153] Lai Tao, Huang Xiao-Tao, Dong Zhen and Liang Dian-Nong. Improved sub-aperture compensation for range-dependent motion errors in wide-swath UWB SAR[C], APSAR2007, 2007, Huangshan.
    [154] Costas, J. P., A study of a class of detection waveforms having nearly ideal range-Dopplers ambiguity properties[C], Proceedings of the IEEE, 1984, 72(8): 996-1009.
    [155] Martin H. Achroyd and F. Ghani. Optimum mismatched filters for sidelobe suppression [J]. IEEE Transactions on Aerospace and Electronic Systems, Volume AES-9, March 1973.
    [156] J. H. G. Ender, A. R. Brenner. PAMIR - A Wideband Phased Array SAR/MTI System. Proceedings of EUSAR 2002., Cologne, Germany, June 4-6, 2002, pp. 157-162
    [157] A. R. Brenner, J. H. G. Ender, First Experimental Results Achieved with the new very Wideband SAR System PAMIR, Proceedings of EUSAR 2002, Cologne, Germany, June 4-6, 2002, pp. 81-86
    [158] J. H. G. Ender, P. Berens, A. R. Brenner, L. R??ing, U. Skupin, Multi Channel SAR/MTI System Development at FGAN: From AER to PAMIR, Proceedings of IGARSS 2002, Toronto, Canada, June 24-28, 2002
    [159] H-M. J. Cantalloube, P. Dubois-Fernandez, Airborne X-band SAR imaging with 10 cm resolution - Technical challenge and preliminary results, Proceedings of IEEE/IGARSS 2003, July 21-25, 2003
    [160] A. R. Brenner, J. H. G. Ender , Airborne SAR Imaging with Subdecimeter Resolution, Proceedings of EUSAR 2004, Ulm, Germany, May 25-27, 2004
    [161] Dimitris G. Manolakis, Vinay k.Ingle, Stephen M. Kogon.周正等译.统计与自适应信号处理[M].北京:电子工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700