联用色谱数据的化学计量学解析方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代分析仪器,尤其是色谱和联用色谱等,提供了丰富的多组分量测信息,为解决中药现代化,系统生物学和环境科学研究中的分析问题创造了强有力的条件。而化学计量学的多变量解析方法,为从联用色谱数据中获取复杂体系多组分的定性定量信息提供了重要的手段。特别值得关注的是,作为国粹的中药,其活性成分的发现,药理作用,质量控制和多组分协同效应的研究等,弄清其化学物质基础,都是至关重要的一步。本论文就是从这些实际问题出发,发展新的化学计量学高维数据解析方法,解决中药研究和生物体系分析中面临的复杂多组分分析难题。论文主要涉及三个方面:联用色谱数据分辨算法及其在复杂中药体系研究中的应用;化学计量学方法寻找生物标记物模式以及色谱指纹图谱技术与多变量数据分析方法在中药质量控制中的应用。
     一.联用色谱数据分辨算法及其在复杂中药体系研究中的应用(第二章-第四章):第二章提出了在没有“先入先出”假设的情况下,诊断色谱流出模式的部分移动窗口因子分析法,实现了顺序流出与多组分完全包埋体系的分析。第三章首次提出了交替移动窗口因子分析法,实现了同一样本在不同分析条件下(如不同实验室,不同仪器,甚至是不同色谱柱等等);或者是不同但具有一定相关性的样本(如单味药与复方,野生中药材与种植药材,同一中药的不同药用部位,中药进血液前与进血液后)之间复杂多组分的综合比较,充分利用二个相关联用色谱的信息,挖掘出被比较体系之间组分的相互关系,并进一步分辨出它们的纯光谱,并根
The modern analytical instruments, especially chromatography and hyphenated chromatography, can provide abundant measurement information of multi-component in complex mixtures. They create favorable conditions for the solution of analytical problems arising from modernization of Chinese herbal medicines (CHMs), study of system biology, environmental science, and others. On the other hand, many multivariate resolution methods developed in Chemometric subject, made the effective extraction of qualitative and quantitative information of chemical components existing in hyphenated chromatography with high complexity be possible. In the study of CHMs, the quintessence of our country, it is noticeable that elucidation of materials basis is the first and essential step for the discovery of bioactive ingredients, interpretation of pharmacological experiments, quality control of medicinal materials and the final products, mechanisms of compatible effects of multi-component in CHMs and so on. This thesis is based on the solution of these practical problems. It focuses on the development of novel Chemometric resolution algorithms to high dimensional chromatographic data and the settlement of difficult problems in the analysis of multi-component in CHMs and biology research. Mainly, the thesis comes down to three aspects as follows: 1), resolution algorithms to hyphenated chromatographic data and their real applications in the study of CHMs; 2), discovery of biomarker patterns using Chemometric methods; 3), application of chromatographic
引文
[1] 梁文平,唐晋,王夔.新世纪化学发展战略思考.中国基础科学,2000,5:34~61
    [2] Pimentel G C. Opportunities in chemistry. Washington D C: National Academy Press, 1985
    [3] Breslow R. Chemistry today and tomorrow-the central, useful and creative science. American Chemical Society, 1997
    [4] 徐光宪.21世纪是信息科学、合成化学和生命科学共同繁荣的世纪.化学通报,2003,1:3~12
    [5] 王佛松,王夔,陈新滋,彭旭明.展望21世纪的化学.北京:化学工业出版社,2000
    [6] 徐光宪.21世纪化学的前瞻.大学化学,2001,16(1):1~7
    [7] He D L, Bao L L, Long Y M, Wei W Z, Yao S Z. A new study of the enzymatic hydrolysis of carboxymethyl cellulose with a bulk acoustic wave sensor. Talanta, 2000, 50(6): 1267~1273
    [8] Zhou A, He D, Nie L H, Yao S Z. Determination of the binding parameters of drug to protein by equilibrium dialysis/piezoelectric quartz crystal sensor. Anal. Biochem. 2000, 282(1): 10~15
    [9] 陈洪渊.原始性创新是21世纪分析化学面临的最根本挑战.中国科学基金,2003.5:257~261
    [10] David W D, Daniel B. Characterization of nucleic acids by nanopore analysis, Acc. Chem. Res. 2002, 35: 817~825
    [11] John J K, Henrickson S E, Howard H W, Baldwin R. Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem. 2001, 73: 2268~2272
    [12] 汪尔康.21世纪分析化学.北京:科学出版社,1999
    [13] 王夔.科学走向新世纪棗中国科学院第十次院士大会学术报告.北京:科学出版社,2001,37~42
    [14] Gomes M T S R, Duarte A C, Oliveira J A B P. Critical Assessment of the Parameters that Affect the Selection of Coating Compounds for Piezoelectric Quartz Crystal Microbalances. J. Pharm. Pharmacol. 1999, 51: 233~236
    [15] Rickert J, Brecht A, Gopel W. Biosens. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Bioelectron. 1997, 12: 567~575
    [16] Okahata Y, Niikura K, Sugiura Y, Sawada M, Morii T. Kinetic studies of sequence-specific binding of GCN4-bZIP peptides to DNA strands immobilized on a 27-MHz quartz-crystal microbalance. Biochemistry, 1998, 37: 5666~5672
    [17] 徐光宪.21世纪化学的前瞻.大学化学,2001,16(1):1~7
    [18] Scott R P W. Techniques and practice of chromatography. New York: Marcel Dekker, Inc. 1995
    [19] 卢佩章,许国旺.气相色谱专家系统.济南:山东科技出版社,1994
    [20] 孙毓庆.现代色谱法及其在医药中的应用.北京:人民卫生出版社,1999
    [21] 刘虎威.气相色谱方法及应用.北京:化学工业出版社,2001
    [22] Wold S. Chemometrics: what do we mean with it, and what do we want from it? Chemom. Intell. Lab. Syst. 1995, 30(1): 109~115
    [23] 梁逸曾,俞汝勤.化学计量学在我国的发展.化学通报,1999,10:14~19
    [24] Laitinen N, Antikainen O, Rantanen J, Yliruusi J. New perspectives for visual characterization of pharmaceutical solids. J. Pharm. Sci. 2004, 93(1): 165~176
    [25] Juan A D, Tauler R, Dyson R, Marcolli C, Rault M, Maeder M. Spectroscopic imaging and chemometrics: a powerful combination for global and local sample analysis. TrAC, Trends Anal. Chem. 2004, 23(1): 70~79
    [26] 沈海林,梁逸曾,俞汝勤,黎先春,孙新熙.香港大气颗粒物中多环芳烃的HELP法解析,中国科学(B辑),1997,27:556~563
    [27] Shen H L, Liang Y Z, Yu R Q, Li X C, Sun X X. Analysis of PAHs in air-borne particulates in Hong Kong City by heuristic evolving latent projections. Sci. China Seri. B, 1998, 41: 21~29
    [28] 沈海林,崔卉,梁逸曾,黎先春.直观推导式特征投影法定性、定量分析环境样品中的多环芳烃.化学学报,1998,56:378~384
    [29] Mossoba M M, Khambaty F M. Fry F S. Novel application of a disposable optical film to the analysis of bacterial strains: a chemometric classification of mid-infrared spectra. Appl. Spectrosc. 2002, 56(6): 732~736
    [30] Jarvis R M, Goodacre R. Rapid discrimination of bacteria using surface enhanced Raman spectroscopy. Anal. Chem. 2004, 76(1): 40~47
    [31] Nijssen A, Schut T C B, Heule F, Caspers P J, Hayes D P, Neumann M H A, Puppels G J. Discriminating Basal Cell Carcinoma from its Surrounding Tissue by Raman Spectroscopy. J. Invest. Dermatol. 2002,119(1): 64-69
    [32] Xu C J, Liang Y Z, Chau F T. Identification of essential components of Houttuynia cordata by gas chromatography/mass spectrometry and the integrated chemometric approach. Talanta, 2005, 68(1): 108-115
    [33] Liang Y Z, Xie P S, Chan K. Quality control of herbal medicines. J. Chromatogra. B, 1995, 812(1-2): 53-70
    [34] Guo F Q, Liang Y Z, Xu C J, Huang L F. Analyzing of the volatile chemical constituents in Artemisia capillaris herba by GC-MS and correlative chemometric resolution methods. J. Pharm. Biomed. Anal. 2004, 35(3): 469-478
    [35] Gong F, Liang Y Z, Xu Q S, Chau F T. Gas chromatography-mass spectrometry and chemometric resolution applied to the determination of essential oils in Cortex Cinnamomi. J. Chromatogr. A, 2001, 905(1-2): 193-205
    [36] Morrison D A, Ellis J T. The design and analysis of microarray experiments: applications in parasitology. DNA Cell Biol. 2003,22 (6): 357-394
    [37] Chilingaryan A, Gevorgyan N, Vardanyan A, Jones D, Szabo A. Multivariate approach for selecting sets of differentially expressed genes. Math. Biosci. 2002, 176(1): 59-69
    [38] Oba S, Sato M A, Takemasa I, Monden M, Matsubara K I, Ishii S. A Bayesian missing value estimation method for gene expression profile data. Bioinf. 2003, 19 (16): 2088-2096
    [39] Culhane A C, Perriere G, Higgins D G. Cross-platform comparison and visualisation of gene expression data using co-inertia analysis. BMC Bioinf. 2003, 4(1): 59-62
    [40] Grus F H, Sabuncuo P, Dick H B, Augustin A J, Pfeiffer N. Changes in the tear proteins of diabetic patients. BNC Ophthalmol. 2002,2: 1471-2415
    [41] Tan, H W, Brown S D. Wavelets Applied to Removing Non-constant, Varying Spectroscopic Background in Multivariate Calibration. J. Chemom. 2002, 16(5): 228-240
    [42] Liu B F, Sera Y, Matsubara N, Otsuka K, Terabe S. Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Electrophoresis, 2003, 24(18): 3260-3265
    [43] Cocchi M, Seeber R, Ulrici A. Use of metabonomics to identify impaired fatty acid metabolism as the mechanism of a drug-induced toxicity. J. Chemom. 2003, 17(8~9): 512~527
    [44] Martens H, Hoy M, Wise B M, Bro R, Brockhoff P B. GLS Pre-processing of Multivariate Data. J. Chemom. 2003, 17 (3): 153~165
    [45] Li B Y, Liang Y Z, Hu Yun, Du Y P, Song Y Q, Cui H. Evaluation of gas chromatography-mass spectrometry in conjunction with chemometric resolution for identification of nitrogen compounds in crude oil. Talanta, 2003, 61(6): 803~810
    [46] 沈海林,宋又群,崔卉,梁逸曾.化学演进过程数据的自动分辨-复杂石油样品的GC~MS分析.化学学报,2000,58:438~442
    [47] Barry L, Jerome J W J. Chemometrics. Anal. Chem. 2002, 74: 2763~2270
    [48] Barry L, Jerome J W J. Chemometrics. Anal. Chem. 2004, 76: 3365~3372
    [49] Svante S, Michael S. Chemometrics, present and future success. Chem. Intell. Lab. Sys. 1998, 44:3~14
    [50] 梁逸曾,吴海龙,俞汝勤.化学计量学.现代科学仪器,1998,5:3~6
    [51] 吴海龙,梁逸曾,俞汝勤.分析化学计量学.现代科学仪器,1999,18(6):94~102
    [52] 俞汝勤.现代分析化学的信息理论基础.长沙:湖南大学出版社,1987
    [53] 梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法.长沙:湖南科技出版社,1997
    [54] 梁逸曾,俞汝勤.分析化学手册(第十分册)化学计量学.北京:化工出版社,1999
    [55] 许禄.化学计量学方法。北京:科学出版社,1995
    [56] 陆晓华.化学计量学.武汉:华中理工大学出版社,1997
    [57] Sanchez E, Kowalski B R. Chemometrics in the Future: higher order tensors. Proceedings of the 46th Session of the International Statistics Institute. 1987, 1~18
    [58] 肖培根,肖小河.21世纪与中药现代化.中国中药杂志,2000,25(2):67~70
    [59] 罗国安,王义明.世界科学技术.中医药现代化,1999,11~12
    [60] 石建功,王素娟,莫顺燕,杨永春.高通量技术在天然药物和中药现代化研究中的应用.世界科学技术.中医药现代化,2003,4:48~52
    [61] 石任兵,刘斌,石钺,陆蕴如.中药复方化学与创新药物研究.世界科学技术-中医药现代化,2003,6:6~13
    [62] 李健.对中药现代化发展几个问题的认识.中医药管理杂志,2003,4:39~40
    [63] 梁鑫淼,徐青,章飞芳.中药现代化研究的几点思考.中国科学院院刊,2004,3:218~230
    [64] 肖小河,王阶.论中医理论与中药现代化国际化.世界科学技术-中医药现代化,2004,1:37~44
    [65] http://www.rbgkew.org.uk/press/archive/chinese.htm
    [66] World health Organization (WHO). WPR/RC52/7: A Draft Regional Strategy for Traditional Medicine in Western Pacific. WHO Regional Committee, 52nd session Brunei Darussalam, 2001, 10~14
    [67] 谢培山.中药色谱指纹图谱研究.北京:人民卫生出版社,2005
    [68] 梁逸曾.浅议中药色谱指纹图谱的意义、作用及可操作性.中药新药与临床药理,2001,12(3):196~200
    [69] 任德权.中药指纹图谱质控技术的意义和作用.中药新药与临床药理,2001,12(3):135~140
    [70] World Health Organization (WHO). WHO monographs on selected medicinal plants. 1999, 154~167
    [71] Jordan J R. The Big Picture in Traditional Chinese Medicine, Inside Laboratory Management. AOAC International, 2005, 22~24
    [72] Naeva S, Juan A D, Tauler R. Detection and Resolution of Intermediate Species in Protein Folding Processes Using Fluorescence and Circular Dichroism Spectroscopies and Multivariate Curve Resolution. Anal. Chem. 2002, 74 (23): 6031~6039
    [73] Naeva S, Juan A D, Tauler R. Modelling temperature-dependent protein structural transitions by combined NIR and MIR spectroscopies and multivariate curve resolution. Anal. Chem. 2003, 75 (20): 5592~5601
    [74] Jaumot J, Escaja N, Gargallo R, Gonzalez C, Pedroso E, Tauler R. Multivariate curve resolution: a powerful tool for the analysis of conformational transitions in nucleic acids. Nucleic Acids Res. 2002, 30(17): 9~18
    [75] Jaumot J, Avino A, Eritja R, Tauler R, Gargallo R. Resolution of parallel and antiparallel oligonucleotide triple helices formation and melting processes by multivariate curve resolution. J. Biomol. Struct. Dyn. 2003, 21(2): 267~278
    [76] Holden C A, Hunnicutt S, Sanchez P R, Craig J M, Rutan S C. Mitochondrial coupling in vivo in mouse skeletal muscle. Appl. Spectrosc. 2003, 57(5): 483~490
    [77] Stordrange L, Christy A A, Kvalheim O M, Shen H, Liang Y. Study of the self-association of alcohols by near-infrared spectroscopy and multivariate 2D techniques. J. Phys. Chem. A, 2002, 106 (37): 8543~8553
    [78] Mendes P. Emerging bioinformatics for the metabolome. Briefings Bioinf. 2002, 3(2): 134~145
    [79] Holmes E, Antti H. Chemometric contributions to the evolution of metabononics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst, 2002, 127(12): 1549~1557
    [80] Shockcor J P, Holmes E. Metabonomic applications in toxicity screening and disease diagnosis. Curr. Top. Med. Chem. 2002, 2 (1): 35~51
    [81] Davis J M, Giddings J C. Statistical theory of component overlap in multicomponent chromatograms. Anal. Chem. 1983, 55: 418~424
    [82] Wang Z D, Fingas M, Landdault M. J, Sigouin L, Feng Y P, Mullin J. Using systematic and comparative analytical data to identify the source of an unknown oil on contaminated birds. J. Chromatogr. A, 1997, 75: 251~265
    [83] Lin L Z, He X G, Lian L Z, King W, Elliott J. Liquid chromatographic -electrospray mass spectrometric study of the phthalides of Angelica sinensis and chemical changes of Z-ligustilide. J. Chromatogr. A, 1998, 810: 71~79
    [84] Maeder M. Evolving factor-analysis for the resolution of overlapping chromatographic peaks. Anal. Chem. 1987, 59: 527~530
    [85] Maeder M, Zilian A. Evolving factor-analysis, a new multivariate technique in chromatography. Chemom. Intell. Lab. Syst. 1988, 3: 205~213
    [86] Malinowski E R. Window factor-analysis-theoretical derivation and application to flow-injection analysis data. J. Chemom. 1992, 6(1): 29~40.
    [87] Malinowski E R. Automatic window factor analysis-a more efficient method for determining concentration profiles from evolutionary spectra. J. Chemom. 1996, 10:273~279
    [88] Kvalheim O M, Liang Y Z. Heuristic evolving latent projections-resolving 2-way multicomponent data. 1. Selectivity, latent-projective graph, datascope, local rank and unique resolution. Anal. Chem. 1992, 64:936~946
    [89] Liang Y Z, Kvalheim O M, Keller H R, Massart D L, Kiechle P, Erni F. Heuristic evolving latent projections- Resolving 2-way multicomponent data. 2. Detection and resolution of minor constituents. Anal. Chem. 1992, 64: 946~953
    [90] Liang Y Z, Kvalheim O M, Rahmani A, Brereton R G. Kvalheim O M, Rahmani A, et al. Resolution of strongly overlapping 2-way multicomponent data by means of heuristic evolving latent projections. J. Chemom. 1993, 7(1): 15~43
    [91] Manne R, Shen H L, Liang Y Z. Subwindow factor analysis. Chemom. Intell. Lab. Syst. 1999, 45(1-2): 171~176
    [92] Shen H L, Manne R, Xu Q S, Chen D Z, Liang Y Z. Local resolution of hyphenated chromatographic data. Chemom. Intell. Lab. Syst. 1999, 45(1-2): 323~328
    [93] Keller H R, Massart D L. Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Anal. Chim. Acta, 1991, 246(2): 379~390
    [94] Lohnes M T, Guy R D, Wentzell P D. Window target-testing factor analysis: theory and application to the chromatographic analysis of complex mixtures with multiwavelength fluorescence detection. Anal. Chim. Acta, 1999, 389:95~113
    [95] Brown C D, Wentzell P D. A modification to window target-testing factor analysis using a gaussian window. Chemom. Intell. Lab. Syst. 2000, 51: 3~7
    [96] Xu C J, Jiang J H, Liang Y Z. Evolving window orthogonal projections method for two-way data resolution. Analyst, 1999,124(10): 1471~1476
    [97] Whitson A C, Maeder M. Exhaustive evolving factor analysis (E-EFA). J. Chemom. 2001, 15(5): 475~484
    [98] Golub G H, Loan F V. Matrix Computations. Baltimore: Johns Hopkins University Press. MD, 1983
    [99] Davis J M, Giddings J C. Statistical theory of component overlap in multicomponent chromatograms. Anal. Chem. 1983, 55: 418~424
    [100] Greef J V D, Stroobant P, Heijden R V D. The role of analytical sciences in medical systems biology. Curr. Opin. Chem. Biol. 2004, 8(5): 559~565
    [101] Lohnes M T, Guy R D, Wentzell P D. Window target-testing factor analysis: theory and application to the chromatographic analysis of complex mixtures with multiwavelength fluorescence detection. Anal. Chim. Acta, 1999, 389: 95~113
    [102] Weckwerth W, Fiehn O. Can we discover novel pathways using metabolomic analysis? Curr. Opin. Biotech. 2002, 13: 156~160
    [103] Fiehn O, Kopka J, Trethewey R N, Willmitzer L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 2000, 72: 3573-3580
    [104] Tauler R, Casassas E. Chemom. Spectroscopic resolution of macromolecular complexes using factor analysis: copper (II)-polyethyleneimine system. Intell. Lab. Syst. 1992,14:(l-3) 305-317
    [105] Tauler R. Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst. 1995, 30(1): 133-146
    [106] Tauler R, Barcelo D. Multivariate curve resolution applied to liquid chromatography-diode array detection. TrAC, Trends Anal. Chem. 1993, 12(8): 319-327
    [107] Tauler R, Lacorte S, Barcelo D. Application of multivariate self-modeling curve resolution to the quantitation of trace levels of organophosphorus pesticides in natural waters from interlaboratory studies. J. Chromatogr. 1996, 730(1-2): 177-183
    [108] Sanchez F C, Rutan S C, Gil Garcia M D, Massart D.L. Resolution of multicomponent overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis. Chemom. Intell. Lab. Syst. 1997,36:153-164
    [109] Stein S E. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 1999,10: 770-781
    [110] Gong F, Liang Y Z, Fung Y S, Chau F T. Correction of retention time shifts for chromatographic fingerprints of herbal medicines. J. Chromatogr. A, 2004, 1029(1-2): 173-183
    [111] Li X N, Liang Y Z, Chau F T. Smoothing methods applied to dealing with heteroscedastic noise in GC-MS. Chemom. Intell. Lab. Syst. 2002, 63(2): 139-153
    [112] Li B Y, Hu Y, Liang Y Z, Huang L F, Xu C J, Xie P S. Spectral correlative chromatography and its application to analysis of chromatographic fingerprints of herbal medicines. J. Sep. Sci. 2004(7-8), 27: 581-588
    [113] Brereton R G, Rahmani A, Liang Y Z, Kvalheim O M. Investigation of the allomerization reaction of chlorophyll-alpha-use of diode-array HPLC, mass-spectrometry and chemometric factor-analysis for the detection of early products. Photochem. Boichem. 1994, 59(1): 99-110
    [114] Lindon. J. Metabonomics - Techniques and application. Techn. Service 2004, 1: 1-6
    [115] Fernie A R, Trethewey R N, Krotzky A J, Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Bio. 2004,5: 763-769
    [116] Li B Y, Hu Y, Liang Y Z. Quality evaluation of fingerprints of herbal medicine with chromatographic data. Anal. Chim. Acta, 2004, 514(1): 69-77
    [117] Hu Y, Liang Y Z, Li B Y, Li X N, Du Y P. Multicomponent Spectral Correlative Chromatography Applied to Complex Herbal Medicines. J. Agr. Food Chem. 2004, 52: 7771-7776
    [118] Huang L F, Li B Y, Liang Y Z. Application of combined approach to analyze the constituents of essential oil from Dong quai. Anal. Bioanal. Chem. 2004, 378(2): 510-517
    [119] Gong F, Liang Y Z. Analysis of volatile components from Cortex cinnamomi with hyphenated chromatography and chemometric resolution. J. Pharmaceut. Biomed. 2004, 34(5): 1029-1047
    [120] Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987,2: 37-52
    [121] Xu C J, Liang Y Z, Li Y. Chemical rank estimation by noise perturbation in functional principle component analysis. The Analyst, 2003,128: 75-81
    [122] Shen H L, Wang J H, Liang Y Z,et al.Chemical rank estimation by multiresolution analysis for two-way data in the presence of background. Chemom. Intell. Lab. Syst. 1997,37:261-269
    [123] Keller H R, Massart D L, Liang Y Z. Evolving factor analysis in the presence of heteroscedastic noise. Anal. Chim. Acta, 1992,263: 29-36
    [124] Ritter C, Gilliard J A, Cumps J. Corrections for heteroscedasticity in window evolving factor analysis. Anal. Chim. Acta, 1996, 318: 125-136
    [125] Kvalheim O M, Brakstad F, Liang Y Z. Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise. Anal. Chem. 1994,66: 43-51
    [126] Jolliffe I T. Principal Component Analysis, 2nd ed. New York: Springer-Verlag, 2002
    [127] Tauler R, Smilde A, Kowalski B R. Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J. Chemom. 1995, 9: 31~58
    [128] Xu Q H, Liu L Y, Zhao R H. Collection of Drug Pairs in Traditional Chinese Medicine. Beijing: Publishing House of Traditional Chinese Medicine, 1996
    [129] Xu G L, Chen W H, Zhang M H. Drug Pairs and Clinic. Hehui: Anhui Publishing House of Science and Technology, 2003
    [130] Tan T L, Liu Q L. Common-used Drug Pairs and Contraindictions of Traditional Chinese Medicine. Taiyuan: Shanxi Publishing House of Science and Technology, 2004
    [131] The National Committee of Chinese Pharmacopeia. Beijing: Publishing House of Chemical Industry, 2000
    [132] Lao S C, Li S P, Kan K K W, Li P, Wan J B, Wang Y T, Tina, Dong T X, Tsim K W K. Anal. Chim. Acta, 2004, 526: 131
    [133] Yang Q, Populo S M, Zhang J Y, Yang G G; Kodama H. Effect of Angelica sinensis on the proliferation of human bone cells. Clin. Chim. Acta, 2002, 324(1-2): 89~97
    [134] Lu G H, Chan K, Chan C L, Leung K, Jiang Z H, Zhao Z Z. Quantification of ligustilides in the roots of Angelica sinensis and related umbelliferous medicinal plants by high-performance liquid chromatography and liquid chromatography-mass spectrometry. J. Chromatogr. A, 2004, 1046(1-2): 101~107
    [135] Mao X Q, Kong L, Luo Q Z, Li X, Zou H F. J. Chromatogr. B. 2002, 779: 331~339
    [136] Vendeuvre C, Rosario R G, Bertoncini F, Duval L, Thiebaut D, Hennion M C. Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC×GC): A powerful alternative for performing various standard analysis of middle-distillates. J. Chromatogr. A, 2005, 1086: 21-28
    [137] Wang Y C, Huang T L. High-performance liquid chromatography for quantification of plumbagin, an anti-Helicobacter pylori compound of Plumbago zeylanica L. J. Chromatogr. A, 2005, 1094: 99~104
    [138] Ramakrishna N V S, Vishwottam K N, Wishu S, Koteshwara M, Chidambara J. High-performance liquid chromatography method for the quantification of entacapone in human plasma. J. Chromatogr. B. 2005, 823: 189~194
    [139] Kadokami K, Tanada K, Taneda K, Nakagawa K. Novel gas chromatography-mass spectrometry database for automatic identification and quantification of micropollutants. J. Chromatogr. A, 2005,1089: 219-226
    
    [140] Hernandez F, Pozo 6 J, Sancho J V, Lopez F J, Main J, Ibanez M. Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC-MS-MS using triple quadrupole and hybrid quadrupole time-of-flight analyzers. TrAC, Trends Anal. Chem. 2005,24: 596-612
    
    [141] Troncoso N, Sierra H, Carvajal L, Delpiano P, Gunther G Fast high performance liquid chromatography and ultraviolet-visible quantification of principal phenolic antioxidants in fresh rosemary. J. Chromatogr. A, 2005,1100: 20-25
    
    [142] Kawaguchi M, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H. Stir bar sorptive extraction and trace analysis of alkylphenols in water samples by thermal desorption with in tube silylation and gas chromatography-mass spectrometry. J. Chromatogr. A, 2005,1062: 23-29
    
    [143] Christopher R H, Perry A M, Praveen K S. Identification and quantification of eight flavones in root and shoot tissues of the medicinal plant Huang-qin (Scutellaria baicalensis Georgi) using high-performance liquid chromatography with diode array and mass spectrometric detection. J. Chromatogr. A, 2005,1062: 199-207
    
    [144] Jeannot V, Chahboun J, Russell D, Baret P. Quantification and determination of chemical composition of the essential oil extracted from natural orange blossom water (Citrus aurantium L. ssp. aurantium). Inter. J. Aromat. 2005, 15: 94-97
    
    [145] Burkard I, Eckardstein A V, Rentsch K M. Differentiated quantification of human bile acids in serum by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 2005, 826: 147-159
    
    [146] Seger C, Langle T, Pernfuss B, Stuppner H, Strasser H. High-performance liquid chromatography-diode array detection assay for the detection and quantification of the Beauveria metabolite oosporein from potato tubers. J. Chromatogr. A, 2005, 1092: 254-257
    [147] Mullen J H, Shugert R L, Ponsler G D, Li Q M, Sundaram B, Coales H L, Yakupkovic J E, LeLacheur R M, Wheeler W J, Belas F J, Sauer J M. Simultaneous quantification of atomoxetine as well as its primary oxidative and O-glucuronide metabolites in human plasma and urine using liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Pharm. Biomed. Anal. 2005, 38:720~733
    [148] Nirogi R V S, Kandikere V N, Shukla M, Mudigonda K, Maurya S, Boosi R, Yerramilli A. Sensitive and selective liquid chromatography-tandem mass spectrometry method for the quantification of azithromycin in human plasma. Anal. Chim. Acta, 2005, 553:1~8
    [149] Fraga C G, Corley C A. The chemometric resolution and quantification of overlapped peaks form comprehensive two-dimensional liquid chromatography. J. Chromatogr. A, 2005, 1096:40~49
    [150] Willem W, Jean G. Interactive self-modeling mixture analysis. Anal. Chem. 1991, 63:1425~1432
    [151] Braekeleer K D, Massart D L. Evaluation of the orthogonal projection approach (OPA) and the SIMPLISMA approach on the Windig standard spectral data sets. Chemom. Intell. Lab. Syst. 1997, 39:127~141
    [152] Martin P J, Alan W P, Willem W. The resolution of mixtures using data from automated probe mass spectrometry. Anal. Chim. Acta, 1995, 318:43~53
    [153] Christophe C, Julio S L T M, Clement M C, Patrick D, Daniel C B. Detection and quantification of honey adulteration via direct incorporation of sugar syrups or bee-feeding: preliminary study using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and chemometrics. Anal. Chim. Acta, 2005, 531: 239-248
    [154] Fraga C G. Chemometric approach for the resolution and quantification of unresolved peaks in gas chromatography-selected-ion mass spectrometry data. J. Chromatogr. A, 2003, 1019:31~42
    [155] Sinha A E, Hope J L, Prazen B J, Nilsson E J, Jack R M, Synovec R E. Algorithm for locating analytes of interest based on mass spectral similarity in GC×GC-TOF-MS data: analysis of metabolites in human infant urin. J. Chromatogr. A, 2004, 1058:209~215
    [156] Ferraro M C F, Castellano P M, Kaufman T S. Chemometric determination of amiloride hydrochloride, atenolol, hydrochlorothiazide and timolol maleate in synthetic mixtures and pharmaceutical formulations. J. Pharm. Biomed. Anal. 2004,34:305-314
    [157] Xie L L, Marriott P J, Adams M. Chemometric analysis of comprehensive two-dimensional gas chromatography data using cryogenic modulation. Anal. Chim. Acta, 2003, 500: 211-222
    [158] Arancibia J A, Escandar G M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, 2003, 60: 1113-1121
    [159] Hope J L, Johnson K J, Cavelti M A, Prazen B J, Grate J W, Synovec R E. High-speed gas chromatographic separations with diaphragm valve-based injection and chemometric analysis as a gas chromatographic "sensor". Anal. Chim. Acta, 2003,490: 223-230
    [160] Zeng Z D, Liang Y Z, Wang Y L, Li X R, Liang L M, Xu Q S, Zhao C X, Li B Y, Chau F T. Alternative moving window factor analysis for comparison analysis between complex chromatographic data. J. Chromatogr. A, 2006,1107: 273-285
    [161] Ohman J, Geladi P, Wold S. Residual bilinearization. Part 1: Theory and algorithms. J. Chemom. 1990,4: 79-90
    [162] Ohman J, Geladi P, Wold S. Residual bilinearization. Part 2: Application to HPLC - diode array data and comparison with rank annihilation factor analysis. J. Chemom. 1990,4: 135-146
    [163] Liang Y Z, Manne R, Kvalheim O M. Constrained background bilinearization. Chemom. Intell. Lab. Syst. 1992,14: 175-184
    [164] Moramarco J. The complete ginseng handbook. Lincolnwood: Contemporary books, 1997
    [165] Stavro P M, Woo M, Heim T F, Leiter L A, Vuksan V. North American ginseng exerts a neutral effect on blood pressure in individuals with hypertension. Hypertension, 2005,46: 406-411
    [166] Yun T K. Update from Asia: Asian studies on cancer chemoprevention. Ann. NY Acad. Sci. 1999, 889: 157-192
    [167] Tatsuka M, Maeda M, Ota T. Anticarcinogenic effect and enhancement of metastatic potential of BALB/c 3T3 cells by ginsenoside Rh(2). Jpn. J Cancer Res. 2001,92: 1184-1186
    [168] George G H, Royston G. Metabolic profiling: is role in biomarker discovery and gene function analysis. Boston/Dordrecht/London: Kluwer Academic Publishers, 2003
    [169] Somerville C, Dangl L. Genomics-plant biology in 2010. Science, 2000, 29: 2077~2078
    [170] Nicholson, J K, Connelly J, Lindon J C, Holmes E. Metabonomics: A platform for studying drug toxicity and gene function. Nat. Rev. Drug Dis. 2002, 1: 153~161
    [171] Nicholson, J K, Lindon J C, Holmes E. Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multi-variate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29:1181~1189
    [172] Fiehn O. Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks. Comp. Funct. Genom. 2001, 2:155~168
    [173] Fiehn O, Kopka J, Trethewey R N, Willmitzer L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 2000, 72: 3573~3580
    [174] Alexandra M, Jochen J, Steffi B, Annette S, Armin M, Adrian C S, Hans B. Simultaneous enantioselective analysis of chiral urinary metabolites in patients with Zellweger syndrome. J. Chrom. B, 2003, 792:269~277
    [175] Eisaburo S, Naoko S, Kentaro I, Akemi S, Kenji S, Shin-ichiro H, Kohei N, Kei N. Detection of plasma hnRNP Bl mRNA, a new cancer biomarker, in lung cancer patients by quantitative real-time polymerase chain reaction. Lung Cancer, 2005, 48:77~83
    [176] Jin W, Jin L T, Shi G Y, Ye J N. Determination of monoamine transmitters and their metabolites by capillary electrophoresis with electrochemical detection. Anal. Chim. Acta, 1999, 382:33~37
    [177] Kidaa T, Noguchia J, Zhang M R, Suharac T, Suzukia K. Metabolite analysis of [~(11)C] Ro15-4513 in mice, rats, monkeys and humans. Nucl. Med.Biol. 2003, 30: 779~784
    [178] Lee J, Son J, Hun Y K, Pae A N, Kim D H. Rapid analysis of metabolic stability of dopamine receptor antagonists and detection of their metabolites by liquid chromatography/tandem mass spectrometry. Anal. Biochem. 2003, 313:292~300
    [179] Robert S N, Mukesh V, Sudhir S. The promise of biomarkers in cancer screening and detection. TRENDS Mol. Med. 2002,8: 288-293
    
    [180] Shen Y F, Zhang R, Moore R J, Kim J, Metz T O, Hixson K K, Zhao Z, Livesay E A, Udseth H R, Smith R D. Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000-1500 and capabilities in proteomics and metabonomics. Anal. Chem. 2005, 77: 3090-3100
    
    [181] Toshimasa T, Masayoshi K, Yusuke K, Yuji N. Determination of triazolam involving its hydroxy metabolites in hair shaft and hair root by reversed-phase liquid chromatography with electrospray ionization mass spectrometry and application to human hair analysis. Anal. Biochem. 2001,295:172-179
    
    [182] Urpi-Sarda M, Jauregui O, Lamuela-Raventos R M, Jaeger W, Miksits M, Covas M S, Andres-Lacueva C. Uptake of diet Resveratrol into the human low-density lipoprotein. identification and quantification of resveratrol metabolites by liquid chromatography coupled with tandem mass spectrometry. Anal. Chem. 2005, 77: 3149-3155
    
    [183] William E G, Semmes O J, Joseph B, Elzbieta I, Feng Z, Jacob K, Adam B L, Dean T, Sudhir S, Mark T, Zhang Z, Ian M T. The early detection research network surface-enhanced laser desorption and ionization prostate cancer detection study: a study in biomarker validation in genitourinary oncology. Urol. Oncol. 2004,22: 337-343
    
    [184] Yolanda Z P, Marc L. Protein precipitation: an expedient procedure for the routine analysis of the plasma metabolites of [~(123)I] IBZM. Nucl. Med.Biol. 1999, 26:811-814
    
    [185] Ingmar G, Gottfried B, Markus V. Validated methods for direct determination of hydroquinone glucuronide and sulfate in human urine after oral intake of bearberry leaf extract by capillary zone electrophoresis. J. Chromatogra. B, 2001, 761:261-266
    
    [186] Jane L W, Cassandra H, Jennie L, Michael H B. Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochem. 2003, 62: 949-957
    
    [187] Agarwal V K, Krol G J, Krone V, Roberts D. Quantitative analysis of HBY 097 and its metabolites in human human serum and urine by HPLC. J. Pharm. Biomed. Anal. 1998,16: 1195-1203
    [188] Hassan Y A E, Mohamed M H. Liquid chromatographic high-throughput analysis of ketamine and its metabolites in human plasma using a monolithic silica column and solid phase extraction. Talanta, 2005, 65:67~73
    [189] Jan V D G, Paul S, Rob V D H. The role of analytical sciences in medical systems biology. Curr. Opin. Chem. Biol. 2004, 8:559~565
    [190] Idborg-Bjorkman H, Edlund P O, Kvalheim O M, Schuppe-Koistinen I, Jacobsson S P. Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way data analysis. Anal. Chem. 2003, 75:4784~4792
    [191] Idborg H, Edlund P O, Jacobsson S P. Multivariate approaches for efficient detection of potential metabolites from liquid chromatography/mass spectrometry data. Rapid Commun. Mass. Spectrom. 2004, 18:944~954
    [192] Jonsson P, Gullberg J, Nordstrom A, Kusano M, Kowalczyk M, Sjostrom M, Moritz T. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal. Chem. 2004, 76:1738~1745
    [193] Ziv B J, Shlomit F, David G, Itamar S, Roni R. Deconvolving cell cycle expression data with complementary information. Bioinf. 2004, 20:23~30
    [194] Lohnes M T, Guy R D, Wentzell P D. Window target-testing factor analysis: theory and application to the chromatographic analysis of complex mixtures with multiwavelength fluorescence detection. Anal. Chim. Acta, 1999, 389:95~113
    [195] Hagan S O, Dunn W B, Brown M, Knowles J D, Kell D B. Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Anal. Chem. 2005, 77:290~303
    [196] Liang Y Z, Kvalheim O M, Manne R. White, Gray and black multicomponent systems-a classification of mixture problems and methods for their quantitative analysis. Chemom. Intell. Lab. Syst. 1993, 18:235~250
    [197] Shannon C E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 3:379~423
    [198] Hayashi, Y, Golder D G, Mahlman J D, Miyahara S. Pure Appl. Geophy. 1989, 130(2-3): 421~443
    [199] Matsuda R, Hayashi Y, Ishibashi M, Takeda Y J. Chromatogr. 1989, 462:13
    [220] Matsuda R, Hayashi Y, Ishibashi M, Takeda Y J. Chromatogr. 1989, 462:23
    [221] Matsuda R, Hayashi Y, Ishibashi M, Takeda Y J. AOAC Int. 1994, 77:338
    [222] Huber J F K, Kenndler E, Reich G, Hack W, Wolf J. Optimal selection of gas chromatographic columns for the analytical control of chemical warfare agents by application of information theory to retention data. Anal. Chem. 1993, 65: 2903-2906
    [223] Sasaki K, Kawata S, Minami S. Estimation of component spectra curves from unknown mixture spectra. Appl. Opt. 1984,23: 1955-1959
    [224] Kawata S, Komeda H, Sasaki K. Advanced algorithm for determining component spectra based on principal component analysis. Appl. Opt. 1985,39: 610-614
    [225] Green B N, Kuchumov A R, Hankeln T, Schmidt E R, Bergtron G, Vinogradov S N. An electrospray ionization mass spectrometric study of the extracellular hemoglobins from chironomus thummi thummi. Bioch. Biophys. Acta, 1998, 1383:143-150
    [226] Green B N, Suzuki T, Gotoh T, Kuchumov A R, Vinogradov S N. Electrospray ionization mass spectrometric determination of the complete polypeptide chain composition of Tylorrhynchus heterochaetus haemoglobin. J. Biol. Chem. 1995, 270:18209-18214
    [227] Weber R E, Malte H, Braswell E H, Oliver R W A, Green B N, Sharma P K, Kuchumov A R, Vinogradov S N. Mass Spectrometric Composition, Molecular Mass and Oxygen Binding of Macrobdella decora Hemoglobin and its Tetramer and Monomer Subunits. J. Mol. Biol. 1995,251: 703-720
    [228] Zeng Y Z. An improved algorithm for estimating pure component spectra in exploratory chemometric studies based on entropy minimization. Marc Garland Anal. Chim. Acta, 1998,359: 303-310
    [229] Vissera E, Lee T W. An information-theoretic methodology for the resolution of pure component spectra without prior information using spectroscopic measurements. Chemom. Intell. Lab. Syst. 2004,70:147-155
    
    [230] Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley, 1991
    [231] Papoulis A. Probability, Random Variables and Stochastic Processes. New York: McGraw-Hill, 1991
    [232] Gong F, Liang Y Z, Xie P S, Chau F T. Information theory applied to chromatographic fingerprint of herbal medicine for quality control. J. Chromatogr. A, 2003, 1002: 25-40
    [233] Gong F, Liang Y Z, Fung Y S, Chau F T. Correction of retention time shift for chromatographic fingerprint of herbal medicine. J. Chromatogr. A, 2004, 1029: 173-183
    [234] Wen K C, Huang C Y, L FL. Determination of. baicalin and puerarin in traditional Chinese. J. Chromatogr. A, 1993,631:241-250
    [235] WHO. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicines. 2000,1-16
    
    [236] Tyler V E. Phytomedicines: back to the future. J. Nat. Prod. 1999,62:1589-1592
    [237] Woo Y A, Kim H J, Cho J H, Chung H. Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques. J. Pharm. Biomed. Anal. 1999,21: 407-413
    [238] Liu J F, Hu S L. J. Infor. on Trad. Chin. Medic. 2001, 8: 28-30
    [239] Woo Y A, Kim H J, Cho J H. Identification of herbal med-. icines using pattern recognition techniques with near-infrared reflectance spectra. Microchem. J. 1999, 63: 61-70
    [240] Martin M J, Pablos F, Gonzalez A G. Application of pattern recognition to the discrimination of roasted coffees. Anal. Chim. Acta, 1996,320: 191-197
    [241] Murayama K, Yuan B, Ozaki Y, Tomida M, Era S. Near-infrared spectroscopy for liquids of microliter volume using capillaries with wall transmission. The Analyst, 2003,128: 957-959
    [242] Kuenstner T, Norris K H, McCarthy W F. Measurement of hemoglobin in unlysed blood by near-infrared spectroscopy. Appl. Spectrosc. 1994, 48: 484-488
    [243] Kirsch J D, Drennen J K. Near-infrared spectroscopy: applications in the analysis of tablets and solid pharmaceutical dosage forms. Appl. Spectrosc. Rev. 1995,30: 139-174
    [244] Aksenova T I, Tetko I V, Ivakhnenko A G, Villa A E P, Welsh W J, Zielinski W L. Pharmaceutical Fingerprinting in Phase Space. 1. Construction of Phase Fingerprints. Anal. Chem. 1999, 71: 2423-2430
    [245] Tetko I V, Aksenova T I, Patiokha A A, Villa A E P, Welsh W J, Zielinski W L, Livingstone D J. Pharmaceutical Fingerprinting in Phase Space. 2. Pattern Recognition. Anal. Chem. 1999, 71: 2431-2439
    [246] Goodacre R, Pygall J, Kell D B. Plant classification using pyrolysis mass spectroscopy with unsupervised learning: The application of auto-associative and Khonen artificial neural networks. Chemom. Intell. Lab. Syst. 1996, 34: 69-83
    [247] Schoonjans V, Taylor N, Hudson B D, Massart D L. J. Pharm. Biomed. Anal. 2002,28: 537-548
    [248] Peres C, Viallon C, Berdague J L. Curie point pyrolysis-mass spectrometry applied to rapid characterisation of cheeses. J. Anal. Appl. Pyrolysis. 2002, 65: 161-171
    [249] Peres C, Begnaud F, Berdague J L. Fast characterization of Camembert cheeses by static headspace-mass spectrometry. Sens. Actu. B, 2002, 87: 491-497
    [250] Egeberg P K, Bergli S O. Fingerprinting of natural organic matter by capillary zone electrophoresis using organic modifiers and pattern recognition analysis. J. Chromatogr. A, 2002, 950: 221-231
    [251] Gong F, Liang Y Z, Xie P S, Chau F T. Information theory applied to chromatographic fingerprint of herbal medicine for quality control. J. Chromatogr. A, 2003,1002: 25-40
    [252] Welsh W J, Lin W K, Tersigni S H, Collantes E, Duta R, Carey M S, Zielinski W L, Brower J, Spencer J A, Layloff T P. Anal. Chem. 1996, 68: 3473-3482
    
    [253] Hasler A, Sticher O. Identification and determination of the flavonoids from ginkgo biloba by high-performance liquid chromatography. J. Chromatogr. 1992, 605: 41-48
    [254] Lazarowych N J, Pekos P. Use of fingerprinting and marker compounds for identification and. standardization of botanical drugs: strategies for applying pharmaceutical HPLC analysis to herbal products. Drug Inform. J. 1998, 32: 497-512
    
    [255] State Drug Administration of China. Chinese Trad. Pat. Med. 2000,22: 671-675
    [256] Gong F, Liang Y Z, Xie P S, Chau F T. Information theory applied to chromatographic fingerprint of herbal medicine for quality control. J. Chromatogr. A, 2003,1002: 25-40
    [257] Gong F, Liang Y Z, Fung Y S, Chau F T. Correction of retention time shifts for chromatographic fingerprints of herbal medicines. J. Chromatogr. A, 2004, 1029: 173-183
    [258] Wold S, Antti H, Lindgren F, Ohman J. Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst. 1998,44: 175-185
    [259] Fearn T. On orthogonal signal correction. Chemom. Intell. Lab. Syst. 2000, 50: 47-52
    [260] Randic M. Resolution of ambiguities in structure-property studies by use of orthogonal descriptors. J. Chem. Inf. Comput. Sci. 1991, 31:311~320
    [261] Amic D, Davidovic-Amic D, Trinajstic N. Calculation of Retention Times of Anthocyanins with Orthogonalized Topological Indices. J. Chem. Inf. Comput. Sci. 1995, 35:136~139
    [262] Soskic M, Plavsic D, Trinajstic N. On Finding Nonisomorphic Connected Subgraphs and Distinct Molecular Substructures. J. Chem. Inf. Comput. Sci. 1996, 36:829~832
    [263] He X G, On-line identification of phytochemical constituents in botanical extract by combined high-performance liquid chromatographic-diode array detection mass spectrometric technique. J. Chromatogr. A, 2000, 880:203~232
    [264] Pietta P G, Gardana C, Pietta A M. Analytical methods for quality control of propolis. Fitoterapia, 2002, 73(1): Suppl. S7~S20
    [265] Mauri P, Pietta P. Electrospray characterization of selected medicinal plant extracts. J. Pharm. Biomed. Anal. 2000, 23:61~68
    [266] Areias F M, Valentao P, Andrade P B, Ferreres F. Phenolic fingerprint of peppermint leaves. Food Chem. 2001, 73:307~311
    [267] Borse B B, Rao L J M, Nagalakshmi S. Food Chem. 2002, 79:419~424
    [268] Tyler V E. Phytomedicines: back to the future. J. Nat. Prod. 1999, 62:1589~1592
    [269] 任德权,国际色谱指纹图评价中药质量研讨会学术报告论文集(一).广州:现代化中药产业关键技术系列研讨会,2001,p.i1-1~p.i1-7
    [270] 谢培山,国际色谱指纹图评价中药质量研讨会学术报告论文集(一).广州:现代化中药产业关键技术系列研讨会,2001,p.i3-1~p.i3-27
    [271] 杜一平.化学数据挖掘新算法和定量构性关系基础研究:[博士学位论文].长沙:湖南大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700