三维荧光结合多变量分析在海洋溶解有机物特征研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋溶解有机物质(DOM)是全球碳循环的重要贮库,在水体的生物和化学过程中起着重要作用,但是由于其结构和组成复杂,目前对其了解甚微。基于DOM荧光性质的三维荧光光谱的广泛应用为海洋DOM的研究展开了新的思路,多变量数据分析方法提供了新的技术手段。
     本文利用激发/发射矩阵光谱(EEMs)并结合平行因子分析(PARAFAC)的方法,对荧光组分进行有效分离,监测了北黄海、南海以及东海赤潮演替期间海水DOM荧光团组成和性质的差异,并结合温盐、叶绿素等物理生物参数和聚类分析的方法讨论了不同海域不同环境下海水DOM来源的主要影响因素,并对赤潮演替对DOM的影响进行了初步探讨。
     (1)对北黄海獐子岛附近海域12月、3月、5月三个航次的研究发现不同季节DOM的荧光组成基本一致,包含类腐殖质荧光组分C1(265/440nm)、C2(410-450/520-550nm)和类蛋白荧光组分C3(230,280/330nm),且三者有很好的相关性,表明它们有着相同的来源或彼此间存在某种关系。各组分在不同季节不同水层的分布有在獐子岛周围海域荧光强度相对较大的共同点。通过对各组分与叶绿素a和盐度变化的关系研究发现,调查海区DOM受现场浮游植物和人类生产活动的共同作用。
     (2)南海1月份的样品识别出了四种荧光组分,分别为类蛋白荧光组分C1(280,230/335nm)和C4(270/310nm),类腐殖质荧光组分C2(255,320/415nm)、C3(290,350/490nm),C4(270/480nm)。类蛋白荧光物质主要来自自陆源输入,而类腐殖质荧光物质只有在表层随着盐度的增大得到稀释,底层高盐低温区受到海洋自身有机物分解沉降的作用,出现荧光高值。聚类分析将调查区域分为四类,近岸入海口受人类活动的影响荧光物质含量大归为一类;比较靠近岸边的站位荧光值也相对较高,且水层较浅,表底层差别不大,为第二类;随着向远海的延伸,荧光强度逐渐降低,这些归为第三类;最后在远海底层的样品有类腐殖质的添加,归为第四类。
     (3)东海春季赤潮演替过程中DOM分解得到的六种荧光组分分别为类腐殖质荧光组分C1(265,335/470nm)、C2(245,310/400nm)、C6(300-310/510nm),类蛋白荧光组分C3(275/315nm)、C4(235,290/330nm)、C5(305/345nm)。各荧光组分在不同水层的分布整体上呈现表层最高、中层次之、底层最低的特点,与生物活动相适应。发生赤潮演替最为明显的za断面DOM的组成和变化与其他断面有所不同,中肋骨条藻藻体的消亡降解向水体中释放了大量的类酪氨酸荧光物质,其他断面各类蛋白荧光组分之间和各类腐殖质荧光组分之间的相关性很好,主要受到陆源输入的影响,五月份的类蛋白荧光组分除陆源输入,还有沉积物间隙水的贡献。各荧光组分强度与叶绿素相关性不显著,现存浮游植物对类蛋白和类腐殖质荧光组分的直接影响都很小。
     通过对以上三个海域DOM的研究表明,EEMs与PARAFAC相结合对DOM荧光进行分析鉴别是一种有效可行的分析方法。不同海域DOM的组成和性质受到周围环境的影响,表现有一定的差异,赤潮演替过程中藻体的消亡降解会释放大量的类酪氨酸荧光物质,活跃的人类活动加剧了陆源有机物向海洋的输入,也在一定程度上影响了海洋DOM的分布组成。DOM光学性质的研究在监测、研究、开发利用海洋方面将具有广阔的应用前景。
Marine dissolved organic matter(DOM) is an important storage of the global carbon cycle,which plays an important role in water creatures and chemical process. However, the recognitionis limited because of its complex structure and composition. The wide applications ofthree-Dimensional Fluorescence Spectrum based on fluorescence properties of DOM, providesnew ideas for Marine research and new technological methods are used with multivariate dataanalysis.
     In this paper, fluorescence components of DOM were identified effectively in northernYellow Sea, South China Sea and East China Sea with the course of red tide dispersion, usingExcitation/Emission Matrix spectroscopy(EEMs) combined with Parallel FactorAnalysis(PARAFAC). The differences in composition and properties of fluorophore werediscussed, and the relationships with temperature, salinity, chlorophyll and other physical andbiochemical parameters were considered. Furthermore, cluster analysis was used to assess thesimilarities and dissimilarities of the EEMs data set. The result showed the sources and othermajor influential elements of the fluorescence components in different environments.
     (1) According to the three times aquatic researches in December, March, May in northernYellow Sea waters around Zhangzi Island, it indicated that DOM fluorescence components weregenerally consistent in different seasons, including humic-like component C1(265/440nm),C2(410-450/520-550nm) and protein-like component C3(230,280/330nm) and three had goodcorrelation. It showed that they had the same sources or some certain relationships between eachother. Further more, all of the3components in different layers and different seasons had higherfluorescence intensity around Zhangzi Island, which was relatively large in common. Throughthe research on the relationships among fluorescence components and chlorophyll-a andvariations in salinity, it surveyed the marine DOM was influenced by both phytoplankton and human activity.
     (2) Four fluorescent components were identified for the samples got from South China Seain January, including two protein-like components C1(280,230/335nm), C4(270/310nm), andthree humic-like components C2(255,320/415nm),C3(290,350/490nm), C4(270/480nm).Protein-like fluorescent matters were obtained from terrestrial inputs mainly. However, thefluorescent intensity of humic-like components only decreased with increase of salinity insurface layer, and high fluorescent intensity was found in the areas with low temperature andhigh salinity. Four clusters were obtained by cluster analysis, cluster1was distributed in thecoastal location, where human activities were extensive, cluster2was mainly composed ofsamples from the area little far away from the shore, while the most samples in cluster3weredistributed in the open ocean with low fluorescent intensity, and the samples of last cluster4wereobtained form the bottom open sea with low temperature and high salinity.
     (3) The distributions of fluorescent components of chromophoric dissolved organic matterfrom East Sea in April and May in the succession process of red tide dispersion were disscussed.Six individual fluorescent components were identified by PARAFAC, including three humic-likecomponents C1(265,335/470nm), C2(245,310/400nm), C6(300-310nm/510nm), protein-likecomponent C3(275/310nm), C4(235,290/330nm) and C4(305/345nm). The fluorescenceintensity in surface layers was higher than that in middle layers, and it was minimum in bottomlayers, conforming to biological activities. The compositions and properties of DOM in thesection of za, where red tide dispersion happened, were different from others, and hightyrosine-like intensity was observed, which was produced by the degradation of frond. Theprotein-like and humic-like components in other sections had good relationships, showing theyhad the same sources, and terrestrial inputs influenced mainly. No significant correlation wasfound with chlorophyll, suggesting that the living algal matter contributed little to thefluorescence intensity of the seawater.
     The results of the discuss for DOM in different sea areas demonstrated the capability of thecombination of EEMs and PARAFAC for characterizing fluorescence of DOM. Thecompositions and characterizations in different areas were different, influenced by thesurrounding environments. The terrestrial inputs were aggravated by human activities, which influenced the characterizations of marine DOM to a large extent, meanwhile phytoplankton canalso play a impotent role in the areas where they were active. The study in optical properties ofDOM have bright prospects in survey, exploitation and application of the ocean.
引文
1.傅平青,刘丛强,尹祚莹等.腐殖酸三维荧光光谱特性研究.地球化学,2004,33(3):301-308.
    2.高洪峰,曹文达,纪明侯.海水腐殖质的基本化学组成研究.海洋与湖沼,1996,27(1):35-39.
    3.郭卫东,杨丽阳,王福利,等.水库型河流溶解有机物三维荧光光谱的平行因子分析.光谱学与光谱分析,2011,31(2):427-430.
    4.郭卫东,黄建平,洪华生,等.河口区溶解有机物三维荧光光谱的平行因子分析及其示踪特性,环境科学,2010,31(6):1419-1427.
    5.季乃云,赵卫红,王江涛等.胶州湾赤潮暴发水体中溶解有机物质荧光特征,环境科学,2006a,27(2):52-57.
    6.李宏斌,刘文清,张玉钧,等.水体中溶解有机物的三维荧光光谱特征分析.大气与环境光学学报,2006,1(3):216-221.
    7.凌晓,曹玉珍,莫翠云,等.应用平行因子分析和三维荧光分析法分辨萘、1-萘酚和2-萘酚.分析化学,2001,29(12):1412~1415.
    8.刘海龙,吴希军,田广军.三维荧光光谱技术及平行因子分析法在绿茶分析及种类鉴别中的应用.中国激光,2008,35(5):685~689.
    9.吕桂才,赵卫红,王江涛,等.平行因子分析在赤潮藻滤液三维荧光光谱特征提取中的应用.分析化学研究报告,2010,38(8):1144-1150.
    10.任保卫,赵卫红,王江涛,等.海洋微藻生长过程藻液三维荧光特征.光谱学与光谱分析,2008,28(5):1130~1134.
    11.苏荣国,胡序朋,张传松,等.荧光光谱结合主成分分析对赤潮藻的识别测定.环境科学,2007,28(7):1529~1533.
    12.王守业,徐小龙,刘清亮等.荧光光谱在蛋白质分子构象研究中的应用.化学进展,2001,13(4):257-260.
    13.王志刚,刘文清,张玉钧,等.三维荧光光谱法分类测量水体浮游植物浓度.中国环境科学,2008,28(2):136~141.
    14.夏达英,李宝华,吴永森等.海水黄色物质荧光特性初步研究.海洋与湖沼,1999,30(6):719-725..
    15.鄢远,许金钩,陈国珍.三维荧光光谱法研究蛋白质溶液构象.中国科学(B辑),1997,27(1):16-22.
    16.张正斌,陈镇东,刘莲生等.海洋化学原理和应用(中国近海的海洋化学).第一版.北京:海洋出版社,1999.170.
    17.赵卫红,王江涛,崔鑫,季乃云,海洋浮游植物生长过程中溶解有机物质的三维荧光光谱研究,高技术通讯,2006,16(4):425-430.
    18.禚鹏基,赵卫红,东海硅藻赤潮后海水溶解有机物的荧光特征.光谱学与光谱分析,2009,29(5):1349-1353.
    19.朱桂海, Brooks J M.三维全扫描荧光法探讨长江口邻近陆架有机沉积物来源.沉积学报,1989,7(1):117-125.
    20. Ballabio D, Consonni V, Todeschini R. Classification of multiway analytical data based onMOLMAP approach. Anal Chim Acta,2007,605(2):134-46.
    21. Beutler M, Wiltshire K H, Arp M, et al. Fluorescence spectral signatures: Thecharacterization of phytoplankton populations by the use of excitation and emission spectra.Biochimica et Biophysica Acta,2003,1604:33~46.
    22. Bro R, Henk A L K. A new efficient method for determining the number of components inPARAFAC models. Chemometrics,2003,17:274~286.
    23. Chen R F, Bissett P, Coble P, et al. Chromophoric dissolved organic matter (CDOM) sourcecharacterization in the Louisiana Bight, Mar Chem,2004,89:257-272.
    24. Chen R F, Bada J L. The fluorescence of dissolved organic matter in seawater. Mar Chem,1992,37:191-221.
    25. Coble P G, Green S A, Blough N V, et al. Charaterization of dissolved organic matter in theBlack Sea by fluorescence spectroscopy. Nature,1990,348(29):432-435.
    26. Coble P G, Schultz C A, Mopper K. Fluorescence contouring analysis of DOCIntercalibration Experiment samples: a comparison of techniques. Mar Chem,1993,41:173-178.
    27. Coble P G. Characterization of marine and terrestrial DOM in seawater usingexcitation-emission matrix spectroscopy. Mar Chem,1996,51:325-346.
    28. Coble P G, Del Castillo C E, Avril B. Distribution and optical properties of CDOM in theArabian Sea during the1995Southwest Monsoon. Deep-Sea Res Ⅱ,1998,45:2195-2223.
    29. Dargan A I, Khrapunov S N, Protas A F, et al. The change in maximum position of tyrosylfluorescence spectra of R Nase A and histone dimer (H2A-H2B) under denaturation. StudBiophys,1983,96:187-193.
    30. De Souza Sierra M M, Donard O F X, Lamotte M, et al. Fluorescence spectroscopy ofcoastal and marine waters. Mar Chem,1994,47:127-144.
    31. Determann S, Reuter R, Wagner P et al. Fluorescent matter in the eastern Atlantic Ocean(Part1: method of measurement and near-surface distribution). Deep-Sea Res I,1994,41(4):659—675.
    32. Determann S, Lobbes J M, Reuter R, et al. Ultraviolet fluorescence excitation and emissionspectroscopy of marine algae and bacteria. Mar Chem,1998,62:137-156.
    33. Donard O F X, Lamotte M, Belin C, et al. High-sensitivity fluorescence spectroscopy ofMediterranean waters using a conventional of a pulsed laser excitation source. Mar Chem,1989,27:117-136.
    34. Dorsch J E, Bidleman T F. Natural organics as fluorescence tracers of river-sea mixing.Estuarine, Coastal and Shelf Science,1982,15:701-707.
    35. Eisinger J, Navon G. Fluorescence quenching and isotope effect of tryptophan. J Chem Phys,1969,50:2069-2077.
    36. Ferrari G M. The relationship between chromophoric dissolved organic matter and dissolvedorganic carbon in the European Atlantic coastal area and in the West Mediterranean Sea(Gulf of lions). Mar Chem,2000,70:339-357.
    37. Galla H J, Warnke M, Scheit K H. Incorporation of the antimicrobial protein seminalplasmin into lipid bilayer membranes. Eur Biophys J,1985,12:2-11.
    38. Guimet F R, BoquéR, FerréJ. Application of non-negative matrix factorization combinedwith Fisher's linear discriminant analysis for classification of olive oil excitation–emissionfluorescence spectra. Chemometrics and Intelligent Laboratory Systems,2006,81(1):94-106.
    39. Guo W D, Yang L Y, Hong H S. et al. Assessing the dynamics of chromophoric dissolvedorganic matter in a subtropical estuary using parallel factor analysis. Mar Chem,2011,124(1-4):125-133.
    40. Guo W D, Stedmon C A, Han YC,et al. The conservative and non-conservative behavior ofchromophoric dissolved organic matter in Chinese estuarine waters. Mar Chem,2007,107(3):357-366.
    41. Hayase K, Shinosuka N. Vertical distribution of fluorescence organic matter along withAUO and nutrients in the Epuatorial Pacific. Mar Chem,1995,48:283-290.
    42. Hall G J, Kenny J E. Estuarine water classification using EEM spectroscopy andPARAFAC-SIMCA. Anal Chim Acta,2007,581(1):118-24.
    43. Hayase K, Tsubota H, Sunada I, et al. Vertical distribution of fluorescence organic matter inthe North Pacific. Mar Chem,1998,25:273-281.
    44. Harvey G R, Boran D A, Chesal L A, et al. The structure of marine fulvic and humic acids.Mar Chem,1983,12:119-132.
    45. Her N, Amy G, McKnight D, et al. Characterization of DOM as a function of MW byfluorescence EEM and HPLC-SEC using USA, DOC, and fluorescence detection. WaterResearch,2003,37:4295-4303.
    46. Hong H, Wu J, Shang S et al. Absorption and fluorescence of chromophoric dissolvedorganic matter in the Pearl River Estuary, South China. Mar Chem,2005,97:78-89.
    47. Holbrook R D, Yen J H, Grizzard T J. Characterizing natural organic material from theOccoquan Watershed (Northern Virginia, US) using fluorescence spectroscopy andPARAFAC. Sci Total Environ,2006,361(1-3):249-66.
    48. Jaffe R, Boyer J N, Lu X, et al. Source characterization of dissolved organic matter in asubtropical mangrove-dominated estuary by fluorescence analysis. Mar. Chem.,2004,84:195-210.
    49. Jiji R D, Booksh K S. Mitigation of Rayleigh and Raman spectral interferences in multi-waycalibration of excitation-emission matrix fluorescence data. Analytical Chemistry,2000,72718~725.
    50. Kalle K. Fluoreszenz und Gelbstoff im Bottnischen und Finnischen Meerbusen. DtschHydrogr Z,1949,2:117-124.
    51. Komada T, Schofield O M E, Reimers C E. Fluorescence characteristics of organic matterreleased from coastal sediments during resuspension. Mar Chem,2002,79:81-97.
    52. Kowalczuk P, Stoń-Egiert J. Cooper W J, et al. Characterization of chromophoricdissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrixfluorescence spectroscopy. Mar Chem,2005,96(3-4):273-292.
    53. Kowalczuk P, Durako M J, Young H et al. Characterization of dissolved organic matterfluorescence in the South Atlantic Bight with use of PARAFAC model: Interannualvariability. Mar Chem,2009,113(3-4):182-196.
    54. Kowalczuk P, Cooper W J, Durako M J,et al. Characterization of dissolved organic matterfluorescence in the South Atlantic Bight with use of PARAFAC model: Relationshipsbetween fluorescence and its components, absorption coefficients and organic carbonconcentrations. Mar Chem,2010,118(1-2):22-36.
    55. Laane R W P M. Influence of pH on the fluorescence of dissolved organic matter. Mar Chem,1982,11:395-401.
    56. Laane R W P M, Koole L. The relation between fluorescence and dissolved organic carbonin the Ems-Dollart estuary and the western Wadden Sea. Neth J Sea Res,1982,15:217-227.
    57. Luciani X, Mounier S, Paraquetti H H, et al. Tracing of dissolved organic matter from theSepetiba Bay (Brazil) by PARAFAC analysis of total luminescence matrices. Mar EnvironRes,2008.65(2):148-57.
    58. Matthews B J H, Jones A C, Theodorou N K, et al. Excitation-emission-matrix fluorescencespectroscopy applied to humic acid bands in coral reefs. Mar Chem,1996,55:317-332.
    59. Mayer L M, Schik L L, Loder T C. Dissolved protein fluorescence in two Maine estuaries.Mar Chem,1999,64:171-179.
    60. Mopper K, Schultz C A,1993. Fluorescence as a possible tool for studying the nature andwater column distribution of DOC components. Mar Chem,41:229—238.
    61. Murphy K R, Stedmon C A, Waite T D, et al. Distinguishing between terrestrial andautochthonous organic matter sources in marine environments using fluorescencespectroscopy. Mar Chem,2008,108(1-2):40-58.
    62. Ndou T T, Warner I M. Application of multidimensional absorption and luminescencespectroscopies in analytical chemistry. Chem Rev,1991,91:493
    63. Parlanti P, Worz K, Geoffroy L, et al. Dissolved organic matter fluorescence spectroscopy asa tool of estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org.Geochem,2000,31:1765—1781
    64. Patel-Sorrentino N, Mounier S, Benaim J Y. Excitation-emission fluorescence matrix tostudy Ph influence on organic matter fluorescence in the Amazon basin rivers. WaterResearch,2002,36:2571-2581.
    65. Persson T, Wedborg M, Multivariate evaluation of the fluorescence of aquatic organic matter.Anal Cim Acta,2001,434:179-192
    66. Petersen H T. Determination of an Isochrysis galbana algal bloom by L-tryptophanfluorescence. Marine Pollution Bulletin,1989,20(9):447-451.
    67. Richard G Z, Wade N S, Mary A M. Dissolved organic fluorophores in southeastern UScoastal waters: correction method for eliminating Rayleigh and Raman scattering peaks inexcitation-emission matrix. Marine chemistry,2004,89:15~36.
    68. Piotr K, Michael J.D, Heather Y, etal. Characterization of dissolved organic matterfluorescence in the South Atlantic Bight with use of PARAFAC model: Interannualvariability[J]. Mar. Chem.,2009,113:182-196.
    69. Rochelle-Newall E J, Fisher T R. Production of chromophoric dissolved organic matterfluorescence in marine and esturine environments: an investigation into the role ofphytoplankton. Mar Chem,2002,77:7-21.
    70. Sierra M M D, Giovanela M, Parlanti E, et al. Fluorescence fingerprint of fulvic and humicacids from varied origins as viewed by single-scan and excitation/emission matrixtechniques. Chemosphere,2005,58:715-733.
    71. Smart P L, Finlayson B L, Rylands W D, et al. The relation of fluorescence to dissolvedorganic carbon in surface waters. Water Res,1976,10:805-811.
    72. Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environmentsusing a new approach to fluorescence spectroscopy. Mar Chem,2003,82:239-254.
    73. Stedmon C A, Markager S. Resolving the variability in dissolved organic matterfluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol.Oceanogr.,2005a,50(2):686-697.
    74. Stedmon C A, Markager S. Tracing the production and degradation of autochthonousfractions of dissolved organic matter by fluorescence analysis. Limnol. Oceanogr.,2005b,50(5):1415-1426.
    75. Thurman, E M. Organic Geochemistry of Natural Waters. Martinus Nijhoff Publishers,Dordrecht,1985:512-524.
    76. Traganza E D. Fluorescence excitation and emission spectra of dissolved organic matter insea water. Bull Mar Sci,1969,19:897-904.
    77. Vecchio R D, Blough N V. Photobleaching of chromophoric dissolved organic matter innatural waters: kinetics and modeling. Mar Chem,2002,78:231-253.
    78. Vignudelli S, Santinelli C, Murru E, et al. Distributions of dissolved organic carbon(DOC)and chromophoric dissolved organic matter(CDOM) in coastal waters of the northernTyrrhenian Sea(Italy). Estuarine, Coastal and Shelf Science,2004,60:133-149.
    79. Wang Z G, Liu W Q, Zhao N J, et al. Composition analysis of colored dissolved organicmatter in Taihu lake based on three dimension excitation-emission fluorescence matrix andPARAFAC model and the potential application in water quality monitoring. Journal ofEnvironmental Sciences,2007,19:787~791.
    80. Willey J D. The effect of seawater magnesium on natural fluorescence during estuarinemixing, and implications for tracer applications. Mar Chem,1984,15:19-45.
    81. Wolfbeis O S. The flurorescence of organic natural products. In: Schulman J J (Eds).Molecular luminescence spectroscopy, Methods and Applications: PartⅠ. Wiley, New York,
    1985.79-136.
    82. Xie H X, Aubry C, Belanger S, et al. The dynamics of absorption coefficients of CDOM andparticles in the St.Lawrence estuarine system: Bilgeochemical and physical implications.Mar Chem,2012,128-129:44-56.
    83. Yamashita Y, Tanoue E. Chemical characterization of protein-like fluorophores in DOM inrelation to armatic amino acids. Mar Chem,2003,82:255-271.
    84. Yamashita Y, JafféR. Characterizing the interactions between trace matals and dissolvedorganic matter using excitation-emission matrix and parafac factors analysis. Mar Chem,2008,42:7374-7379.
    85. Yamashita Y, Cory R M, Nishioka J, et al. Fluorescence characteristics of dissolved organicmatter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean.Deep Sea Research Part II: Topical Studies in Oceanography. Mar Chem,2010,57(16):1478-1485.
    86. Yang L Y, Hong H S, Guo W D, et al. Absorption and fluorescence of dissolved organicmatter in submarine hydrothermal vents off NE Taiwan. Mar Chem,2012,128-129:64-71.
    87. Zhang Y L, Dijk M A, Liu M L, et al. The contribution of phytoplankton degradation tochromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field andexperimental evidence. Water Res,2009,43(18):4685-97.
    88. Zhu D Z, Ji B P, Eum H L, et al, Evaluation of the non-enzymatic browning in thermallyprocessed apple juice by front-face fluorescence spectroscopy. Food Chemistry,2009,113(1):272-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700