多吡啶双核钉或铜配合物的合成及与DNA作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis and DNA Binding Studies of New Polypyridyl Dinuclear Ruthenium and Copper Complexes
  • 作者:袁利
  • 论文级别:硕士
  • 学科专业名称:物理化学
  • 学位年度:2003
  • 导师:吴建中
  • 学科代码:070304
  • 学位授予单位:华南师范大学
  • 论文提交日期:2003-06-01
  • 答辩委员会主席:李伟善
摘要
多吡啶配体与钌或铜形成的配合物在光物理,电化学,分子自组装等研究领域占有重要的位置。在DNA结构识别、光谱探针、裂解试剂和抗癌药物等方面的应用也受到越来越广泛的重视。这些应用大多数要求配合物要有一个配体能够插入到DNA的碱基对平面之间。近年来,这种类型的多核配合物与DNA的独特作用方式成为生物无机化学领域引人注目的研究课题。
     本文以邻菲咯啉为原料,通过邻菲咯啉-2,9-二醛和邻菲咯啉-5,6-二铜中间体,合成了一种未见前人报道的在结构上既可作为桥联配体,也具有插入DNA碱基对平面间的能力的含咪唑环的多吡啶配体,2,9-二(2-咪唑并[4,5-f]邻菲咯啉)邻菲咯啉(BIPP),并用该配体作为桥联配体合成了两个同双核配合物[(bpy)_2Ru(μ-BIPP)Ru(bpy)_2](ClO_4)_4和[(phen)Cu(μ-BIPP)Cu(phen)](ClO_4)_4(其中bpy,phen分别为2,2’-联吡啶和邻菲咯啉)。通过元素分析,质谱,液相色谱,一维和二维氢谱,热分析,电子吸收光谱,发光光谱,红外光谱,电化学等手段,对这些配体和配合物进行了表征和性质研究。
     通过电子吸收光谱,稳态发光光谱,稳态发光猝灭,粘度测量等方法,研究了上述配合物与小牛胸腺DNA的作用情况,实验结果表明:
     [(bpy)_2Ru(μ-BIPP)Ru(bpy)_2]~(4+)与DNA发生明显结合,表现在它的光物理性质受到DNA较大程度的影响。DNA的加入使得[(bpy)_2Ru(μ-BIPP)Ru(bpy)_2]~(4+)的紫外和可见区吸收峰都出现明显的减色现象,其中定域在BIPP上的370nm的特征峰的减色程度比445nm附近的MLCT峰更大,饱和时达到50%左右,并且明显红移了8nm。加入DNA后配合物溶液在601nm的发光明显增强,饱和时达到1.4倍,波长红移13nm。而且结合DNA后发光受K_4[Fe(CN)_6]猝灭的可能性显著降低。小牛胸腺DNA的相对粘度在加入该配合物后增大可达1.4倍。由于bpy小的平面
    
     性使得它不具备插人DNA的功能,因此上述事实说明该配合物与DNA作用时是以
     配体 BI PP插入到碱基对平面之间的。
     【(bPy)。R u(pe PP)R U(bP)。广在没有 DNA存在时,可与 CU卜形成 1:1型的
     配合物,这可从电子吸收和发射光谱的变化判断出来,配位结合位点应为 BI PP
     中部邻菲咯琳环的空的赘合N 原子。但是结合了DNA 后的
     [(bPy)。R u(pe PP)RU(bPy)r”光谱性质不会受到CU卜的影响,表明结合了DNA的
     【(bPy)。RU(poBI PP)RU(bPy)丁”不能与 CU’”配位,这也有力地证明了
     【(bPy)。RU(KB!PP)RU(bPy)丁“是以 BI PP插入,尤其是以 BI PP中部的邻菲咯琳环
     进入DNA内部的推断。
     【(Phen)C u(pe PP)C u(Phen】‘与 DNA作用时 270 urn附近的电子吸收谱带
     也出现比较明显的减色现象(饱和时减色率约 18%),但 320-400 urn的吸收谱带
     则几乎没有变化。由于 320-400 urn的吸收谱带主要是由 BI PP决定的,因此 Cu。B
     可能是以两端平面结构的加hen川u‘”插入 DNA,而不是以 BI PP插入。366 urn附近
     的发光谱带在DNA加入时呈现明显的减弱,近饱和时发光强度降低到仅为无DNA
     存在时的 15%,表明 DNA可与【(Phen)Cu(K田 PP)Cu(Phen)]0紧密接触而发生无
     辐射能量转移。冲同条件下【(*en)on r D!P*on(*e巾广弓起的ONA奋对粘度
     变化比kbPy人RU(pBIPP川。P明显得多,说明前者能比后者更好地与 DNA
     插入结合。这可由前者两端的(phen)Cu’”均可作为插入功能团,而后者只有一个
     BI PP作为插入功能团得到很好的解释。
Polypyridyl ruthenium and copper complexes play an important role in the research fields such as photophysics, electrochemistry and molecular assembling. Recently, much attention has been paid in their potentials for DNA structure recognition, spectroscopic probes, hydrolytic reagents and anticancer drugs. Most of these applications demand the existence of ligands capable of intercalating DNA base pairs.
    This thesis presented the synthesis of a novel polypyridyl ligand, 2,9-bis(2-imidazol[4,5-f][l,10]phenanthroline)-l,10-phenanthroline (abbreviated as BIPP), starting from 1,10-phenanthroline through
    l,10-phenanthroline-5,6-dione and l,10-phenanthroline-2,9-dialdehyle
    intermediates. Using this ligand as bridging block, two new dinuclear complexes [(bpy)2Ru(u-BIPP)Ru(bpy)2]4+ and [(phen)Cu(|i-BIPP)Cu(phen)]4+, where bpy and phen denote 2,2'-bipyridine and 1,10-phenanthroline respectively, have also been synthesized. Means of elemental analysis, MS, HPLC, thermal analysis, IR, electrochemistry, ID and 2D proton NMR, electronic absorption and emission spectra have been utilized for characterizing and property studies of these compounds.
    Photophysical methods involving electronic absorption, emission and emission quenching, and viscosity measurement have been used to study the interaction of the dinuclear complexes with calf thymus DNA. The results and conclusion are as follows:
    [(bpy)2Ru(|i-BIPP)Ru(bpy)2]4+ binds significantly with DNA, as shown by the significant effect of DNA on the photophysical properties. The ultraviolet and visible absorption bands decreased in intensity and the band around 370 nm, which is attributable to BIPP decreased much more than the MLCT bands
    
    
    
    around 445 nm, reaching ca 50% at saturation and the band shifted red 8 nm. The emission band around 601 nm increased remarkably by 1.4 fold, and shifted red 14 nm when DNA was added to saturation. The emission quenching of this complex by K|[Fe(CN)<] was decreased greatly when DNA was present. The relative viscosity of DNA was raised ca 40% after adding this complex to saturation. Since the small planarity of bpy makes bpy a poor moiety for intercalating DNA, the above facts imply that [(bpy)2Ru(u-BIPP)Ru(bpy)2]4+ binds to DNA by intercalation of BIPP into the DNA base pairs.
    In the absence of DNA [(bpy)2Ru(|i-BIPP)Ru(bpy)2]4+ could form 1:1 complex with Cu2*, as told by the electronic absorption and emission spectra. The binding sites should be the chelating positioned N atoms located in the phenanthroline moiety in the middle part of BIPP. But for DNA bound [(bpy)2Rir(u.-BIPP)Ru(bpy)2]4+, its photophysical behavior could not be affected by adding Cu2*, indicating no coordination could occur in such case. This also strongly 'supported the speculation that BIPP, especially its middle phenananthroline moiety is responsible for insertion to DNA.
    As for [(phen)Cu(fi-BIPP)Cu(phen)]4+, its absorption band around 270 nm also decreased notably (maximum ca 18%), but the bands between 320 to 400 nm almost remained unchanged while interacting with DNA. Since the band between 320 to 400 nm was mainly determined by BIPP, it could be deduced that [(phen)Cu(n-BIPP)Cu(phen)]4+ binds to DNA by intercalating the two terminal planar (phen)Cu2+ moieties, but not the BIPP moiety into the DNA base pairs. The emission band around 366 nm decreased markedly (maximum 85%) in the presence of DNA, indicating DNA could contact tightly with [(phen)Cu(u,-BIPP)Cu(phen)]4+ so non-emission energy transfer could occur. The relative viscosity increasing of DNA induced by [(phen)Cu(u.-BIPP)Cu(phen)]4+ was much more obvious than that by [(bpy)2Ru(u.-BIPP)Ru(bpy)2]4*, which could well explained by the difference in the intercalating moieties between the two complexes: two terminal (phen)Cu2* in the former and only one phenanthroline part of BIPP in the latter.
引文
[1]曹凯鸣,李碧羽,彭泽国,核酸化学导论,上海,复旦大学出版社,1991.
    [2] Olofsson J., Onfelt B., Lincoln P., Norden B., Matousek P., Parker A. W., Tuite E.J. Inorg. Biochem., 2002, 91,286.
    [3] Patel K. K., Plummer E. A., Darwish M., Rodger A., Hannon M. J. J. Inorg. Biochem., 2002, 91,220.
    [4] Ling L. S., He Z. K., Song G. W., Zeng Y. E., Wang C., Bai C. L., Chen X. D., Shen P. Anal. Chim. Aata., 2001, 436, 207.
    [5] Arkin M.R., Stemp E D.A., Holmlin R.E., Barton J. K., Hormann A., Olson E. J. C., Barbara P. F. Science, 1996, 273, 475.
    [6] Song G. W., Li L., Lin L. M., Fang G. R., Lu S. F., He Z., Zeng Y. Anal. Sciences., 2002, 18, 757.
    [7] Holmlin R. E., Dandliker P. J., Barton J. K.Angew. Chem. Int. Ed. Engl., 1997, 36, 2714.
    [8]宋宇飞,杨频,化学进展,2001,13,365.
    [9]计亮年,莫庭焕等,生物无机化学,中山大学出版社,1992。
    [10]郜金荣,叶林柏,分子生物学,广西科技出版社,1991。
    [11]Barton J. K. Chem. Eng. News.,1988, 66, 30.
    [12]沈同,王镜岩,生物化学,高等教育出版社,1990。
    [13]张蓉颖,庞代文,蔡汝秀,高等学校化学学报,1999,20,1210.
    [14] Gessner K.V., Ouigley G. J., Wang A. H-J., van der Marel G. A., van Boom J. H., Rich A. Biochemistry, 1985, 24, 237.
    [15] Sherman S. E., Gibson D., Wang A. H. J.,, Lippard S. J. Science, 1985, 230, 412.
    [16] Jennette K.W., Lippard S. J., Vassiliades G. A., Bauer W. R. Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 3839.
    [17] Pyle A. M., Long E. C., Barton J. K. J. Am. Chem. Soc., 1989, 111, 4520.
    [18] Meunier B. Chem. Rev., 1992, 92, 1411.
    [19] Chin J., Zhou X.,J. Am. Chem. Soc., 1988, 110, 223.
    [20] Brown R. S., Dervan J. C., Klug A. Biochemistr, 1985, 24, 4785.
    [21] Sammes P. G., Yahoglu G.,J. Chem. Soc. Rev., 1994, 327.
    [22] Haga M., Ano T., Kano K., et al. Inorg. Chem., 1991, 30, 3843.
    [23] Haga M., Ali M.M., Koseki S., et al. Inorg. Chem., 1996, 35, 3335.
    [24] Otsuki J., Tsujino M., Iizaki T., et al J. Am. Chem. Soc., 1997, 119, 7895.
    [25] Cola L. D., Beset P. Coord. Chem. Rev., 1998, 177, 301.
    [26] Meyer T. J.J. Electrochem. Soc., 1984, 131, 2210.
    [27] Beer R.H., Jimenez J., Drago R. S.J. Org. Chem., 1993, 58, 1746.
    [28] Cole-Hamilton D.J., Bruce D.W.; Wilkinson, Gillard, McCleverty Eds. In Comprehensive Coordination Chemistry, London: Pergamon Press, 1987, 345-456.
    [29] Schilt A. A. Analytical Applications of 1,10-Phenanthroline and Related Compounds, New York: Pergamon Press, 1969.
    [30] Gut L. J., Lee K., Juvik J. A. et al. Pestic. Sci., 1993, 39, 19.
    
    
    [31] Beer P. D., Chen Z., Goulden A. J., et al J. Chem. Soc., Chem. Commun., 1994, 1269.
    [32] Lehn J. M. Angew. Chem., Int. Ed. Engl., 1990, 29, 1304.
    [33] Michael J. P., Pattenden G. Angew. Chem., Int. Ed. Engl., 1993,32, 1.
    [34] Barton J. K. Acc. Chem. Res., 1990, 23, 271.
    [35]杨频,靳兰,杨斌盛,高等学校化学学报,1994,15,1742.
    [36]靳兰,杨频,李青山,高等学校化学学报,1996,17,1345.
    [37] Lim A. C., Barton J. K. Biochemistry, 1993, 32, 11029.
    [38] Chow C. S., Behlen L. S., Uhlenbeck O. C., Barton J. K. Biochemistry, 1992, 31,972.
    [39] Chow C. S., Barton J. K. J. Am. Chem. Soc., 1990, 112, 2839.
    [40] Hall D .B., Holmlin R. Z., Barton J. K. Nature, 1996, 382, 731.
    [41] Pandliker P. J., Holmlin R. Z., Barton J. K. Science, 1997, 275, 1465.
    [42]刘劲刚,叶保辉,计亮年,高等学校化学学报,1999,20,523.
    [43] Barton J. K., Danishefsky A. T., Goldberg J. M. J. Am. Chem. Soc., 1984, 106, 2172.
    [44] Kumar C. V., Barton J. K., Turro N. J. J. Am. Chem. Soc., 1985, 107, 5518.
    [45] Barton J. K., Goldberg J. M., Kumar C. V., et al. J. Am. Chem. Soc., 1986, 108, 2081.
    [46] Rehmann J. P., Barton J. K., Proton N. M. Biochemistry, 1990, 29, 1701.
    [47] Hiort C., Norden B., Rodger A. J. Am. Chem. Soc., 1990, 112, 1971.
    [48] Eriksson M., Leijon M., Hiort C., Norden B., Graslund A. J. Am. Chem. Soc., 1992, 114,4933.
    [49] Eriksson E., Leijon M., Hiort C.,et al Biochemistry, 1994, 33, 5031.
    [50] Satyanarayana S., Dabrowiak J. C., Chaires J. B. Biochemstry, 1992, 31, 9319.
    [51] Satyanarayana S., Dabrowiak J. C., Chaires J. B. Biochemistry, 1993, 32, 2573.
    [52] Friedman A. E., Chambron J. C., Sauvage J. P., et al. J. Am. Chem. Soc., 1990, 112, 4960.
    [53] Friedman A. E., Kumar C. V., Turro N. J., et al. Nucleic Acids Res., 1991, 19, 2595.
    [54] Moucheron C., Kirsch-De Mesmaeker A., Choua S. Inorg. Chem., 1997, 36, 584.
    [55] Mei H. Y., Barton J. K. J Am. Chem Soc., 1986, 108, 7414.
    [56] Mei H. Y., Barton J. K. Proc. Natl. Acad. U. S. A., 1988, 85, 1339.
    [57] Wu J. Z., Ye B. H., Wang L., Ji L. N., Zhou J. Y., Li R. H., Zhou Z. Y. J. Chem. Soc. Dalton Trans., 1997, 1395.
    [58] Zhen Q.X., Ye B.H., Zhang Q.L., Liu J. G., Ji L. N., Wang L. J. Inorg. Biochem., 1999, 76, 47.
    [59]甄启雄,叶保辉,刘劲刚,计亮年,王雷,高校学校化学学报,1999,20,1661.
    [60] Mahadevan S., Palaniandavar M. Inorg. Chem. 1998, 37, 3927.
    [61] Mahadevan S., Palaniandavar M. Inorg. Chem. 1998, 37, 693.
    [62] Wu J. Z., Zhang J. G., Xu J. H. Inorg. Chem. Comm. 2002, 5, 71.
    [63] Yang Z. S., Yu J. S., Chen H. Y. Electroanalysis, 2002, 14, 747.
    [64] Bush P. M., Whitehead J. P., Pink C. C., Gramm E. C., Eglin J. L., Watton S. P., Pence L. E. Inorg. Chem., 2001, 40, 1871.
    [65]章俊军,邹国林,欧荣,氨基酸与生物资源,1998,20,50.
    [66] Sigman D. S. Biochemistry, 1990, 29, 9097.
    [67] Hao Y. M., Guo Z. X., Wang X. X., Shen H. X. Anal. Chim. Acta, 1999, 402, 21.
    [68] Chikira M., Tomizawa Y., Fukita D., Sugizaki T., Sugawara N., Yamazaki T., Sasano A., Shindo H., Palaniandavar M., Antholine W. E.J. Inorg. Biochem., 2002, 89, 163.
    [69]易平贵,商志才,俞庆森,无机化学学报,2001,17,77.
    
    
    [70] Williams M., Inoue H., Ohtsuka E. Biochemistry, 1994, 33, 606
    [71] Meijler M. M., Zelenko O., Sigman D. S.J. Am. Chem. Soc., 1997, 119, 1135.
    [72]魏亦男,李元宗,常文保,慈云祥,分析化学,1998,10,1178.
    [73]张荣丽,朱俊杰,赵广超,陈洪渊,高等学校化学学报,1998,19,1636.
    [74] Strater N., Lipsomb W. N., Klablunde T., Krebs B. Angew. Chem., Int. Ed. Engl., 1995, 35, 2024; Wilcox D. Chem. Rev., 1996, 96, 2435.
    [75] Sigman D.S., Mazumder A., Perrin D. M. Chem. Rev., 1993, 93, 2295.
    [76]吴建中,无机化学学报,2000,16,697.
    [77] Baker A.D., Morgan R.J., Strekas T. C.J. Chem. Soc., Chem. Comm., 1992, 1099.
    [78] Liu S., Luo Z., Hamilton A.D. Angew. Chem., Int. Ed. Engl., 1997, 36, 2678.
    [79] Lincoln P., Norden B. Chem. Comm., 1996, 2145.
    [80] O'Reilly F., Kelly J. M., Kirsch-De Mesmaeker A. Chem. Comm., 1996, 1013.
    [81] Kalyanasundaram K. Coord. Chem. Rev., 1982, 46, 159.
    [82] Juris A., Balzani V., Barigelletti F., Campagna S., Belser P., Von Zelewsky A. Coord. Chem. Rev., 1988, 84, 85.
    [83] Krause R. Struct. Bonding., 1987, 67, 1.
    [84] Constable E. C. Prog. Inorg. Chem., 1994, 42, 67.
    [85] Balzani V., Scandola F. Supramolecular Photochemistry, Horwood: Ellis, 1991.
    [86] Kalyanasundaram K. Photochemistry of Polypyridine and Porphyrin Complexes, London: Academic Press, 1992
    [87] Yamagishi A. J. Chem. Soc., Chem. Comm., 1983, 572.
    [88] Yamagishi A. J. Phys. Chem., 1984, 88, 5709.
    [89] Norden B., Tjerneld F. FEBS Lett., 1976, 67, 386.
    [90] Barton J. K., Dannenberg J. J., Raphael A. L. J. Am. Chem. Soc., 1982, 104, 4867.
    [91] Morgan R. J., Chatterjee S., Baker A. D., Strekas T. C. Inorg. Chem., 1991, 30, 2687.
    [92] Tysoe S.A., Morgan R. J., Baker A. D., Strekas T. C.J. Phys. Chem., 1993, 97, 1707.
    [93] Satyanara Yana S., Dabrowiak J.C., Chairs J. B. Biochemistry, 1993, 32, 2573.
    [94] Satyanara Yana S., Dabrowiak J.C., Chaires J.B. Biochemistry, 1992, 31, 9319.
    [95] Pang D. W., Abruna H. D.Anal. Chem., 1998, 70, 3162.
    [96] Carter M. T., Rodriguez M., Bard A. J. Am. Chem. Soc., 1989, 111, 8901.
    [97] Zhao Y. D., Pang D. W., Wang Z. L., et al J. Electroanal. Chem., 1997, 431. 178.
    [98] Zhao G.C., Zhu J. J., Chen H. Y. Chem. Res. Chinese Univ., 1997, 13, 117.
    [99] Collins J. G., Shields T. P., Barton J. K.J. Am. Chem. Soc., 1994, 116, 9840.
    [100] Greguric I., Aldrich Wright J. R., Collins J. G. J. Am. Chem. Soc., 1997, 119, 3621.
    [101] Collins J. G., Sleeman A. D., Aldrich Wright J. R., Greguric I., Hambley T. W. Inorg. Chem., 1998, 37, 3133.
    [102] Dupureur C. M., Barton J. K. Inorg. Chem., 1997, 36, 33.
    [103] Lippard S.J. Acc. Chem. Res., 1978, 11,211.
    [104] Lippard S.J., Bond P. J., Wu K. C., Barer W. R. Science, 1976, 194, 726.
    [105] Sundquist W.I., Lippard S. J. Coord. Chem. Rev., 1990, 100, 293.
    [106] Mak T. C. W., Zhou G. D. Crystallography in Modern Chemistry, John Wiley & Sons, 1992.
    [107]刘捷,周惠,许软成,屈良鹄,计亮年,中山大学学报,2001,40,121.
    [108] Hiort C., Lincoln P., Norden B.J. Am. Chem. Soc., 1993, 115, 3448.
    
    
    [109] Chandler C. J., Beady L W., Reiss J. A. J. Heterrocycl. Chem., 1981, 18, 599.
    [110] Steck E. A., Day A. R. J. Am. Chem. Soc., 1943, 65.452.
    [111] Sullivan B. P., Salmon D. J., Meyer T. J. Inorg. Chem., 1978, 17, 3334.
    [112]彭正合,潘正才等,武汉大学学报(自然科学版),1998,44,433
    [113]吴建中,陈胜,计亮年.分析测试学报,1999,18,17.
    [114] Crosby G. A. Acc. Chem. Res., 1975, 8, 231.
    [115] Rillema D. P., Alllen G., Meyer T. J., Conrad D. C. Inorg. Chem., 1983,22, 1617.
    [116] Rillema D. P., Blanton G.B.,Shaver R.J.,Jackman D.C.,Boldaji M.,Bundy S.,Worl L.A., Meyer T. J. Inorg. Chem., 1992, 31, 1600.
    [117] Watts R. J.J. Chem. Educ., 1983, 60, 834.
    [118] Amouyal E., Homsi A., Chambron J.-C., Sauvage J.-P. J. Chem. Soc, Dalton Trans., 1990, 1841.
    [119] McDevitt M. R., Ru Y., Addison A. W. Transition Met. Chem., 1993,18,197.
    [120] Barigelleti F., Juris A., Balzani V., Belser P., von Zelewsky A. Inorg. Chem., 1987, 26. 4115.
    [121] Fuchs Y., Lofters S., Dieter T., Shi W., Morgan R., Strekas T. C., Gafney H. D., Baker A. D. J. Am. Chem. Soc., 1987, 109, 2691.
    [122] Kawamishi Y., Kitamura N., Tazuke S. Inorg. Chem., 1989, 28, 2968.
    [123] Ghosh B. K., Chakravorty A. Coord. Chem. Rev., 1989, 95, 239.
    [124] Wallace A. W., Murphy W. R. Jr., Peterson J. D. Inorg. Chim. Acta, 1989, 166, 47.
    [125] Johnson J.E.B., Ruminski R. R. Inorg. Chim. Acta, 1993,208,231.
    [126] Ruminski R.R. Freiheit D., Serveiss D., Snyder B., Johnson J. E. B. Inorg. Chim. Acta, 1994, 224, 27.
    [127] Berger R.M., Holcombe J. R. Inorg. Chim. Acta, 1995, 232, 217.
    [128]李红,巢晖,计亮年等.电化学,2001,7,167.
    [129]李红,巢晖,蒋雄,物理化学学报,2001,17,728.
    [130] Kober E. M., Caspar J. V., Sullivan B. P., Meyer T. J. Inorg. Chem., 1985, 24, 3195.
    [131] Duan C.Y., Lou Z. L., You X. Z., T. C. W. Mak. J. Coord. Chem., 1999, 46, 301.
    [132] Marmur J. J. Mol. Biol., 1961, 3, 208.
    [133] Reichmann M. E., Rice S. A., Thomas C. A., Doty P. J. Am. Chem. Soc., 1954, 76, 3047.
    [134] Kelly J. M., Tossi A. B., McConnell D. J., Ohuigin C. Nucleic Acids Res., 1985, 13, 6017.
    [135] Gorner H., Tossi A. B., Stradowski C., Schulte-Frohlinde D. J. Photochem. Photobiol., B: Biol., 1988, 2, 67.
    [136] Mahaderan S., Palaniandavar M. J. Inorg. Biochem., 1995, 59, 161.
    [137] Friedman A.E., Kumar C. V., Turro N. J., Barton J. K. Nucleic Acids Res., 1991, 19, 2595.
    [138] Lincoln P., Broo A., Norden B. J. Am. Chem. Soc., 1996, 118, 2644.
    [139] Tossi A. B., Kelly J. M. Photochem. Photobiol., 1989, 49, 545.
    [140] Kirsch-De Mesmaeker A., Orellana G., Barton J. K., Turro N. J. Photochem, Photobiol., 1990, 52, 461.
    [141] Orellana G., Krisch-De Mesmaeker A., Barton J. K., Turro N. J. Photochem. Photobiol., 1991, 54, 499.
    [142] Lecomte J. P., Kirsch-De Mesmaeker A., Kelly J. M., Tossi A, B., Borner H. Photochem.
    
    Photobiol., 1992, 55, 681.
    [143] Lecomte J. P., Kirsch-De Mesmaeker A., Demeunynsk M., Lhomme J. J. Chem. Soc, Faraday Trans., 1993, 89, 3261.
    [144] Lecomte J. P., Kirsch-De Mesmaeker A., Orellana G.J. Phys. Chem., 1994, 98, 5382.
    [145] Lecomte J. P., Kirsch-De Mesmaeker A., Feeney M. M., Kelly J. M. Inorg. Chem., 1995, 34, 6481.
    [146] Friedman A. E., Chambron J. C., Sauvage J. P., Turro N. J., Barton J. K. J. Am. Chem. Soc., 1990, 112, 4960.
    [147] Hartshorn R.M., Barton J. K.J. Am. Chem. Soc., 1992, 114, 5919.
    [148] Kelly J.M., Tossi A. B., McConnell D. J., Ohuigin C. Nucleic Acids Res., 1985, 13, 6017.
    [149] Scaria P. V., Shafer P. H. J. Biol. Chem., 1991, 266, 5417.
    [150] Turro N. J. Modern Molecular Photochemistry, Benjamin-Cummings, 1978.
    [151] 陈国珍,黄贤智,郑国梓,许金钩,王尊本,荧光光度分析法,科学出版社,1990。
    [152] Pilch D. S., Waring M. J., Sun J. S., Rougee M., Nguyen C.H., Bisagni E., Garestier T., Helene C. J. Mol. Biol., 1993, 232, 926.
    [153] Kumar C. V., Turner R. S., Acuncion E. H.J. Photochem, Photobiol., 1993, 74, 231.
    [154] Tysoe S. A., Kopelman R., Schelzig D. Inorg. Chem., 1999, 38, 5196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700