咔唑双酮类配合物合成表征与光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在大量文献调研的基础上,对β-二酮的结构特点和研究状况、稀土配合物发光材料和多吡啶钌(Ⅱ)配合物光电性质研究进展进行了较详细的综述。在发光材料方面,铕的配合物以其独特的发光特性使其在电致发光材料方面具有诱人的应用前景。多吡啶钌(Ⅱ)配合物在光化学、光物理、光电化学、电化学、电子转移和能量传递、分子识别和分子组装等研究领域都扮演着重要的角色,其中对它们进行电子转移、能量传递和非线性光学性质的研究很有意义。我们通过分子设计,将合成的双β-二酮有机配体与铕和钌(Ⅱ)多吡啶配位,组装出一系列具有光电功能性质的铕和钌的配合物。主要研究内容如下:
     1.合成了两种新型具有光电活性的双β-二酮有机配体L~1[9-丁基-3,6-二(4,4,4-三氟-1,3-丁二酮基)咔唑]、L~2[9-己基-3,6-二(4,4,4-三氟-1,3-丁二酮基)咔唑]和β-二酮有机配体L~3[9-丁基-3-(4,4,4-三氟-1,3-丁二酮基)咔唑]、L~4[9-己基-3-(4,4,4-三氟-1,3-丁二酮基)咔唑]。讨论了双β-二酮化合物的合成条件和反应机理。
     2.获得了配体L~1、L~2、L~4的单晶,L~1、L~4晶体属单斜晶系,P2(1)/c空间群,L~2晶体属正交斜晶系,Pbca空间群。都以烯醇式共振结构存在,L~1、L~4咔唑环和双酮环基本共平面,L~2咔唑环和双酮环平面有一定的扭曲。所有分子在空间两维线尺寸都达到纳米级。
     3.用一个双β—二酮配体、四个单β—二酮配体与铕组装,得到咔唑桥联双核五咔唑的铕配合物和用一个双β—二酮桥联钌(Ⅱ)联吡啶的配合物。用红外光谱、质谱、元素分析、核磁共振氢谱、X-射线衍射等分析手段确认了所得到目标产物的结构。
     4.用电子吸收光谱、单光子液体荧光、光致发光、Z-扫描、双光子荧光、循环伏安、差分脉冲等方法研究了β—二酮配体及其配合物的线性、非线性光学性质和电化学性质等。得到了发光强色纯度高人的眼睛敏感的红光铕的配合物,同时也具有纯正的双光子红色荧光性质。得到的钌(Ⅱ)联吡啶的配合物具有较好的非线性光学性质和好的氧化还原电化学性质。
     5..采用密度泛函理论对配体L~1的电子吸收光谱进行了理论计算。为了解双
Recent progress for β-diketone derivatives were reviewed based on reading a great deal of related literature including Photoluminescence (PL) and Electroluminescence ( EL) of rear earth metal complexes and the photoelectric properties of multi-pyridine Ru(II) complexes. The europium complexes have an efficiency high PL, the monochrome red light and so on, making it be EL materials in application. Multi-pyridine Ru(II) complexes have been playing an important role in the research of photochemistry, photophysics, electronchemistry, charge transfer, etc. By molecular designing, we synthesized four novel β-diketone and a series of europium complexes and multi-pyridine Ru(II) complexes. Main research results in this dissertation were summarized as below.
    1. Two kinds of new bi-β-diketone of the PL & EL active organic ligand L~1 (3,6-bis(4,4,4-trifluorobutane-1,3-dione)-9-butylcarbazole) , L~2 (3,6-bis(4,4,4-tri
    fluorobutane-1,3-dione)-9-hexylcarbazole ) and two kinds of new β-ditone L~3 (3-(4,4,4- trifluorobutane-1,3-dione)-9-butylcarbazole), L~4 (3-(4,4,4-trifluorobutane -1,3-dione)-9-hexylcarbazole) were synthesized and their synthetic conditions and the reaction mechanisms were also discussed.
    2. Single crystals for the three organic ligands L~1, L~2, L~4 were obtained, in which L~1, L~4 belong to monoclinic system, P2_1/c space group, while L~2 belong to orthorhombic system, Pbca space group. The ligands exhibit in enol-form resonance The carbazole and the diketone groups in L~1 and L~4 are almost in one plane while those in L~2 exhibit slight twist. The size for the three kinds of the molecules reach to nano-scale.
    3. A series of multi-pyridine Ru(II) and europium complexes of the ligands were obtained, which were characterized by IR spectra, ~1H NMR, MS, elemental analysis and X-ray diffiraction analysis. The structural characters for them were studied in detail.
引文
[1] Martin D F, Shamma M, Femelius W C. Bis-( -Diketones). I. Synthesis of Compounds of the Type RCOCH_2CO-Y-COCH_2COR~1,2[J]. J. Am. Chem. Soc., 1958, 80: 4891~4895.
    [2] Bassett A P, Magennis S W et al. Highly Luminescent, Triple- and Quadruple-Stranded, Dinuclear Eu, Nd, and Sm(Ⅲ) Lanthanide Complexes Based on Bis-Diketonate Ligands[J]. J. Am. Chem. Soc., 2004, 126:9413~9424.
    [3] 朱卫国,朱美香等.直链双 二酮的合成与表征.湘潭大学自然科学学报[J].2000,22:49~51.
    [4] Weissman S I. Intramolecular Energy Transfer The Fluorenscence of Complexes of Europium[J]. J. Chem. Phys., 1942, 10: 214~217.
    [5] Dexter D L. A Theory of Sensitized Luminescence in Solids. J Chem. Phys., 1953, 21: 836~850.
    [6] Crosby G A, Whan R E, Alire R M. Intramolecular Energy Transfer in Rare Earth Chelates[J]. Role of the Triplet State, J Chem. Phys., 1961, 34:743~748.
    [7] Bhaumik M L, Nuget I J. Time-Resolved Spectroscopy of Europium Chelates[J]. J Chem. Phys., 1965, 43:1680~1687.
    [8] Kleinerman M. Energy Migration in Lanthanide Chelates[J]. J Chem. Phys., 1969, 51: 2370~2381.
    [9] Buono-core G E, Li H, Marciniiak B. Quenching of excited states by lanthanide ions and chelates in solution[J]. Coord. Chem. Rev., 1990, 99: 55~87.
    [10] Ying L M, Yu A C,Zhao X S, Li Q, Zhou D J, Huang C H, Umetani S, Matasai M. Excited State Properties and Intramolecular Energy Transfer of Rare-Earth Acylpyrazolone Complexes[J]. J. Phys. Chem., 1996, 100: 18387~18391.
    [11] Yu A C, Ying L M, Zhao X S, Xia W S, Huang C H. Luminescence properties and intramolecular energy transfer of europium (Ⅲ) complex in Langmuir-Blodgett film[J]. Progress in Natural Science, 1997, 7: 692~699.
    [12] Zhou D J, Li Q, Huang C H, Yao G Q, Umetani S, Matasai M, Ying L M, Yu A C, Zhao X S. Room-temperature fluorescence, phosphorescence and crystal structures of 4-acyl pyrazolone lanthanide complexes: Ln(L)_3·2H_2O [J]. Polyhedron, 1997, 16: 1381~1389.
    [13] Frey S T, William D W, Horrocks W D. On Correlating the Frequency of the ~7FO → ~5DO Transition in Eu~(3+) Complexes with the Sum of'nephelauxetic parameters' For all of the Coordinating Atoms[J]. Inorg. Chem. Acta, 1995, 229: 383~390.
    [14] Tobita S, Arakawa M, Tanaka. Electronic relaxation processes of rare earth chelates of benzoyltrifluoroacetone[J].J. Phys. Chem., 1984, 88: 2697~2689.
    [15] Tobita S, Arakawa M, Tanaka. The paramagnetic metal effect on the ligand localized S1 .apprx..fwdarw. T1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate[J]. J. Phys. Chem., 1985, 89: 5649~5654.
    [16] Dawson W R, Kropp J L, Windsor M W. Internal-Energy-Transfer Efficiencies in Eu~(3+) and Tb~(3+) Chelates Using Excitation to Selected Ion Levels[J]. J. Chem. Phys., 1966, 45: 2410~2418.
    [17] Vasquez S O, Flint C D. A shell model for cross relaxation in elpasolite crystals: application to the ~3pO and ~1G4 states of Cs_2NaY-(1-x)Pr_xC1 [J]. Chem. Phys. Lett., 1995, 238: 378~386.
    [18] Luxbacher T, Fdtzer H P, Sabry-Grant R, Flint C D. Fast cross relaxation in lanthanide hexachloroelpasolites: application of the shell model. Chem[J]. Phys. Lett., 1995, 241: 103~108.
    [19] 黄春辉 有机电致发光材料与器件导论[M].复旦大学出版社 上海 2005,9, P392.
    [20] Bian Z Q, Wang K Z, Jin L P. Syntheses, spectroscopic and crystal structural studies of novel imidazo[4,5-f]1,10-phenanthroline derivatives and their Eu(Ⅲ) ternary complexes with dibenzoylmethane[J]. Polyhedron, 2002, 21: 313~319.
    [21] Kido J, Hayase H, Nagai K, Okamoto Y, Skothetm T, Yamagata Y. Electroluminescence from Polysilane film Doped with Europium Complex[J]. Chem. Lett., 1991, 1267~1270.
    [22] Kido J, Hayase H, Hongawa K, Nagai K, Okuyama K. Bright Red Light-Emitting Organic Electroluminecscent Devices Having a Europium Complex as Emitte[J]r. Appl. Phys. Lett., 1994, 65: 2124~2126.
    [23] Liang F S, Zhou Q G, Cheng Y X, Wang L X, Ma D G, Jing X B, Wang F S. Oxadiazole-Functionalized Europium(Ⅲ) -Diketonate Complex for Efficient Red Electroluminescence[J]. Chem. Mater., 2003, 15: 1935~1937.
    [24] 卞祖强,高德青,关敏,黄春辉等.不同邻菲洛琳衍生物作为中性配体的三元铕配合物电致发光性质研究[J].中国科学(B辑?),2004,34:113.
    [25] 黄春辉,卞祖强,关敏等.β-二酮配体及其铕配合物及铕配合物电致发光器件[M].中国专利,申请号:03142611.5
    [26] Gafhey H D, Adamson A W, Excited state Ru(bipyr)32+ as an electron-transfer reductant [J]. J. Am. Chem. Soc., 1972, 94: 8238~8239.
    [27] Creutz C, Sutin N, Reaction of Tris (Bipyridine) Ruthenium (Ⅲ) with Hydroxide and Its Application in a Solar Energy Storage System[J]. Proc. Natl. Acad. Sci. U. S. A., 1975, 72: 2858~2862.
    [28] Kalyanasundalam K, Photochemistry of Polypyridine and Porphyrin in Complexes [M]Academic Press, London, 1992.
    [29] Collin J P, Guillerez S, Sauvage J P, Barigelletti F, Flamigni L, Decola L, Balzani V, Photoinduced Charge Separation in Dyads and Triads Containing a Ruthenium(Ⅱ)-Bis-Terpyridine or Osmium(Ⅱ)-Bis-Terpyridine Photosensitizer Covalently Linked to Electron-Donor and Acceptor Groups[J]. Coord. Chem. Rev., 1991, 111: 291~296.
    [30] Joachim C, Gimzewski, J K, Aviram A. Electronics using hybrid-molecular and mono-molecular devices[J]. Nature, 2000, 408: 541~548.
    [31] Lukin O,Vogtle F. Knotting and Threading of Molecules: Chemistry and Chirality of Molecular Knots and Their Assemblies[J]. Angew. Chem. Int. Ed., 2005, 44: 1456~1477.
    [32] Cantrill S J, Chichak K S, Peters A J, stoddart J F. Nanoscale Borromean Rings[J]. Acc.Chem.Res, 2005, 38: 1~9.
    [33] Swager T M, The Molecular Wire Approach to Sensory Signal Amplification[J]. Acc. Chem. Res., 1998, 31: 201-207.
    [34] Carroll R L, Gorman C B. The Genesis of Molecular Electronics[J]. Angew. Chem. Int. Ed., 2002, 41: 4379~4400.
    [35] Aviram A, Ratner M. Molecular rectifiers[J]. Chem. Phys. Lett., 1974, 29: 277~283.
    [36] Schumm J S, Pearson D L, Tour J M. Iterative Divergent/Convergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128A-Long Potential Molecular Wire[J]. Angew. Chem. Int. Ed., 1994, 33: 1360~1363.
    [37] Martin R E, Diederich F. Linear Monodisperse -Conjugated Oligomers: Model Compounds for Polymers and More[J]. Angew. Chem. Int. Ed., 1999, 38: 1350~1377.
    [38] Paul F, Lapinte C. Organometallic molecular wires and other nanoscale-sized devices: An approach using the organoiron (dppe)Cp*Fe building block[J]. Coord. Chem. Rev., 1998, 178-180: 431~509.
    [39] Schwab P F H, Levin M D, Michl J. Molecular Rods. 1. Simple Axial Rods[J]. Chem. Rev, 1999, 99: 1863~1934.
    [40] Hradsky A, Bildstein B, Schuler N, Schottenberger H, Jaitner P, Ongania K-H, Wurst K, Launay J-P. New Soluble Bis[nona-, octa-, and pentamethylferrocenes] as "Molecular Wires" with a Metal-to-Metal Distance of up to 40 A [J]. Organometallics, 1997, 16: 392~402.
    [41] Siemsen P, Livingston R C, Diederich F. Acetylenic Coupling: A Powerful Tool in Molecular Construction[J]. Angew. Chem. Int. Ed, 2000, 39: 2633~2657.
    [42] Fraysse S, Coudret C, Launay J-P. Molecular Wires Built from Binuclear Cyclometalated Complexes[J]. J. Am. Chem. Soc., 2003, 125: 5880~5888.
    [43] Patoux C, Launay J-P, Beley M, Chodorowski-Kimmes S, Collin J-P, James S, Sauvage J-P. Long-Range Electronic Coupling in Bis(cyclometalated) Ruthenium Complexes[J]. d. Am. Chem. Soc., 1998, 120: 3717~3725.
    [44] Ribou A-C, Launay J-P, Takahashi K, Nihira T, Tarutani S, Spangler C W. Intervalence Electron Transfer in Pentaammineruthenium Complexes of Dipyridylpolyenes, Dipyridylthiophene, and Dipyfidylfuran[J]. Inorg. Chem., 1994, 33: 1325~1329.
    [45] 洪茂椿,陈荣,梁文平21世纪的无机化学[M].科学出版社 北京 2005,8.
    [46] Harriman A, Ziessel R. Making photoactive molecular-scale wires[J]. Chem. Commun., 1996, 1707~1716.
    [47] Gholamkhass B,Nozaki K, Ohno T. Evaluation of Electronic Interaction Matrix Elements for Photoinduced Electron Transfer Processes within Mixed-Valence Complexes[J]. J. Phys. Chem. B, 1997, 101: 9010~9021.
    [48] Zyss J, Nonlinear Opticas, 1991, 1: 3.
    [49] Zyss J, Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From diplar to octupolar molecules and materials[J]. J. Chem. Phys., 1993, 98: 6583~6599.
    [50] Zyss J, Ledoux I, Nonlinear optics in multipolar media: theory and experiments[J]. Chem. Rev., 1994, 94: 77~105.
    [51] J. Zyss, C. Dhenaut, T .Chau. Van, I. Ledoux, Quadratic Nonlinear Susceptibility of Octupolar Chiral Ions[J]. Chem. Phys. Lett. 1993, 206:409-414.
    [52] Sakaguchi H, Nakamura H, Naganlura T, Ogawa T, Matsuo T, Chem. Lett., 1989, 1715.(179,405)
    [53] O. Maury, H. L. Bozec, Molecular Engineering of Octupolar NLO Molecules and Materials Based on Bipyridyl Metal Complexes[J]. Acc.Chem.Res, 2005, 38: 691~704.
    [54] (a) Konig B, Pelka M, Zieg H, Ritter T, Bouas-Laurent H, Bonneau R, Desvergne J-P. Photoinduced Electron Transfer in a Phenothiazine-Riboflavin Dyad Assembled by Zinc-Imide Coordination in Water[J].J. Am. Chem. Soc. 1999, 121: 1681~1687.
    (b) Boyde S, Strouse G F, Jones, Meyer W E, Intramolecular energy transfer in a chromophore-quencher complex[J]. J. Am. Chem. Soc., 1989, 111: 7448~7454.
    (c) Tamai N, Yamamaki T, Yamazaki I, Two-dimensional excitation energy transfer between chromophoric carbazole and anthracene in Langmuir-Blodgett monolayer films[J]. J. Phys. Chem., 1987, 91: 841~845.
    [55] (a) Lippert Von E Z, Electrochem. 1957,61: 962. (b) Baur J W, Alexander M D, Banach J M, Denny L R, Reinhardt B A, Vaia R A. Molecular Environment Effects on Two-Photon-Absorbing Heterocyclic Chromophores[J]. Chem. Mater. 1999,11: 2899~2906.
    
    [56] (a) Demas J N, Crosby G A, Measurement of photoluminescence quantum yields. Review[J]. J. Phys. Chem., 1971,75: 991~1024. (b) Ren Y, Yu X Q, Zhang D J, et al. Synthesis, structure and properties of a new two-photon photopolymerization initiator[J]. J. Mater. Chem., 2002, 12: 3431~3437. (c) Lakowicz J R, Principles of Fluorescence Spectroscopy[M]. Plenum Press, New York, 1983,190.
    
    [57] (a) Robinson M R, Bazan G C, O'Regan M B. Synthesis, morphology and optoelectronic properties of tris[(N-ethylcarbazolyl)(3',5'-hexyloxybenzoyl) methane](phenanthroline)europium[J]. Chem. Comm., 2000,17:1645~1646. (b) Bian Z Q, Wang K Z, Jin L P. Syntheses, spectroscopic and crystal structural studies of novel imidazo[4,5-f]1,10-phenanthroline derivatives and their Eu(III) ternary complexes with dibenzoylmethane[J]. Polyhedron, 2002,21(3): 313~319. (c) Guan M, Bian Z Q, Xin H, et al. Bright red light-emitting electroluminescence devices based on a functionalized europium complex[J]. New J. Chem., 2003, 27:1731~1734. (d) Huang L, Wang K Z, Huang C H, et al. Bright red electroluminescent devices using novel second-ligand-contained europium complexes as emitting layers[J]. J. Mater. Chem., 2001,11:790~793.
    
    [58] Y Hoshino, S Higuchi, J Fiedler, et al. Long-Range Electronic Coupling in Various Oxidation States of a C4-Linked Tri(β-diketonato)ruthenium Dimer[J]. Angew.Chem. Int. Ed, 2003,42:674~677.
    [1] Jose M, Rodriguez-P, Virgil P, Interchain electron donor-acceptor complexes: a model to study polymer-polymer miscibility[J]. Macromolecules, 1986, 19: 55-64.
    [2] Yang J X, Tao X T. et al. A Facile Synthesis and Properties of Multicarbazole Molecules Containing Multiple Vinylene Bridges[J]. J. Am. Chem. Soc. 2005, 127: 3278~3279.
    [3] Sullivan B P, Salmon D J, Meyer T J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium[J], Inorg. Chem., 1978, 17: 3334~3341.
    [1] 姚新生,有机化合物波谱解析[M].中国医药科技出版社.
    [2] Becke A D, Density-functional Thermochemistry. Ⅲ. The role of exact exchange[J]. J.. Chem. Phys., 1993, 98: 5648~5652.
    [3] Lee C, Yang W, Parr R G, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785~789.
    [4] Bauernschmitt R, Ahlrichs R, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J]. Chem. Phys. Lett., 1996, 256: 454~464.
    [5] Casida M E, Jamorski C, Casida K C, et al. Molecular Excitation Energies to High-lying Bound States from time-dependent Density-functional response theory: Characterization and correction of the Time-dependent Local Density Approximation Ionization Threshold[J]. J. Chem. Phys., 1998, 108: 4439~4449.
    [6] Frisch M J, Gaussian, Inc., Pittsburgh PA, 1998.
    [7] 吴杰颖,田玉鹏,肼基硫代甲酸酯配合物的合成、晶体结构、光谱及三阶非线性光学性质研究[J].化学学报,1999,57:202~209.
    [8].黄春辉 有机电致发光材料与器件导论[M].复旦大学出版社 上海 2005,9.
    [9] Klink S I, Hebbink G A, Grave L, Synergistic Complexation of Eu~(3+) by a Polydentate Ligand and a Bidentate Antenna to Obtain Ternary Complexes with High Luminescence Quantum Yields[J]. J. Phys. Chem. A, 2002, 106: 3681~3689.
    [10] Sheikbahae M, Said A A, and Van Stryland E W, High-sensitivity, single-beam n2 measurements[J]. Opt. Lett., 1989, 14: 955~957.
    [11] Friberg S R, Smith P W, Nonlinear optical glasses for ultmfast optical switches[J]. IEEE-QE, 1987, 23(12): 2089~2094.
    [12] Sheikbahae M, Said A A, Wei T H, Hagan D J, Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE-QE, 1990, 26(4): 760~796.
    [13] Albota M, Beljonne D, Bredas J L et al., Design of organic molecules with large two-photon absorption cross sections[J]. Science, 1998, 281: 1653~1656.
    [14] Beljonne D, Bredas J L, Cha M et al., Two-photon absorption and third-harmonic generation of di-alkyl-amino-nitro-stilbene (DANS): A joint experimental and theoretical study[J]. J. Chem. Phys., 1995, 103: 7834~7843.
    [15] Xue Z M, Tian Y P, Wang D, Jiang M H, One- and two-photon excited dual fluorescence properties of zinc(Ⅱ) and cadmium(Ⅱ) complexes containing 4-dipropyl-aminobenzaldehyde thiosemicarbazone [J] .Dalton Trans., 2003,1373-1378
    [16] 延云兴.新型强双光子聚合引发剂的设计、合成及周期性微结构的制作[D].济南:山东大学,2003年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700