含氮、氧新配体及配合物的合成、结构和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含有两或三个吡啶环的吡啶配体的钌配合物,因为具有化学性质稳定、结构容易修饰、光学性质丰富等特点,其与核酸的相互作用,成为人们的研究热点,可以发展出核酸结构的光谱探针和治癌药物。多吡啶等配体的多核锰配合物在光系统Ⅱ放氧中心的结构和/或功能模拟方面发挥了重要的作用,可用于分解水催化剂的研究开发。因此,本文作了以下的研究工作:
     本文以邻菲咯啉为原料,邻菲咯啉-5,6-二酮为中间体,分别与3-醛基吡唑和2-醛基咪唑反应,合成了两个未见文献报道的含咪唑多吡啶配体2-(3-咪唑基)咪唑并[4,5-f]邻菲咯啉(IZIP)和2-(3-吡唑基)咪唑并[4,5-f]邻菲咯啉(PZIP)。以这两个配体合成了两个钌配合物[(bpy)_2Ru(IZIP)](ClO_4)_2(Rul)及[(bpy)_2Ru(PZIP)](ClO_4)_2(Ru_2)(其中bpy为2,2’-联吡啶)。用邻菲咯啉-5,6-二酮和二乙烯三胺反应合成了(1R)-6,9,15,18,21-pentaazapentacyclo[12.7.0.0~(1,18).0~(2,7).0~(8,13)]henicosa-2,4,6,8(13),9,11,14-heptaene。用3,4-二羟基苯甲醛为原料,在MnCl_2存在条件下合成了(5R,10R)-3,8-dihydroxy-5,10-diethoxy-5,10-dihydrochromeno[5,4,3-cde]chromene monohydrate,得到其两个超分子异构体。通过质谱,核磁共振氢谱,电子吸收光谱,发光光谱,红外光谱,X-射线单晶衍射等手段对这些化合物进行了结构表征和性质研究。
     通过电子吸收光谱、稳态发光光谱、稳态发光猝灭、粘度测量等光物理性质测量方法,研究了Ru1和Ru2与小牛胸腺DNA的作用情况。发现两者与DNA都发生了明显的结合,表现在与DNA结合前后配合物光谱性质的明显改变。DNA的加入使两者的紫外和可见吸收峰都出现了减色现象。加入DNA后,配合物溶液在600nm附近的发光明显增强。而且结合DNA后发光受猝灭剂猝灭的可能性显著降低。DNA的相对粘度在加入配合物后,出现了增大的现象,其中Ru1的增大幅度要比Ru2的大。由于bpy小的平面性使得它不具有插入DNA的功能,因此说明两个配合物分别以配体IZIP及PZIP插入的方式与DNA作用的。
     本文还现场合成了以4-甲基苯基-2,2’:6’,2”-三吡啶及其两种衍生物4-溴甲基苯基-2,2’:6’,2”-三吡啶、4-醛基苯基-2,2’:6’,2”-三吡啶作为配体(L)的双核锰配合物[L_2(H_2O)_2Mn_2(μ-O)_2](NO_3)_3,并对它们进行了催化氧化水分解放氧性质的测试研究。结果表明三种双核锰配合物在氧化剂过硫酸氢钾的作用下,都具有氧化水放氧的性能,但是可能由于修饰基团与锰原子的距离较远,对锰原子的影响较小,所以三者的放氧速率差别不大。
The ruthenium complexes of ligands containing 2 or 3 pyridine rings have goodproperties in chemical stability, easy tuning in structure and rich photophysicalbehavior. Their interaction with nucleic acids has been the subject of tremendousresearch interest and has potential to develop spectroscopic probes of DNA structureand cancer therapy agents. Multinuclear manganese complexes of polypyridineligands have played an important role in mimicking the oxygen-evolving center ofphotosystemⅡstructurally and/or functionally and are applicable in developing watersplitting catalysts. This thesis has described original research work as follows:The reaction between 1,10-phenanthroline-5,6-dione and pyrazole-3-carbaldehydeor imidazole-2-carbaldehyde has generated two new ligands2-(1H-imidazol-2-yl)- 1H-imidazo[4,5-f] [1,10]phenanthroline (IZIP) and2-(1H-pyrazol-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (PZIP), respectively.The corresponding ruthemium complexes [(bpy)_2Ru(IZIP)](ClO_4)_2 (denoted as Ru1)and [(bpy)_2Ru(PZIP)](ClO_4)_2 (Ru2) (bpy is 2,2'-bipyridine) have then beensynthesized. Two novel polycyclic compounds rich in N and O atoms have beensynthesized through reactions of 1,10-phenanthroline-5,6-dione withdiethylenetriamine, or reactions of 3,4-dihydroxybenzaldehyde in the presence ofmanganese chloride, respectively. They are (1R)-6,9,15,18,21-pentaazapentacyclo[12.7.0.0~(1,18).0~(2,7).0~(8,13)]henicosa-2,4,6,8(13),9,11,14-heptaene and(5R, 10R)-3,8-dihydroxy-5,10-diethoxy-5,10-dihydrochromeno[5,4,3-cde]chromenemonohydrate, respectively. For the latter, two supramolecular isomers have beenobtained. Means of ESI-MS, ~1H NMR, electronic absorption, emission, IRand single crystal X-ray diffraction have been utilized for characterizing and property studies of these compounds.
     Photophysical methods including electronic absorption, emission and emissionquenching, and viscosity measurement have been used to study the interaction of Ru1,Ru2 with calf thymus DNA. Both complexes bind significantly to DNA, as shown bythe significant differences between the photophysical properties before and afterbinding with DNA. Addition of DNA to Ru1 and Ru2 led to hypochromism in bothultraviolet and visible regions and enhancement of the emission of the two complexes.The emission quenching by K_4[Fe(CN)_6] was decreased greatly when DNA waspresent. The relative viscosity of DNA was raised after adding these two complexes tosaturation with the order Ru1>Ru2. Since the small planarity of bpy makes it a poormoiety for intercalating DNA, the above facts imply that Ru1 and Ru2 bind to DNAby intercalation of IZIP or PZIP into the DNA base pairs.
     Three dinuclear manganese complexes [L_2(H_2O)_2Mn_2(μ-O)_2](NO_3)_3, in which Lis 4-tolyl-2,2':6',2"-terpyridine, 4-bromomethylphenyl-2,2':6',2"-terpyridine,4-formylphenyl-2,2':6',2"-terpyridine have been prepared in situ, and their activity ofcatalyzing the oxidation of water to molecular oxygen. The results show that all ofthem can catalyze O_2 evolution reaction with oxidant oxone, but probably because theterminal substituents are far away from and have unconspicuous effect on Mn atoms,the rates of O_2 evolution of the three complexes are close.
引文
[1] Mamaev V. P., Shkurko O. P., Baram S. G. Electronic effects of heteroaromatic and substituted heteroaromatic groups. Adv. Heterocycl Chem., 1987, 42(1): 1.
    [2] Juris A., Balzani V., Barigelletti F. Ru(Ⅱ) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev., 1988, 84(2): 85.
    [3] Klassen D. M. Excited states of mixed ligand complexes of ruthenium (Ⅱ) with 2-(2-Pyridyl) quinoline and 2,2-biquino line. Chem. Phys. Lett., 1982, 93(4): 383.
    [4] Pickup P. G., Seddon K. R. Electrochemical and photophysical properties of a chemically modified electrode. Chem. Phys. Lett., 1982, 92(5): 548.
    [5] Tysoe S. A., Kopelman R., Schelzig D. Flipping the Molecular Light Switch Off: Formation of DNA-Bound Heterobimetallic Complexes Using Ru(bpy)_2tpphz~(2+) and Transition Metal Ions. Inorg. Chem., 1999, 38(23): 5196.
    [6] Juris A., Balzani V., Barigelletti F. Ru(Ⅱ) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev., 1988, 84(2): 85.
    [7] Brandt P., Norrby T., Akermark B. Molecular Mechanics (MM3~*) Parameters for Ruthenium(Ⅱ)-Polypyridyl Complexes. Inorg. Chem., 1998, 37(16): 4120.
    [8] Allen G. H., White R. P. Synthetic control of excited-state properties. Tris-chelate complexes containing the ligands 2,2'-bipyrazine, 2,2'-bipyridine, and 2,2'-bipyrimi dine. J. Am. Chem. Soc., 1984, 106(9): 2613.
    [9] 刘劲刚,叶保辉,计亮年.Δ-和Λ-[Ru(bpy)_2(HPIP)]~(2+)两种异构体对小牛胸 腺DNA不同键合速率的CD光谱证明.高等学校化学报学报,1999,20(4):523-525.
    [10] Balzani V., Juris A. Venturi M. Luminescent and Redox-Active Polynuclear Transition Metal Complexes. Chem. Rev., 1996, 96(2): 759.
    [11] Yasuo Nakabayashi, Nobuaki Iwamoto, Hiroyuki Inada and Osamu Yamauchi. DNA-binding properties of flexible diamine bridged dinuclear ruthenium(Ⅱ)-2, 2'-bipyridine complexes. Inorganic Chemistry Communica-tions. 2006, 9(10): 1033.
    [12] Sammes P. G., Yahoglu G. 1, 10—Phenanthroline: a Versatile Ligand. J. Chem. Soc. Rev., 1994, 23(6): 327.
    [13] Beer R. H., Jimenez J., Drago R. S. Syntheses of 2, 9-bis(Halomethyl-1, 10-phenanthrolines: Potential Robust Ligands for Metal Oxidation Catalysts. J. Org. Chem., 1995, 58(7): 1746.
    [14] Schilta Ao Analytical Applications of 1, 10-Phenanthroline and Related Compounds. New York, Pergamon Press, 1996.
    [15] Beer P. D., Z. Chen, Gonlen A. J. Anion Recognition by Novel Ruthenium (Ⅱ) Bipyridyl Calix Arene Receptor Molecules. J. Chem. Soc. Chem. Commun., 1994, 10: 1269.
    [16] Lehn J. M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information P rocessing and Self-Organization. Angew. Chem. Int. Ed. Engl., 1990, 29(11): 1304.
    [17] Michael J. P., Pattended G. Angew. Chemo Into Ed. Engl., 1993, 32(1): 1223.
    [18] Marie-Noelle Collomb, Alain Deronzier, Aurelien Richardot, Jacques Pecaut. Synthesis and characterization of a new kind of Mn_2~(Ⅲ,Ⅳ)μ-oxo complex: [Mn_2O_2(terpy)_2(H_2O)_2](NO_3)_3·6H_2O, terpy=2, 2": 6', 2"-terpyridine, New J. Chem., 1999, 23(4): 351.
    [19] Seok-Ho Hwang, Charles N. Moorefield, Pingshan Wang, Jeong-Yeol Kim, Sang-Won Lee, George R. Newkome. Synthesis and photophysical properties for fluorescent hexameric metallomacrocycles: Zinc(II) -mediated self-assembly of bis(terpyridine) ligands. Inorg. Chim. Acta, 2007, 360(5): 1780.
    [20] S.-C. Yu, Kwok C. C, W.-K. Chan, C.-M. Che. Self-Assembled Electroluminescent Polymers Derived from Terpyridine-Based Moieties. Adv. Mater., 2003,15(19): 1643.
    [21] X.-G. Chen, Q.-G. Zhou, Y.-X. Cheng, Y.-H. Geng, D.-G. Ma, Z.-Y. Xie, L.-X. Wang. Synthesis, structure and luminescence properties of zinc(II) complexes with terpyridine derivatives as ligands. J. Lumines., 2007, 126(1): 81.
    [22] Barton J. K. Metals and DNA: molecular left-handed complements. Science, 1986,233(4765): 727.
    [23] Sigman D. S. Mazumder A., Perrin D.M. Chemical nucleases. Chem. Rev., 1993, 93(6): 2295.
    [24] S. Shi, J. Liu, J. Li, K.-C. Zheng, C.-P. Tan, L.-M. Chen, L.-N. Ji. Electronic effect of different positions of the -NO_2 group on the DNA -intercalator of chiral complexes [Ru(bpy)2L]~(2+) (L = o-npip, m-npip and p-npip)Electronic supplementary information (ESI) available: 1H NMR spectra of the complexes..J. Chem. Soc, Dalton Trans., 2005, 5(11): 2038.
    [25] Y. Xiong, L.-N. Ji. Synthesis, DNA-binding and DNA-mediated lum ines -cence quenching of Ru(II) polypyridine complexes. Coord. Chem. Rev., 1999,185(1): 711.
    [26] Pyle A. M., Barton J. K. Probing nucleic acids with transition metal complexes. Prog. Inorg. Chem., 1990, 38(11): 413.
    [27] Barton J. K., Dannenberg J. J., Raphael A. L. Enantiomeric selectivity in bindind tis(phenanthroline)zinc(II)to DNA. 7. Am. Chem. Soc, 1982, 104(18): 4967.
    [28] Maheswari P. U., Palaniandavar M. DNA binding and cleavage activity of [Ru(NH_3)_4(diimine)]Cl_2 complexes. Inorg. Chim. Acta, 2004, 357(4): 901.
    [29] Narra M., Elliott P., Swavey S. Crystal structure and vibrational spectra of rubidium salts of bis(dicyanomethylene)croconate (croconate violet). Inorg. Chim. Acta, 2006, 359(7): 2256.
    [30] L.-F. Tan, H. Chao, Y.-J. Liu, H. Li, B. Sun, L.-N. Ji. DNA-binding and photocleavage studies of [Ru(phen)_2(NMIP)]~(2+). Inorg. Chim. Acta, 2005, 358(7): 2191.
    [31] J.-Z. Wu, L. Yuan, Y. Yu. Effect of copper ion on DNA intercalating behavior of a chelation unsaturated diruthenium polypyridyl complex. Inorg. Chim. Acta, 2006, 359(2): 718.
    [32] H. Xu, K.-C. Zheng, Y. Chen, Y.-Z. Li, L.-J. Lin, H. Li, P.-X. Zhang, L.N. Ji. Effects of ligand planarity on the interaction of polypyridyl Ru(Ⅱ) complexes with DNA. J. Chem. Soc., Dalton Trans, 2003, 5(11): 2260.
    [33] 刘劲刚,计亮年.吡啶钌配合物作为DNA结构探针的研究.无机化学学报,2000,16(2):195.
    [34] 靳兰,杨频,李青山.荧光法研究手性金属配合物与DNA的作用机理.高等学校化学学报,1996,17(9):1345.
    [35] Shakked Z., Guzikevich-Guerstein G., Frolow F. Determinanats of repressor/operator recognition from the structure of the trp operator binding site. Nature, 1994, 368(6470): 469.
    [36] 张蓉颖,庞代文,蔡汝秀.DNA与其靶向分子相互作用研究进展.高等学校化学学报,1999,20(8):1210.
    [37] Sherman S. E., Gibson D., A.-H. Wang, Lippard S. J. X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH_3)_2 (d(pGpG))]. Science, 1985, 230(4724): 412.
    [38] Hodgson D. The stereochemistry of metal complexes of nucleic acid constituents. Prog. Inorg. Chem., 1977, 23(1): 211.
    [39] Meumier B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA. cleavage. Chem. Rev., 1992, 92(6): 1411.
    [40] 宋宇飞,杨频.对DNA具有识别和断裂功能的金属插入剂的研究.化学进展,2001,13(5):368.
    [41] Morrow J. R., Trogler W. C. Hydrolysis of phosphate diesters with copper(Ⅱ) catalysts. Inorg. Chem., 1988, 27(19): 3387.
    [42] J. Chin, X. Zou. Cobalt(Ⅲ) complex promoted hydrolysis of phosphate diesters: change in rate-determining step with change in phosphate diester reactivity. J. Am. Chem. Soc., 1988, 110(11): 223.
    [43] 沈同,王镜岩.生物化学(第二版)[M].北京:高等教育出版社,1990:54-68.
    [44] 凌连生,杨洗,何治柯.Ru(bipy)_2(dppz)~(2+)与DNA相互作用的光谱研究.分析科学学报,2001,17(1):11.
    [45] Kalyanasundaram K. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(Ⅱ) and its analogues. Coord. Chemo Rev., 1982, 46(1): 159.
    [46] Juris A., Balzani V., Barigelletti F., Campagna S., Belser P., Von Zelewsky A. Ru(Ⅱ) polypyridine complexes: photophysics, photochemistry, eletro-chemistry, and chemiluminescence. Coord. Chem. Rev., 1988, 84(11): 85.
    [47] H. Xu, K.-C. Zheng, Y. Chen, Y.-Z. Li, L.-J. Lin, H. Li, P.-X. Zhang, L.-N. Ji. Effects of ligand planarity on the interaction of polypyridyl Ru(Ⅱ) complexes with DNA. Dalton Trans., 2003, 3(11): 2260.
    [48] Constable E. C. Higher Oligopyridines as a Structural Motif in Metallosupramolecular Chemistry. Prog. Inorg. Chem., 1994, 42(1): 67.
    [49] Balzani V., Scandola F., SupramoIecular Photochemistry, Horwood: Ellis Press, 1991: 79.
    [50] Kalyanasundaram K. Photochemistry of Polypyridine and Porphyrin Complexes. London: Academic Press, 1992.
    
    [51] Hiort C, Norden B., Rodger A. Enantiopreferential DNA binding of [ruthenium(II)(1,10-phenanthroline)_3]~(2+) studied with linear and circular dichroism.J.,Am. Chem. Soc, 1990,112(5): 1971.
    [52]Yamagishi A. Evidence for stereospecific binding of tris(1,10 -phenanthroline)-ruthenium(II) to DNA is provided by electronic dichroism. J. Chem. Soc, Chem. Commun., 1983,572.
    [53] Yamagishi A. Electric dichroism evidence for stereospecific binding of optically active tris chelated complexes to DNA. J. Phys. Chem., 1984, 88(23): 5709.
    
    [54] Norden B., Tjerneld F., FEBS Lett., 1976, 67, 386.
    
    [55] Barton J. K., Dannenberg J. J., Raphael A.L. Enantiomeric selectivity in binding tris(phenanthroline)zinc(II) to DNA. J. Am. Chem. Soc, 1982, 104(18): 4967.
    [56] Robert J. Morgan, Sanjoy Chatterjee, A. David Baker, Thomas C. Strekas. Effects of ligand planarity and peripheral charge on intercalative binding of Ru(2,2'-bipyridine)_2L~(2+) to calf thymus DNA. Inorg. Chem., 1991, 30(12): 2687.
    [57] Steven A. Tysoe, Robert J. Morgan, A. David Baker, Thomas C. Strekas. Spectroscopic investigation of differential binding modes of .DELTA. - and .LAMBDA.-Ru(bpy)_2(ppz)~(2+) with calf thymus DNA. J. Phys. Chem., 1993, 97(8): 1707.
    [58] Uma M. P., Palaniandavar M. DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines-effect of hydrogen-bonding on DNA-binding affinity. J. Inorg. Biochem., 2004, 98(20): 219.
    [59] G. Yang, J.-Z. Wu, L.-N. Ji. Study of the interaction between novel ruthenium(Ⅱ)-polypyridyl complexes and calf thymus DNA. J. Inorg. Biochem., 1997, 66(2): 141.
    [60] Jenkins Y., Friedman A. E., Turro N. J. Characterization of dipyrido-phenazion complexes of ruthenium(Ⅱ): the light switch effect as a function of nucleic acid sequence and conformation. Biochemistry, 1992, 31(44): 10809.
    [61] Satyanaryana S., Dabrowiak J. C., Chaires J. B. Tris(phenanathroline) ruthenium(Ⅱ) enantionmer interactions with DNA: mode and specificity of binding. Biochemistry, 1993, 32(10): 2573.
    [62] Satyanarayana S., James C. Dabrowiak, Jonathan B. Chaires. Neither. DELTA.-nor. LAMBDA.-tris(phenanthroline)ruthenium(Ⅱ) binds to DNA by classical intercalation. Biochemistry, 1992, 31(39): 9319.
    [63] 罗济文,张敏,张蓉颖.抗癌药物的电化学研究(Ⅱ)道诺霉素在DNA修饰石磨粉末微电极上的电化学行为及分析应用.分析科学学报,2002,18(1):1.
    [64] Lu Q., Pang D. W., Hu S. DNA-modified electrodes(Ⅶ)-preparation and characterization of DNA-bonded and DNA-adsored SAM/Au electrodes. Sci. China B, 1999, 42(4): 425.
    [65] Xu X. H., Bard A. J. Immobilization and hybridization of DNA on an aluminum(Ⅲ) alkanebisphosphonate thin-film with electrogenatated chemiluminescent detection. J. Am. Chem. Soc., 1995, 117(9): 2627.
    [66] 王素芬,彭图治,李建平.电化学方法研究DNA与不可逆靶向分子的相互作用.化学学报,2002,60(2):310.
    [67] Kelley S. O., Barton J. K., Jackson N. M. Orienting DNA helices on gold using applied electric fields. Langmuir, 1998, 14(24): 6781.
    [68] 殷玉和,王颖,傅学奇.靶向RNA药物检测和筛选的生物物理学方法.生命的化学,2001,21(3):234.
    [69] Collins J.G., Shields T. P., Barton J.K. 1H-NMR of Rh(NH_3)_4phi~(3+) Bound to d(TGGCCA)_2: Classical Intercalation by a Nonclassical Octahedral Metallointercalator. J.Am. Chem. Soc, 1994,116(22): 9840.
    
    [70] Greguric I., Aldrich-Wright J.R., Collins J.G.. A1H NMR Study of the Binding of A-[Ru(phen)_2DPQ]~(2)+ to the Hexanucleotide d(GTCGAC)_2. Evidence for Intercalation from the Minor Groove. J. Am. Chem. Soc, 1997,119(15): 3621.
    
    [71] Collins J. G, Sleeman A. D., Aldrich-Wright J. R., Greguric I., Hambley T. W. A. 1H NMR Study of the DNA Binding of Ruthenium(II) Polypyridyl Complexes. Inorg. Chem., 1998, 37(13): 3133.
    
    [72] Dupureur C. M., Barton J. K. Structural Studies of A- and A -[Ru(phen)_2dppz]~(2+) Bound to d(GTCGAC)_2: Characterization of Enantioselective Intercalation. Inorg. Chem., 1997, 36(1): 33.
    
    [73] Yachandra V. K., Sauer K., Klein M. P. Manganese Cluster in Photosynthesis: Where Plants Oxidize Water to Dioxygen. Chem. Rev., 1996, 96(7): 2927.
    
    [74] Joliot P., Kok B. Oxygen Evolution in Photosynthesis in Bioereng. Photosynth. Photosynthesis, 1975:387.
    [75] Carrell T. G, Tyryshkin A. M., Dismukes G. C. An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction signatures. J. Biol. Inorg. Chem., 2002, 7(1): 2.
    [76] Goussias C, Boussac A., Rutherford A. W. Photosystem II and photosynthetic oxidation of water: an overview. Phil. Trans. R. Soc. London B, 2002, 357(1426): 1369.
    [77] Mukhopadhyay S., Mandal S. K., Bhaduri S., Armstrong W. H. Manganese Clusters with Relevance to Photosystem II. Chem. Rev., 2004, 104(9): 3981.
    [78] Ferreira K. N., Iverson T. M., Maghlaoui K., Barber J., Iwata S. Architecture of the photosynthetic oxygen-evolving center. Science, 2004, 303(5665): 1831.
    [79] Loll B., Kern J., Saenger W., Zouni A., Biesiadka J. Towards complete cofactor arrangement in the 3.0A resolution structure of photosystem II. Nature, 2005,438(9): 1040.
    [80] Sauer K., Yano J., Yachandra V. K. X-ray spectroscopy of the Mn_4Ca cluster in the water-oxidation complex of photosystem II. Photosynth. Res., 2005, 85(1): 73.
    [81] Brudvig G W., Crabtree R. H. Proc. Natl. Acad. Sci. USA, 1985, 83(1): 4586.
    [82] Yachandra V. K., Sauer K., Klein M. P. Manganese Cluster in Photosynthesis: Where Plants Oxidize Water to Dioxygen. Chem. Rev., 1996, 96(7): 2927.
    [83] Limburg J., Szalai V. A., Brudvig G. W. Manganese Cluster in Photosynthesis: Where Plants Oxidize Water to Dioxygen. J. Chem. Soc, Dalton Trans., 1999, (9)1353.
    [84] C.-X. Zhang, J. Pan, L.-B. Li, T.-Y. Kuang, Chin. Sci. Bul, 1999, 44(9), 2209.
    [85] Pecoraro V. L., Baldwin M. J., Caudle M. T. A proposal for water oxidation in photosystem II. Pure Appl. Chem., 1998, 70(4): 925.
    [86]Ramarai R., Kira A., Kaniko M. Photochemical Conversion and Stabilization of Polymers. Angew. Chem. Int. Ed. Engl., 1986, 25(9): 825.
    [87] Ashamwy F. M., McAuliffe C. A., Parish R. V., Tames J. Water photolysis. Part 1. The photolysis of co-ordinated water in [{MnL(H_2O)}2][ClO_4]_2(L = dianion of tetradentate O_2N_2-donor Schiff bases). A model for the manganese site in photosystem II of green plant photosynthesis. J. Chem. Soc, Dalton. Trans, 1985, (7):1391.
    [88] McAuliffe C. A., Parish R. V., Abu-El-Wafa S. M., Issa R. M. High-valent manganese complexes of tetradentate schiff base ligands: ESR-active and ESR-silent dimeric species. Inorg. Chim. Acta, 1986,115(1): 91.
    
    [89] Ashmawy F. M., McAuliffe C. A., Parish R. V., Tames J., J. Chem. Soc, Chem. Commun., 1984,14.
    
    [90] Naruta Y., Sasyama M., Sasaki T. Oxygen evolution by oxidation of water with manganese porphyrin dimmers. Angew. Chem. Int. Ed. Engl., 1994, 33(18): 1839.
    
    [91] Pecoraro V. L., Baldwin M. J., Caudle M. T., Hsieh W., Law N. A. Aproposal for water oxidation in photosystem II. Pure Appl. Chem., 1998, 70(4): 925.
    
    [92] Mishra A., Wernsdorfer W., Abboud K. A., Christou G Chem. Commun., 2005,54.
    
    [93] Limburg J., Vrettos J. S., Liable-Sands L. M., Rheingold A. L., Crabtree R. H., Brudvig G W. A Functional Model for 0-0 Bond Formation by the O_2-Evolving Complex in Photosystem II. Science, 1999, 283(5407): 1524.
    
    [94] Limburg J., Vrettos J. S., Chen H. Y, Paula J. C., Crabtree R. H., Brudvig G. W. Characterization of the O_2-Evolving Reaction Catalyzed by [(terpy) (H_2O)Mn~(III)(O)_2Mn~(IV)(OH_2)(terpy)](NO_3)_3 (terpy = 2,2':6,'2' '-Terpyridine). J.Am. Chem. Soc, 2001,123(3): 423.
    
    [95]H.-Y. Chen, Tagore R., Olack G, Vrettos J. S. Speciation of the Catalytic Oxygen Evolution System: [Mn~(III/IV)_2(M-O)_2(terpy)_2(H_2O)_2] (NO_3)~(3 +) HSO_5~-. Inorg. Chem., 2007, 46(1): 34.
    
    [96] McEvoy J. P., Brudvig G W. Water-Splitting Chemistry of Photosystem II. Chem. Rev., 2006,106(11): 4455.
    
    [97] Tagore R., H.-Y Chen; Crabtree R. H., Brudvig G W. Determination of μ -Oxo Exchange Rates in Di- μ -Oxo imanganese Complexes by Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc., 2006, 128(29): 9457.
    [98] Sproviero E. M., Gascon J. A., McEvoy J. P., Brudvig G. W., Batista V. S. QM/MM Models of the O_2-Evolving Complex of Photosystem II, J. Chem. Theory and Comput. J. Chem. Theory Comput, 2006, 2(4): 1119.
    [99] Yagi M., Narita K. Catalytic O_2 Evolution from Water Induced by Adsorption of [(OH_2)(Terpy)Mn(μ-O)_2Mn(Terpy)(OH_2)]~(3+) Complex onto Clay Compounds. J.Am. Chem. Soc, 2004,126(26): 8084.
    [100] Narita K., Kuwabara T., Sone K., Shimizu K.-i. Yagi M. Characterization and Activity Analysis of Catalytic Water Oxidation Induced by Hybridization of [(OH_2)(terpy)Mn( μ -O)_2Mn(terpy) (OH_2)]~(3+) and Clay Compounds.J. Phys. Chem. B., 2006,110(46): 23107.
    [101] Shimazaki Y, Nagano T., Takesue H., B.-H. Ye, F. Tani, Naruta Y. Characterization of a dinuclear MnV=0 complex and its efficient evolution of O_2 in the presence of water. Angew. Chem. Int. Ed., 2004, 43(1): 98.
    [102] Poulsen A. K., Rompel A., McKenzie C. J. Water Oxidation Catalyzed by a Dinuclear Mn Complex: A Functional Model for the Oxygen-Evolving Center of Photosystem II. Angew. Chem. Int. Ed., 2005,44(42): 6916.
    [103] Ruettinger W., Yagi M., Wolf K., Bernasek S., Dismukes G. C. O_2 Evolution from the Manganese-Oxo Cubane Core Mn_4O_4~(6+): A Molecular Mimic of the Photosynthetic Water Oxidation Enzyme. J. Am. Chem. Soc, 2000,122(42): 10353.
    [104] J.-Z. Wu, Sellitto E., Yap G. P. A., Sheats J., Dismukes G C. Trapping an elusive intermediate in manganese-oxo cubane chemistry. Inorg. Chem., 2004, 43(19): 5795.
    [105] J.-Z. Wu, F. De Angelis, Carrell T. G, Yap G. P. A., Sheats J., Car R., Dismukes G C. Tuning the photoinduced O_2-evolving reactivity of Mn_4O_4~(7+), Mn_4O_4~ (6+) and Mn_4O_3(OH)~(6+) manganese-oxo cubane complexes. Inorg. Chem., 2006, 45(1): 189.
    [1] Hiort C., Lincoln P., Norden B. DNA binding of Δ- and Λ-[Ru(phen)_2(DPPZ)]~(2+). J. Am. Chem. Soc., 1993, 115(9): 3448.
    [2] 吴建中,陈胜,计亮年.咪唑并邻菲咯啉类配体的钌配合物的光谱研究.分析测试学报,1999,18(2):17.
    [3] Sullivan B. P., Salmon D. J., Mayer T. J. Mixed Phosphine 2,2'-Bipyridine Complexes of Ruthenium. Inorg. Chem., 1978, 17(12): 3334.
    [4] Kalyanasundaram K. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(Ⅱ) and its analogues. Coord. Chem. Rev., 1982, 46(6): 159.
    [5] Juris A., Balzani V., Barigelletti F., Campagna S., Belser P., Von Zelewsky A. Ru(Ⅱ) polypyridine complexes: photophysics, photochemistry, eletrochemistry and chemiluminescence. Coord. Chem. Rev., 1988, 84: 85.
    [6] Krause R. Struct. Bond., 1987, 67: 1.
    [7] Constable E. C. Higher Oligopyridines as a Structural Motif in Metallosupramolecular Chemistry. Prog. Inorg. Chem., 1994, 42(1): 67.
    [8] Kalyanasundaram K. Photochemistry of Polypyridine and Porphyrin Complexes, London, Academic Press, 1992: 108.
    [9] Crosby G. A. Spectroscopic Investigations of Excited States of Transition-Metal Complexes. Acc. Chem. Res., 1975, 8(7): 231.
    [10] Watts R. J. Ruthenium polypyridyls. J. Chem. Edu., 1983, 60(1): 834.
    [11] Yamada M., Tanaka Y., Yoshimoto Y., Kuroda S., Shimao I. Synthesis and Properties of Diamino-Substituted Dipyrido [3,2-a: 2',3'-c]phenazine. Bull. Chem. Soc. Jpn., 1992, 65(4): 1006.
    [12] Yam V. W.-W., Lo K. K.-W., Cheung K.-K., Kong R. Y.-C. J. Chem. Soc. Chem Commun., 1995: 1191.
    [13] J.-Z. Wu, L. Wang, G. Yang, L.-N. Ji, Katsaros N., Koutsodimou A. Crystal Structure Investigation of 2-Pheny limidazo [f]1,10-phenanthroline. Cryst. Res. Tech., 1996, 31(7): 857.
    [14] J.-Z. Wu, B.-H. Ye, L. Wang, L.-N. Ji, J.-Y. Zhou, R.-H. Li, Z.-Y. Zhou. Bis(2,2'-bipyridine)ruthenium(Ⅱ) complexes with imidazo[4,5-f] [1,10]-phenanthroline or 2-phenylimidazo[4,5-f][1,10]phenanthroline. J. Chem. Soc. Dalton Trans., 1997, (8): 1395.
    [15] J.-Z. Wu, L. Yuan, J.-F. Wu. Synthesis and DNA binding of μ-[2,9-bis(2-imidazo[4,5-f] [1,10]phenanthroline)-1,10-phenanthroline]bis[1,10-phenanthrolinecopper(Ⅱ)]. J. Inorg. Biochem., 2005, 99(11): 2211.
    [16] Scheiner S. Hydrogen Bonding, New York, Oxford University Press, 1997: 108.
    [17] Grabowski S. J. Struct. Chem., 2005, 16(3): 175.
    [18] Dannenberg J. J. Cooperativity in hydrogen bonded aggregates. Models for crystals and peptides. J. Mol. Struct., 2002, 615(1): 219
    [19] Lehn J. M. Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim Press, 1995: 108.
    [20] Moulton B. Zaworotko M. J. From Molecules to Crystal Engineering: Superamolecular Isomerism and Polymorphism in Network Solids. Chem. Rev., 2001, 101(6): 1629.
    [21] Mahmoudkhani A. H. Langer V. Supramolecular Isomerism and Isomorphism in the Structures of 1,4-Butanebisphosphonic Acid and Its Organic Ammonium Salts. Cryst. Growth Des., 2002, 2(1): 21
    [22] Toda F., Tanaka K., Iwata S. Oxidative coupling reactions of phenols with FeCl_3 in the solid state. J. Org. Chem., 1989, 54(13): 3007
    [1] Marmur J. Isolation of bacterial DNA.J. Mol. Biol., 1961, 3(1): 208.
    
    [2] Reichmann M. E., Rice S. A., Thomas C. A., Paul Doty. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid. J. Am. Chem. Soc, 1954, 76(11): 3047.
    [3] Challa V., Kumar, Jacqueline K., Barton, Nicholas J., Turro N. J. Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc, 1985,107(19): 5518.
    [4] Hiort C., Lincoln P., Norden B. DNA binding of DELTA- and LAMBDA-[Ru(phen)_2DPPZ]~(2+). J. Am. Chem. Soc, 1993,115(9): 3448.
    [5] Kelly J. M., Tossi A. B., McConnell D. J., OhUigin C. A study of the interactions of some polypyridylruthenium (II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucleic Acids Res., 1985,13(17): 6017.
    [6] Gorner H., Tossi A. B., Stradowski C. Binding of Ru(bpy)_3~(2+) and Ru(phen)_3~(2+) to polynucleotides and DNA: Effect of added salts on the absorption and luminescence properties.J. Photochem. Photobiol., B:Biol., 1988, 2(1): 67.
    [7] Mahadevan S., Palaniandavar M. Electrochemical study of the enantioselective interaction of tris(phen)Ru(II) with calf thymus DNA. J. Inorg. Biochem., 1995, 59: 161.
    [8] Friedman A. E., Kumar C. V., Turro N. J., Barton J. K. Luminescence of ruthenium(II) polypyridyls: evidence for intercalative binding to Z-DNA. Nucleic Acids Res., 1991,19(10): 2595.
    [9] Pyle A. M., Rehmann J. P., Kumar C. V. Mixed-Ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA. J. Am. Chem. Soc, 1989,111(8): 3051.
    [10] H. Deng, J.-W. Cai, H. Xu, H. Zhang, L.-N. Ji. Ruthenium(Ⅱ) complexes containing asymmetric ligands: synthesis, characterization, crystal structure and DNA-binding. Dalton Trans., 2003, 3(3): 325.
    [11] M.-J. Han, L.-H. Gao, K.-Z. Wang. Ruthenium(Ⅱ) complex of 2-(9-anthryl)-1H-imidazo[4,5-f][1,10]phenanthroline: synthesis, spectroph-otometric pH titrations and DNA interaction. New J. Chem., 2006, 30: 208.
    [12] X.-W. Liu, J. Li, H. Deng, K.-C. Zheng, Z.-W. Mao, L-N. Ji. Experimental and DFT studies on the DNA-binding trend and spectral properties of complexes [Ru(bpy)_2L]~(2+) (L=dmdpq, dpq, and dcdpq). Inorg. Chim. Acta, 2005, 358(15): 3311.
    [13] X.-H. Zou, B.-H. Ye, H. Li, J.-G. Liu, Y. Xiong, L.-N. Ji. The design of new molecular "light switches" for DNA. J. Biol. Inorg. Chem., 2001, 6(2): 143.
    [14] S. Shi, J. Liu, J. Li, K.-C. Zheng, C.-P. Tan, L.-M. Chen, L.-N. Ji. Electronic effect of different positions of the -NO_2 group on the DNA-intercalator of chiral complexes [Ru(bpy)_2L]~(2+) (L=o-npip, m-npip and p-npip)Electronic supplementary information (ESI) available: 1H NMR spectra of the complexes. Dalton Trans., 2005, 5(11): 2038.
    [15] Clive Metcalfe, Chatna Rajput, Jim A. Thomas. Studies on the interaction of extended terpyridyl and triazinemetal complexes with DNA. J. Inorg. Biochem., 2006, 100: 1314.
    [16] L-F Tan, F Wang, H Chao, Y-F Zhou, C Weng. Ruthenium(Ⅱ) mixed-ligand complex containing 2-(40-benzyloxy-phenyl)imidazo[4,5-f][1,10]phenanthroline: Synthesis, DNA-binding and photocleavage studies. J. Inorg. Biochem., 2007, 101(4): 700.
    [17] Tossi A. B., Kelly J. Mo A study of some polypyridylruthenium(Ⅱ) complexes as DNA binders and photocleavage reagents. Photochem. Photobiol., 1989, 49(5): 545.
    [18] Kirsch-De Mesmaeker A., Orellana G., Barton J. K., Turro N. J. Ligand-dependent interaction of ruthenium(II) polypyridyl complexes with DNA probed by emission spectroscopy. Photochem. PhotobioL, 1990, 52(3): 461.
    [19] Orellana G., Kirsch-De Mesmaeker A., Barton J.K., Turro N. J. Photoinduced electron transfer quenching of excited Ru(II) polypyridyls bound to DNA: the role of the nucleic acid double helix. Photochem. Photobiol., 1991,54(4): 499.
    [20] Lecomte J. P., Kirsch-De Mesmaeker A., Kelly J. M., Tossi A. B., Gorner H. Photo-induced electron transfer from nucleotides to ruthenium-tris-l,4,5,8-tetraazaphenanthrene: model for photosensitized DNA oxidation. Photochem. PhotobioL, 1992, 55(5): 681.
    [21] Lecomte J. P., Kirsch-De Mesmaeker A., Demeunynck M., Lhomme J. Synthesis and characterisation of a new DNA-binding bifunctional ruthenium(II) complex. J. Chem. Soc, Faraday Trans., 1993, 89: 3261.
    [22] Lecomte J. P., Kirsch-De Mesmaeker A., Demeunynck M., Orellana G. Photophysics of Polyazaaromatic Ruthenium(I1) Complexes Interacting with DNA.J. Phys. Chem., 1994, 98(20): 5382.
    [23] Lecomte J. P., Kirsch-De Mesmaeker A., Feeney M. M., Kelly J. M. Ruthenium(II) Complexes with 1,4,5,8,9,12-Hexaazatriphenylene and 1,4,5,8-Tetraazaphenanthrene Ligands: Key Role Played by the Photoelectron Transfer in DNA Cleavage and Adduct Formation. Inorg. Chem., 1995, 34(26): 6481.
    [24] Hartshorn R. M., Barton J. K. Novel Dipyridophenazine Complexes of Ruthenium(II):Exploring Luminescent Reporters of DNA. J. Am. Chem. Soc, 1992,114(15): 5919.
    [25] Kumar C. V., Barton J. K., Turro N. J. Photophysics of Ruthenium Complexes Bound to Double Helical DNA. J. Am Chem. Soc., 1985, 107(19): 5518.
    [26] Scaria P. V., Shafer P. H. Binding of ethidium bromide to a DNA triple helix Evidence for intercalation. J. Biol. Chem., 1991, 266(9): 5417.
    [27] Wallace A. W., Murphy W. R., Peterson J. P. Electrochemical and photophysical properties of mono- and bimetallic ruthenium(Ⅱ) complexes. Inorg. Chim. Acta, 1989, 166(1): 47.
    [28] Turro N. J. Modern Molecular Photochemistry. Benjamin-Cummings, 1978.
    [29] 陈国珍,黄贤智,郑国梓,许金钩,王尊本.荧光光度分析法,科学出版社,1990.
    [30] Satyanarayana S., Dabroniak J. C., Chaires J. B. Neither A- nor A-Tris( phenanthroline)ruthenium(11) Binds to DNA by Classical Interca-lation. Biochemistry, 1992, 31(39): 9319.
    [31] Satyanarayana S., Dabomsak J. C., Chaires J. B. Tris(phenanthroline)-ruthenium(Ⅱ) Enantiomer Interactions with DNA: Mode and Specificity of Binding. Biochemistry, 1993, 32(10): 2573.
    [1] Yachandra V.K., Sauer K., Klein M. P. Manganese Cluster in Photosynthesis: Where Plants Oxidize Water to Dioxygen. Chem. Rev., 1996, 96(7): 2927.
    [2] H.-Y. Chen, Faller J. W, Crabtree R. H., Brudvig G W. Dimer-of-Dimers Model for the Oxygen-Evolving Complex of Photosystem II. Synthesis and Properties of [Mn~(IV)_4O_5(terpy)_4(H_2O)_2](ClO_4)_6. J. Am.Chem. Soc, 2004,126(23): 7345.
    [3] Dave B. C., zernuszewicz R. S., Bond M. R. Carrano C. J. Oxidative Charge Storage on an Oxomanganese(IV) Dimer Containing a Bis(μ-oxo) -mono(μ-carboxylato) Bridge and Two Coordinated Water Molecules: [Mn_2O_2(O_2CCH_3) (H_2O)_2(bpy)_2](ClO_4)3. Inorg. Chem., 1993, 32(17): 3593.
    [4] Reddy K. R., Rajasekharan M. V., Padhye S., Dahan F., Tuchagues J. P. Modeling the Photosynthetic Water Oxidation Center: Synthesis, Structure, and Magnetic Properties of [Mn_2(μ-O)_2(μ-OAc) (H_2O)_2( bipy )_2]( ClO_4) . H_2O. Inorg. Chem., 1994, 33(3): 428.
    [5] Limburg J., Vrettos J. S., Liable-Sands L. M., Rheingold A. L., Crabtree R. H., Brudvig G. W. A Functional Model for 0-0 Bond Formation by the O_2-Evolving Complex in Photosystem II. Science, 1999, 283(5407): 1524.
    [6] Sarneski J. E., Thorp H. H., Brudvig G W., Crabtree R. H., Schulte G K. Assembly of High-Valent Oxomanganese Clusters in Aqueous Solution. Redox Equilibrium of Water-Stable Mn_O_4~(4+) and Mn_2O_2~(3+) Complexes. J. Am. Chem. Soc, 1990,112(20): 7255.
    [7] Reddy K. R., Rajasekharan M. V, Arulsamy N., Hodgson D. J. Synthesis and Structural Investigations of [Mn_3O_4(phen)_4(H_2O)_2](NO_3)_4·2.5H_2O: A Water-Bound Complex Obtained by Cerium(IV) Oxidation. Inorg. Chem., 1996,35(8): 2283.
    [8] Wieghardt K., Bossek U., Nuber B., Weiss J., Bonvoisin J., Corbella M., Vitols S. E., Girerd J. J. Synthesis, crystal structures, reactivity, and magnetochemistry of a series of binuclear complexes of manganese(II), -(III), and -(IV) of biological relevance. The crystal structure of [L'Mn~(IV)(μ-O)_3Mn~(IV)L'](PF_6)_2H_2O containing an unprecedented short Mn.cntdot..cntdot..cntdot.Mn distance of 2.296 A. J. Am. Chem. Soc, 1988,110(22): 7398.
    [9] H.-Y. Chen, Tagore R., Das S., Incarvito C, Faller J. W., Crabtree R. H., Brudvig GW. General Synthesis of Di-μ-oxo Dimanganese Complexes as Functional Models for the Oxygen Evolving Complex of Photosystem II. Inorg. Chem., 2005,44(21): 7661.
    [10] Wollins J. D. Inorganic Experiments. Weinheim, VCH Press, 1994:189.
    [11] Johansson O., Borgstrom M., Lomoth R. Electron donor-acceptor dyads based on ruthenium(II) bipyridine and terpyridine complexes bound to naphthalenediimide. Inorg. Chem.,2003,42(9): 2908.
    [12] Miyamoto Y, Kikuchi A., Iwahori F., Abe J. Synthesis and Photochemical Properties of a Photochromic Iron(II) Complex of Hexaarylbiimidazole.J. Phys. Chem. A, 2005,109(45): 10183.
    [13] Yachandra V. K., Sauer K., Klein M. P. Manganese Cluster in Photosynthesis: Where Plants Oxidize Water to Dioxygen. Chem. Rev., 1996, 96(7): 2927.
    [14] Renger G Mechanistic and structural aspects of photosynthetic water oxidation : Topics in photosynthesis. Physiol. Plant, 1997,100(4): 828.
    [15] Limburg J., Vrettos J. S., Chen H. Y, Paula J. C, Crabtree R. H., Brudvig G W. Manganese Cluster in Photosynthesis: Where Plants Oxidize Water to Dioxygen. J. Am. Chem. Soc, 2001,123(3): 423.
    [16] H.-Y. Chen, Tagore R., Olack G., Vrettos J. S. Inorg. Chem., 2007, 46(1): 34
    [17] McEvoy J. P., Brudvig G W. Water-Splitting Chemistry of Photosystem II. Chem. Rev., 2006,106(11): 4455.
    [18] Tagore R., H.-Y. Chen; Crabtree R. H., Brudvig G W. Determination of μ -Oxo Exchange Rates in Di- μ -Oxo Dimanganese Complexes by Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc, 2006, 128(29): 9457.
    
    [19] Sproviero E. M., Gascon J. A., McEvoy J. P., Brudvig G W, Batista V. S. QM/MM Models of the O_2-Evolving Complex of Photosystem II. J. Chem. Theory and Comput., 2006, 2(4): 1119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700