光谱法研究药物小分子与牛血清白蛋白的作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分为四个部分,主要对近年来小分子与血清白蛋白相互作用的研究现状进行了综述,同时尝试将化学计量学方法用于解析实验得到的光谱数据,讨论了方法的原理和实际应用,并探讨了化学计量学在复杂的生物化学体系中实现同时解析多组分平衡浓度和纯光谱的可行性。
     第一部分:本节首先对血清白蛋白的化学和生物学性质进行了简介,然后依次对小分子与蛋白质相互作用的研究方法、存在的问题等方面展开了评述。在分子水平上深入研究小分子化合物与蛋白质的键合与识别机理能够帮助人们理解蛋白质与小分子的作用原理,为寻找、筛选及研制开发药效高、抗癌或抗菌谱广及毒副作用小的新药提供丰富的理论依据。最后还展望了小分子与白蛋白作用研究的发展趋势,将开发新的探针、各种仪器方法的联用及化学计量学方法的引入作为本研究的重点。
     第二部分:本节在实验条件接近人体生理环境的pH 7.4的Tris-HCl缓冲液中,应用荧光光谱法并结合SiteⅠ标记药物华法林和SiteⅡ标记药物布洛芬来研究水杨酸与牛血清白蛋白(BSA)的作用,从相应的二维荧光图上只能推测出在结合BSA过程中,布洛芬和水杨酸可能存在着竞争作用,但难以推测华法林与水杨酸是否存在竞争结合.
     另外,从各个组分的三维荧光等高线图上可以看出混合物溶液中的各个组分的最佳激发波长之间变化很大,如BSA、水杨酸、华法林和布洛芬分别为278、295、306和218 nm,难以选择一个固定的最佳激发波长来扫描。因此,我们采集了三维荧光激发—发射数据矩阵(EEMs),解决了复杂体系最佳激发波长选择的问题,同时还可以得到足够多的信息量。最后,我们结合平行因子算法(PARAFAC)对三维数据荧光激发—发射数据矩阵进行解析。由PARAFAC分辨出的光谱曲线与真实谱线能很好地吻合,保证了其分辨出的相对浓度曲线的合理性和准确性。由解析得到的各个组分的相对浓度趋势图可以推测出:1)水杨酸在BSA的siteⅠ内存在一个高亲和结合区,但不同于华法林的高亲和结合区,可能与其低亲和结合区有一点重叠:2)水杨酸在BSA上可能存在两个低亲和结合区,分别位于布洛芬在BSA的siteⅠ内的低亲和结合区和siteⅡ内的高亲和结合区。
     第三部分:本节同时应用荧光光谱法和紫外可见光谱法来研究人体生理条件下牛血清白蛋白与氧氟沙星及恩诺沙星间结合作用的机制。实验中计算了Stern-Volmer猝灭常数K_(SV),相应的沙星-蛋白质的结合常数和结合位点数以及相应的热力学参数ΔH,ΔS和ΔG,依据F(?)rster非辐射能量转移理论,计算了授体-受体间的结合距离,并同时用吸收光谱和同步荧光研究了沙星对牛血清白蛋白构象的影响。结果表明,沙星与蛋白质之间的荧光猝灭机理符合生成沙星-BSA络合物的静态猝灭机制,沙星与BSA之间的作用力均主要是氢键和范德华力,它们不仅能与牛血清白蛋白结合,通过血液循环达到作用部位,而且对蛋白质分子的构象都有一定的影响。实验结果还表明,氧氟沙星和恩诺沙星在体内与蛋白结合直到运输到受体部位这一环节基本相同。
     第四部分:本文采用紫外-可见光谱法和荧光光潜法研究盐酸小檗碱(BC)与牛血清白蛋白(BSA)相互作用。实验表明温度为37℃时,在pH为7.4的Tris-HCl缓冲溶液中,BC与BSA在反应前后的光谱变化虽然明显,但反应各组分的光谱重叠比较严重,难以直观地进行深入研究。本文中我们对原有测量矩阵进行扩展,并结合交替最小二乘(ALS)对数据进行迭代计算,能较好地获得复杂体系的各项信息,同时解决了用交替最小二乘法解析单个矩阵时存在的旋转不确定性问题。本文方法能较好地分辨出各个组分的纯光谱图,与组分的实际光谱相吻合(保证了分辨的浓度趋势图的可靠性):另外还能解析得到各个组分的浓度变化趋势图,使我们可以很直观地监测到反应过程中各个组分的浓度变化,可用于定量地算出BC和BSA表观结合常数和结合比。
This thesis is divided into four parts. The research actuality of interaction between small moleculeswith serum albumin in recent years has been reviewed. The application of chemometrics in analysis ofspectral data also had been developed. And the application of chemometrics in complicated biochemicalsystem can solve some problems and obtain the equilibrium concentration and pure spectra of eachcomponent.
     PartⅠ
     In this section, the chemical and biological characters of serum albumin were introduced briefly first,then the research methods and existent problems of interaction between small molecules and proteinswere reviewed in turns. Serum albumin is the most abundant of all proteins in blood plasma of manyspecies, and study on it has become an important research field of life science. Along with more attentionhas been given on the research of the interaction between serum albumin and small molecules, themechanisms of the action of some drugs and origins of some diseases have generally been understood.Moreover, the investigation based on serum albumin interactions with small molecular compounds alsohas great significance to design new protein-targeted drugs and to screen these drugs in vitro. At last, thedevelopment trend was forecasted and exploiting new probes, using various techniques simultaneouslyand the use of chemometrics were chosen as the emphasis of this thesis.
     PartⅡ
     In part two, the interactions of salicylic acid (SL) and two different site markers (warfarin for siteⅠand ibuprofen for siteⅡ) with bovine serum albumin (BSA) in pH 7.4 Tris-HCl buffer have beeninvestigated with the use of spectrofluorimetry. An equilibrium solution of BSA and SL was titratedseparately with the two markers. This initial work showed that the binding of SL with BSA could be quitecomplex, and that there was probably a competitive interaction occurring between ibuprofen and SL.However, the spectral results were difficult to interpret clearly for the interaction of warfarin and SL insimilar circumstances.
     To extract more information from the resolution of fluorescence excitation-emission spectra, thecontour plots of the fluorescence spectra indicated that the optimal excitation wavelengths for BSA, SL,warfarin and ibuprofen were different, and were found to be at 278, 295, 306 and 218 nm, respectively.The spectral information was arranged into three-way EEM stack arrays, and was submitted for analysisby the PARAFAC algorithm. Firstly, it was demonstrated that the estimated excitation and emissionspectral responses for SL, BSA and the site markers, warfarin and ibuprofen, agreed well with themeasured spectra. Then, the interpretation of the plots of simultaneously extracted (by PARAFAC)equilibrium concentrations for the above four reactants, showed that:ⅰ) the SL primarily appears to bindin siteⅠbut at a different location from the high-affinity binding site (HAS) for warfarin, and theinteraction partially overlaps with the low-affinity binding site (LAS) for warfarin,ⅱ) the SL may havetwo LAS, -one in siteⅡwhere the HAS for ibuprofen is located, and the other in siteⅠat the LAS foribuprofen.
     PartⅢ
     In part three, the interaction between fluoroquinolones (FQ, here, ofloxacin and enrofloxacin) andBSA was investigated by fluorescence and UV-vis absorbance spectroscopy. The Stern-Volmerquenching constant Ksv, the binding constant K, the number of binding sites n and corresponding thermodynamic parameters AH, AS and AG were calculated. The distance r between donor (BSA) andacceptor (FQ) was obtained according to the theory of F(o|¨)rster's nonradiative energy transfer. The effectof FQ on the conformation of BSA has been analyzed by means of both UV-vis absorbance spectra andsynchronous fluorescence spectroscopy. It was proved that the fluorescence quenching of BSA by FQ ismainly a result of the formation of FQ-BSA complex and hydrogen bonds and van der Waals play majorrole in the reaction. All the results showed that the mechanism of the interaction between ofloxacin withthe BSA is similar to that of enrofloxacin.
     PartⅣ
     In part four, the interaction between berberine chloride (BC) and BSA was studied by fluorescenceand UV-vis absorbance spectroscopy in pH 7.4 Tris-HC1 buffer at 37℃. The spectra of the mixturesolutions varied in evidence through the process of the interaction, but the spectrum of each component inthe BC-BSA system showed significant overlapping between each other. Moreover, the analysis ofindividual data matrices by the MCR-ALS method might exist possible unresolved underlying factoranalysis ambiguities. Therefore, the whole set of spectroscopic data matrices was simultaneouslyanalyzed by the MCR-ALS method. This procedure allowed the recovery of the concentration profilesand pure spectra for each species and the calculation of the BSA:BC ration in the complex and theapparent equilibrium constant.
引文
[1] 杨频,高飞.生物无机化学原理,北京:科学出版社,2002,p22-23.
    [2] Ercelen S., Klymchenko A.S., Mely Y., Demchenko A. P. The binding of novel two-color fluorescence probe FA to serum albumins of different species. Int. J. Biol. Macromol., 2005, 35(2): 231-242.
    [3] Kragh-Hansen U. Molecular ascepts of ligand binding to serum albumin. Pharmacol. Rev., 1981, 33(1): 17-53.
    [4] 陶慰孙,李惟,姜涌明主编.蛋白质分子基础.北京:高等教育出版社,1995.85.
    [5] 王延华,邹晓莉主编.蛋白质理论与技术.北京:科学出版社,2005.21-35.
    [6] He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(2): 209-215
    [7] T. Peters(Ed.). All About Albumin. San Diegio: Academic Press, 1996.
    [8] 魏永巨.蛋白质分子吸收与散射光谱探针的研究:[博士论文].北京:北京大学,1999.
    [9] 林钧材主编.血液生物化学.北京:人民卫生出版社,1988.32.
    [10] 张保林,王文清,白风莲.蕙醒及黄酮类化合物与人血清白蛋白的结合反应研究田.,高等学校化学学报,1994,15(3):373-378.
    [11] 陈国珍,黄贤智,郑朱梓,许金钩.王尊本主编.荧光分析法:第二版.北京:科学出版社,1990.502-506.
    [12] 易平贵,刘俊峰,商志才,俞庆森.荧光光谱法研究亚甲基蓝与蛋白质的结合反应.光谱学与光谱分析,2001,21(6):826-828.
    [13] Jiang C. Q., Gao M. X., Meng X. Z. Study of the interaction between daunorubicin and human serum albumin and the determination of daunorubicin in blood serum samples. Spectrochim. Acta A, 2003, 59(5): 1605-1610.
    [14] Alain M., Michel B., Michel A. How to illustrate ligand-protein binding in a class experiment: An elementary fluorescent assay. J. Chem. Educ., 1986, 63(4): 365-371.
    [15] Scatchard G., Ann N. Y. The attractions of proteins for small molecules and ions. Acad. Sci., 1949, 51(4): 660-672.
    [16] 易平贵,商志才,俞庆森,邵爽,林瑞森.丝裂霉素C与牛血清白蛋白结合作用的研究.化学学报,2000,58(12):1649-1663.
    [17] Bi S. Y., Song D. Q., Tian Y., Zhou X., Liu Z. Y., Zhang H. Q. Molecular spectroscopic study on the interaction of tetracyclines with serum albumin. Spectrochim. Acta A, 2005, 61(5): 629-636.
    [18] Wu P., Brand L. Resonance energy transfer: methods and applications. Anal. Biochem., 1994, 218(1): 1-13.
    [19] Kasai S., Horie T., Mizuma T., Awazu S. Fluorescence energy transfer study of the relationship between the lone tryptophan residue and drug binding sites in human serum albumin. J. Pharm. Sci., 1987, 76(5): 387-392.
    [20] 马贵斌,杨频.能量转移技术及其在溶液分子的微区结构分析中的应用.化学通报,1993,(3):29-32.
    [21] 张晓威,赵风林,李克安.环丙沙星与牛血清白蛋白相互作用的研究.高等学校化学学报,1999,20(7):1063-1067.
    [22] 徐岩,沈含熙,黄汉国.稀土.萘啶酸螯合物的发光特性及萘啶酸与牛血清白蛋白的结合作用.分析化学,1997,25(4):423-426.
    [23] 金瑞祥,张贵珠,冯喜增,何锡文,史慧明.氟喹诺酮类药物与牛血清白蛋白作用的研究.分析科学学服,1997,13(2):108-112.
    [24] Valeur B., Brochon J. C. New Trends in Fluorescence Spectroscopy. Berlin: Springer Press. 2001. 25.
    [25] 黄波,邹国林,杨天鸣.阿霉素与牛血清白蛋白作用的研究.化学学报,2002,60:1867-1871.
    [26] 张晓威,赵凤林,李克安.药物与血浆蛋白相互作用的体外研究.化学通报,2001,7:18-230.
    [27] Jiang M., Xie M. X., Zheng D., Liu Y., Li X. Y., Chen X. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J Mol. Stru., 2004, 692(1): 71-80.
    [28] 徐岩,沈含熙,黄汉国.利用标记药物布洛芬及保泰松研究萘啶酸与血清白蛋白的结合作用.高等学校化学学报,1996,17(12):1855-1858.
    [29] Yamasaki K., Maruyama T., Kragh Hansen U., Otagiri M. Characterization of siteI on human serum albumin: concept about the structure of a drug binding site. Biochim. Biophys. Acta, 1996, 1295(2): 147-157.
    [30] Yamasaki K., Maruyama T., Yoshimoto K., Tsutsumi Y., Narazaki R., Fukuhara A., Kragh Hansen U., Masaki Otagiri. Interactive binding to the two principal ligand binding sites of human serum albumin: effect of the neutral-tobase transition. Biochim. Biophys. Acta, 1999, 1432(2): 313-323.
    [31] Trynda-Lemiesz L. Paclitaxel-HSA interaction. Binding sites on HSA molecule. Bioorg. Med Chem., 2004, 12(3): 3269-3275.
    [32] Wilting J., van der Giesen W. F., Janssen L. H. M., Weideman M. M., Otagiri M., Perrin J. H. Effect of albumin conformation on the binding of warfarin to human serum albumin on the hydrogen, calcium and chloride ion concentrations asstudied by circular dichroism, fluorescence and equilibrium dialysis. J Biol. Chem., 1980, 255(3): 3032-3037.
    [33] Baroni S., Mattu M., Vannini A., Cipollone R., Aime S., Ascenzi P., Fasano M.. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. Eur. J. Biochem., 2001, 268(3): 6214-6220.
    [34] Moreno F., Cortijo M., Gonalcz-Jimenez J. The fluorescent probe Prodan characterizes the Warfarin binding site on hum an serum albumin. Photoch era. Photobiol., 1999, 69(1): 8-15.
    [35] Maes V., Engelborghs Y., Hoebeke J., Maras Y., Vereruyysse A. Fluorimetric analysis of the binding of warfarin to human serum albumin. Mol. Pharmacol., 1981, 21(1): 100-107.
    [36] Dufour C., Dangles O. Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim. Biophys. Acta, 2005, 1721: 164-173.
    [37] Moreno F., Gonzalez-Jimenez J. Bindingofthe Promen fluorescent probe to human serum albumin. A fluorescence spectroscopic study. Chem. Biol. Interact., 1999, 121(2): 237-252.
    [38] Kosa T., Maruyama T., Otagiri M. Species differences of serum albumin: Ⅰ. Drug binding sites. Pharm. Res., 1997, 14(3): 1607-1612.
    [39] Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site Ⅰ on human albumin: concept about the structure of a drug binding site. Biochim. Biophys. Acta, 1996, 1295(1): 147-157.
    [40] Plsavento M., Profumo A. Interaction of albumin with a sulphonatedazo dye in acidic solution. Talanta, 1991, 38(3): 1099-1103.
    [41] Kakin K. A. In Proteins in Human Nutrition (Porter J W G, Rolls B A, eds): 179-193.
    [42] Tal M., Silberstein A., Nusser E. Why does Coomassie brilliant blue interact differently with different proteins. J. Biol. Chem., 1980, 260(3): 9976-99801
    [43] Herskovits T. T., Laskowski M. Location of chromophoric residues in proteins by solvent perturbation. Ⅰ. Tyrosyls in serum albumins. J. Biol. Chem., 1962, 237(4): 2481-2492.
    [44] Polet H., Steinhardt J. Binding-induced alterations in ultraviolet absorption of native serum albumin. Biochem., 1968, 7: 1348-1356.
    [45] Ross D. P., Sabramanian S. Thermodynamics of protein association reaction: Forces contributing to stability. Biochem., 1981, 20(2): 3096-3099.
    [46] Honoer B., Pedersen A. O. Conformational changes in human serum albumin studied by fluorescence and absorption spectrosocopy. Biochem. J., 1989, 258(2): 199-204.
    [47] 梁宏,宋仲容,周永洽等.血清白蛋白的构象研究:pH诱导HSA构象变化的光谱研究.光谱学与光谱分析,1994,14(6):39-42.
    [48] Miller J. N. Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc., 1979, 16(2): 203-208.
    [49] 鄢远,许金钩,陈国珍.三维荧光光谱法研究蛋白质溶液构象.中国科学(B辑),1997(1):381-419.
    [50] 郭尧君.荧光实验技术及其在分子生物学中的应用.北京:科学出版社,1979.
    [51] 潘祖亭,余军平.盐酸多西环素与牛血清白蛋白的相互作用研究.武汉在学学报,2003,49(4):415-418.
    [52] 刘保生,刘智超,高静.红霉素与牛血清白蛋白的相互作用机制.河北大学学报,2005,25(4):380-382.
    [53] 闫海刚.银纳米粒子与血清白蛋白相互作用的滞后效应.漳州师范学院学报,2004,17(3):49-53.
    [54] Liang H., Jin H., Chu Q., Chen D. The subsequent effect of interaction between Co2+ and human serum albumin or bovine serum albumin. J Inorg. Biochem., 2001, 85(1): 167-171.
    [55] 何梅,夏之宁,阴永光,刘峥.紫外光谱研究中药大黄有效成分与牛血清白蛋白的相互作用.中国现代应用药学杂志,2004,21(6):429-432.
    [56] (日)小泽昭弥著,吴继勋等译.现代电化学.北京:化工出版社,1995.
    [57] J.O’M博克里斯,D.M.德拉齐克著,夏熙译.电化学科学.北京:人民教育出版社,1972.
    [58] Hill H. A. O. Bio-electrochemistry. Pure Appl. Chem., 1987, 59(3): 743-749.
    [59] Fraser A. Armstrong, George S. Wilson. Recent developments in faradaic bioelectrochemistry. Electrochim. Acta, 2000, 45(3): 2623-2645.
    [60] Tribara T. Y., Koval L. A silver electrode in the potentiometric titration ofthiols. Talanta, 1970, 17(3): 1003-1006.
    [61] 宋功武,方光荣,李瑛,万里元.曙红Y与牛血清蛋白作用的荧光光谱.分析化学,2000,28(5):659-659.
    [62] Mairanovskii S. G. The theory of catalytic hydrogen waves in organic polarography. J. Electroanal. Chem., 1963, 6(1): 77-118.
    [63] 郑石英,周春,罗登柏.刚果红与血清白蛋白相互作用的极谱分析.分析测试学报,2003,22(4):64-66.
    [64] 孙伟,焦奎,刘晓云.电化学法研究蛋白质和茜素红S的相互作用.分析化学,2002,30(3):312-314.
    [65] 徐凤彩主编.基础生物化学.广州:华南理工大学出版社,2002.8.
    [66] 吴梧桐主编.生物化学.第四版.北京:人民卫生出版社.
    [67] 高小霞著.极谱催化波.第五卷,第五册.北京:科学出版社,1991.
    [68] Senda M., Ikeda T., Kinoshita H. Some specific cellular effects of electrically injected silver and gold ions. Bioelectrochem. Bioenerg., 1976, 253(1): 3-10.
    [69] 胡绪廿.人和牛血清白蛋白的极谱测定.生物化学杂志,1994,10(3):553-558.
    [70] 过玮,刘利民,林洪,宋俊峰.氢的极谱催化波研究—氧化剂存在下牛血清白蛋白的平行催化氢波.中国科学(B辑),2001,31(6):519-524.
    [71] 刘永辉著.电化学测试技术.北京:北京航空学院出版社,1987.
    [72] Reed D. E., Hawkridge F. M. Direct electron transfer reactions of cytochrome c at silver electrodes. Anal. Chem., 1987, 59(3): 2334-2339.
    [73] 何亚楠,李根喜,史海蓉,陈洪渊,朱德煦.测定血红蛋白的一种电化学分析方法.分析化学,1997,25(1):49-51.
    [74] Britto P. J., Santhanam K. S. V., Ajayan P. M. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg., 1996, 41(1): 121~125.
    [75] Davis J. J., Coles R. J., Hill H. A. O. The immobilization of proteins in carbon nanotubed. J. Electroanal. Chem., 1997, 440(2): 279-282.
    [76] 林丽,周宇艳,鲜跃仲,施国跃,金利通.微渗析—多壁碳纳米管修饰电极液相色谱电化学检测应用于药物与蛋白结合的研究.分析化学,2004,20(2):121-124.
    [77] Wu Y. H., Ji X. B., Hu S. S. Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin. Bioelectrochem., 2004, 64(1): 91-97.
    [78] Greenfield N. J. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal. Biochem., 1996, 235(1): 1-10.
    [79] Manavalan P., Johnson W. C. J. Circular. Dichroism is Sensitive to Classes of Protein Tertiary Structure. Nature, 1983, 305(3): 831-832.
    [80] Price N. C. Conformational issues in the characterization of proteins. Biotechnol. Appl. Biochem., 2000, 31(1): 29-40.
    [81] Dockal M., Carter D. C., Ruker F. Conformational Transitions of the Three Recombinant Domains of Human Serum Albumin Depending on pH. J. Biol. Chem., 2000, 275(5): 3042-3250.
    [82] Shen X. C., Liang H., Guo J. H. Studies on the interaction between Ag~+ and human serum albumin. J. Inorg. Biochem., 2003, 95(2): 124-130.
    [83] Trynda-Lemiesze L., Karaczyn A., Keppler B. K., Kozlowski H. Studies on the interactions between human serum albumin and trans-indazolium (bisindazole) tetrachlororuthenate(Ⅲ). J. Inorg. Biochem., 2000, 78(4): 341-346.
    [84] 王建林,付连春,周实武,陈志坚,吕文波,叶学敏,孟广政,宋增福.维生素B6与人血清白蛋白的相互作用.光谱学与光谱分析,2005,25(6):912-915.
    [85] Kim H. S., Kye Y. S., Hage D. S. Development and evaluation of N-hydroxysuccinimide-activated silica for immobilizing human serum albumin in liquid chromatography columns. J. Chromatogr. A, 2004, 1049(1): 51-61.
    [86] Hage D. S., Noctor T. A. G., Wainer I. W. Characterization of the protein binding ofchiral drugs by high-performance affinity chromatography interactions of R- and S-ibuprofen with human serum albumin. J. Chromatogr. A, 1995, 693(1): 23-32.
    [87] Hage D. S. Characterisation of the binding of digitoxin and acetyldigitoxin to human serum albumin by high-performance affinity chromatography. J. Chromatogr. B, 1999, 724(1): 91-100.
    [88] Zvetanka Z., Russeva V. New mathematical approach for the evaluation of drug binding to human serum albumin by high-performance liquid affinity chromatography. J. Chromatogr. B, 1998, 707(1): 143-149.
    [89] 李蓉,陈国亮,赵文明.固定金属离子亲和色谱-蛋白质分离的方法、原理、特征和应用.化学通报,2005,(5):352-360.
    [90] 李蓉,陈国亮,赵文明.蛋白质在固定Zn~(2+)金属螯合亲和色谱中的变性热力学.分析化学,2006,34(1):57-61.
    [91] 王阳梦,何聪芬,董银卯.蛋白质组学研究中的新技术.生物技术通报,2005,(5):46-50.
    [92] Purcell V., Neault J. F., Malonga H. Interactions ofatrazine and 2, 4-D with human serum albumin studied by gel and capillary electrophoresis, and FTIR spectroscopy. Biochim. Biophys. Acta, 2001, 1548(2): 129-138.
    [93] Ding Y. S., Lin B. C., Huie C. W. Binding studies of porphyrins to human serum albumin using affinity capillary electrophoresis. Electrophoresis, 2001, 22(11): 2210-2216.
    [94] EI-Shafey A., Zhong H. J., Jones G. Application of affinity capillary electrophoresis for the determination of binding and thermodynamic constants of enediynes with bovine serum albumin. Electrophoresis, 2002, 23: 945-95.
    [95] Galbusera C., Chen J., David D. Y. Molecular interaction in capillary electrophoresis. Curr. Opin. Biotechnol., 2003, 14(1): 126-130.
    [96] Neault J.F., Tajmir-Riahi H.A. Protein Structure and Molecular Enzymology. Biochim. Biophys. Acta, 1998, 1384(1): 153-159.
    [97] 童义平,李伟,林燕文.傅里叶红外光谱研究血清白蛋白构象.光谱学与光谱分析,1999,19(5):704-706.
    [98] 胡绪英,宋仲容,苏宪东,欧阳砥,黄杰生,周永洽.金属-血清白蛋白的平衡透析—Ⅱ.Ni(Ⅱ)-血清白蛋白体系的别构效应.中国科学(B辑),1997,27(1):76-79.
    [99] Masuoka J., Saltman P. Zinc(Ⅱ) and copper(Ⅱ) binding to serum albumin. A comparative study of dog, bovine, and human albumin. J. Biol. Chem., 1994, 269(41): 25557-25561.
    [100] 杨国龙,赵谋明,杨晓泉,彭志英.超滤法生产大豆浓缩蛋白.食品与发酵工业,2004,30(8):120-124.
    [101] Zhao G.C. Modification of a nation ion exchange membrane by a plasma polymerization process. J Electroanal. Chem., 1997, 431(2): 178-182.
    [102] 崔岩,凌伦奖,陈润生.计算生物大分子溶液可及表面积的快速算法.生物物理学报,1996,12(3):482-486.
    [103] 胡远东,白坚石,焦克芳,卜凤荣,李松.PEG修饰牛血清白蛋白的计算机模拟研究.生物物理学报,2000,16(2):316-321.
    [104] 李晓晶,张善荣,张树功,裴奉奎.稀土离子(Ⅲ)与牛血清白蛋白结合作用的研究.高等学校化学学报,1999,20(1):127-131.
    [105] Masami T., Yutaka A. Binding position of tolbutamide to human serum albumin. Chem. Pharm. Bull., 1998, 46(5): 817-821.
    [106] Zhang W.B., Zhang L.H., Ping G.C., Zhang Y.K., Kettrup A. Study on the multiple sites binding of human serum albumin and porphyrin by affinity capillary electrophoresis. J. Chromatogr. B, 2002, 768: 211-214.
    [107] Sur S.S., Rabbani L.D., Libman L., Breslow E. Fluorescence studies of native and modified neurophysms. Effects of peptides and pH. Biochemistry, 1979, 18(6): 1026-1035.
    [108] 徐岩,黄汉国,沈含熙.喹诺酮类药物对人血清白蛋白的荧光碎灭研究.分析化学,1998,(12):1494-1497.
    [109] Berry B., Rodney W.K., Miriam R.W., Greenberg S.N. Correction for light absorption in flurecence studies of protein-ligand interactions. Anal. Biochem., 1983, 132(2): 353-361.
    [1] 杨频,高飞.生物无机化学原理,北京:科学出版社,2002,p22-23.
    [2] Ercelen S., Klymchenko A. S., Mely Y., Demchenko A. P. The binding of novel two-color fluorescence probe FA to serum albumins of different species. Int. J Biol. Macromol., 2005, 35(2): 231-242.
    [3] Kragh-Hansen U. Molecular ascepts ofligand binding to serum albumin. Pharmacol. Rev., 1981, 33(1): 17-53.
    [4] Vane J. R., Botting R. M., Mechanism of action ofnonsteroidal anti-inflammatory drugs. Amer. J. Med. 1998, 104(3A): 2s-8s.
    [5] 徐岩,沈含熙,黄汉国.利用标记药物布洛芬及保泰松研究萘啶酸与血清白蛋白的结合作用.高等学校化学学报,1996,17(12):1855-1858.
    [6] Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim. Biophys. Acta, 1996, 1295(1): 147-157.
    [7] Yamasaki K., Maruyama T., Yoshimoto K., Tsutsumi Y., Narazaki R., Fukuhara A., Kragh Hansen U., Otagiri M. Interactive binding to the two principal ligand binding sites of human serum albumin: effect of the neutral-tobase transition. Biochim. Biophys. Acta, 1999, 1432(2): 313-323.
    [8] Trynda-Lemiesz L. Paclitaxel-HSA interaction. Binding sites on HSA molecule. Bioorg. Medic. Chem., 2004, 12(2): 3269-3275.
    [9] Wilting J., van der Giesen W. F., Janssen L. H. M., Weideman M. M., Otagiri M., Perrin J. H. Effect of albumin conformation on the binding of Warfarin to human serum albumin on the hydrogen, calcium and chloride ion concentrations as studied by circular dichroism, fluorescence and equilibrium dialysis. J. Biol. Chem., 1980, 255(3): 3032-3037.
    [10] 俞英,欧俊宏.表面活性剂对茜素红与牛血清白蛋白相互作用的影响研究.海南大学学报,2004,22(2):123-129.
    [11] 胡绪英,宋仲容,苏宪东,欧阳砥,黄杰生,周永洽.金属-血清白蛋白的平衡透析—Ⅱ.Ni(Ⅱ)-血清白蛋白体系的别构效应.中国科学(B辑),1997,27(1):75-79.
    [12] 宋玉民,吴锦绣,郑秀荣,吴琼.稀土金属离子与人血清白蛋白的相互作用.无机化学学报,2006,22(9):1615-1622.
    [13] 王建林,付连春,周实武,陈志坚,吕文波,叶学敏,孟广政,宋增福.维生素B6与人血清白蛋白的相互作用.光谱学与光谱分析,2005,25(6):912-915.
    [14] 杨美玲,杨培菊,宋玉民.芦丁金属配合物的合成、表征及血清白蛋白的相互作用.无机化学学报,2005,21(4):483-489.
    [15] 彭贞,程乐华,陆光汉.蛋白质与罗丹明B相互作用的极谱分析.分析科学学报,2006,22(3):318-320.
    [16] 孙伟,周宇峰,韩军英,焦奎.用胭脂红酸极谱分析法测定人血清白蛋白的研究.化学工程师,2005,(6):22-24.
    [17] Moreno F., Cortijo M., Gonalcz-Jimenez J. The fluorescent probe Prodan characterizes the Warfarin binding site on human serum albumin. Photochem. Photobiol., 1999, 69(1): 8-15.
    [18] Maes V., Engelborghs Y., Hoebeke J., Maras Y., Vereruyysse A. Fluorimetric analysis of the binding of Warfarin to human serum albumin. Mol. Pharmacol., 1981, 21(1): 100-107.
    [19] Dufour C., Dangles O. Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim. Biophys. Acta, 2005, 1721(1): 164-173
    [20] Moreno F., Gonzalez-Jimenez J. Bindingof the Promen fluorescent probe to human serum albumin. A fluorescence spectroscopic study. Chem. Biol. Interact., 1999, 121(2): 237-252.
    [21] Wu P., Brand L. Resonance energy transfer: methods and application. Anal. Biochem., 1994, 218(1):1-13.
    [22] Kasai S., Horie T., Mizuma T., Awazu S. Fluorescence energy transfer study of the lone tryptophan residue and drug binding sites in human serum albumin. J. Pharm. Sci., 1987, 76(5): 387-392.
    [23] 马贵斌,杨频.能量转移技术及其在溶液分子的微区结构分析中的应用.化学通报,1993,(3):29-32.
    [24] 徐岩,黄汉国,沈含熙.喹诺酮类药物对人血清白蛋白的荧光猝灭研究.分析化学,1998,(12):1494-1497.
    [25] Birdsall B., King R.W., Wheeler M.R., Lewis C.A., Goode Jr.S.R., Bruce Dunlap R., Roberts C.K. Correction for light absorption in fluorescence studies of protein-ligand interactions. Anal. Biochem., 1983, 132(2): 353-361.
    [26] Lackowicz J.R. Principles of Fluorescence Spectroscopy. New York: Plenum Press, 1983.
    [27] 张保林,王文清,白凤莲.蒽醌及黄酮类化合物与人血清白蛋白的结合反应研究.高等学校化学学报,1994,15(3):373-378.
    [28] 张晓威,赵凤林,李克安.环丙沙星与牛血清白蛋白相互作用的研究.高等学校化学学报,1999,20(7):1063-1067.
    [29] Sanchez E., Kowalski B.R. Generalized rank annihilation factor analysis. Anal. Chem., 1986, 58(2): 496-499.
    [30] Sanchez E., Kowalski B.R. Tensorial calibration: Ⅱ. Second-order calibration. J. Chemom., 1988, 2(2): 265-280.
    [31] Bro R. PARAFAC. Tutorial and applications, Chemom. Intell. Lab. Syst., 1997, 38(1): 149-171.
    [32] Chen Z.P., Wu H.L., Jiang J.H., Li Y., Yu R.Q. A novel trilinear decomposition algorithm for second-order linear calibration. Chemom. Intell. Lab. Syst., 2000, 52(1): 75-86.
    [33] Antunes M.C., Sim(?)o J.E.J., Duarte A.C., Tauler R. Multivariate curve resolution of overlapping voltammetric peaks: quantitative analysis of binary and quaternary metal mixtures. Analyst, 2002, 127(3): 809-817.
    [34] Bro R. Multiway calibration. Multilinear PLS. J. Chemom., 1996, 10(1): 47-61.
    [35] Olivieri A.C., Arancibia J.A., de la Pena A.M., Duran-Meras I., Mansilla A.E. Second-order advantage achieved with four-way fluorescence excitation-emission- kinetic data processes by parallel factor analysis and trilinear least-squares. Determination of methotrexate and.leucovorin in human urine, Anal. Chem., 2004, 76(3): 5657-5666.
    [36] Booksh K.S., Kowalski B.R. Theory of analytical chemistry. Anal.Chem., 1994, 66(4): 782A-791A.
    [37] Esteves da Silva J.C.G., Leitao J.M.M., Costa F.S., Ribeiro J.L.A. Detection of verapamil drug by fluorescence and trilinear decomposition techniques. Anal.Chim. Acta, 2002, 453(1): 105-115.
    [38] Rodriguez-Cuesta M.J., Boque R., Rius F.X., Zamora D.P, Galera M.M., Frenich A.G. Determination of carbendazim, fuberidazole and thiabendazole by three dimensional excitation-emission matrix fluorescence and parallel factor analysis. Anal Chim. Acta, 2003, 491(1): 47-56.
    [39] Ji R.D., Cooper G.A., Booksh K.S. Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons. Anal.Chim. Acta, 1999, 397(1): 61-72.
    [40] Guimet F., Ferre J., Boque R, Rius F.X. Application of unfold principal component analysis of olive oils by means of excitation-emission matrix fluorescence spectroscopy. Anal. Chim. Acta, 2004, 515(1): 75-85.
    [41] Trevisan M.G., Poppi R.J. Determination of doxorubicin in human plasma by excitation-emission matrix fluorescence and multi-way analysis. Anal.Chim. Acta, 2003, 493(1): 69-81.
    [42] Xie H.P., Chu X., Jiang J.H., Cui H., Shen G.L., Yu R.Q. Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data. Spectrochim. Acta A, 2003, 59(3): 743-749
    [43] Xie H.P., Jiang J.H., Chu X., Cui H., Shen G.L., Yu R.Q. Competitive interaction of the antitumor drug daunorubicin and the fluorescence probe ethidium bromide with DNA as studied by resolving trilinear fluorescence data: the use of PARAFAC and its modification. Anal.Bioanal. Chem., 2002, 373(1): 159-162.
    [44] Harshrnan R. A. Foundations of the PARAFAC procedure: Model and conditions for an 'explanatory' multi-mode factor analysis. UCLA Working Papers in phonetics, 1970, 16: 1.
    [45] Carroll J. D., Chang J. Analysis of individual differences in multidimensional scaling via an N-way generalization of and Eckart-Young decomposition. Psychometrika, 1970, 35(2): 283-287.
    [46] Bro R. PARAFAC. Tutorial and applications. Chemom. Intel. Lab. Sys., 1997, 38(1): 149-171.
    [47] Kiers H. A. L. Hierarchical relations among three-way methods. Psychometrika, 1991, 56(3): 449-454.
    [48] 倪永年.化学计量学在分析化学中的应用.北京:科学出版社,2004:181.
    [49] Harshman R. A., Lundy M. E. PARAFAC: Parallel factor analysis. Comput. Stat. Dat. Anal., 1994, 18(1): 39-43.
    [50] Peter T. All About Albumin. Biochemistry, Genetics and Medical Applications. Academic Press, San Diego, CA, 1996, pp9-75.
    [51] Xiao H. R., Sheng L. Q., Shi C. H., Xu X. L., Xie Y. S., Liu Q. L. Fluorescence study on the interaction of salicylic acid and bovine serum albumin. Spectr. Spectr. Anal., 2004, 24(1): 78-81.
    [52] Dewey T. G. (Ed.), Biophysical and Biochemical Aspects of Fluorescence Spectroscopy. New York: Plenum Press, 1991, pp. 1-41.
    [53] 易平贵,刘俊峰,商志才,俞庆森.荧光光谱法研究亚甲基蓝与蛋白质的结合反应.光谱学与光谱分析,2001,21(6):826-828.
    [54] Lakowicz J. R. Principles of Fluorescence Spectroscopy. Second ed. New York: Plenum Press, 1999, pp. 237-265.
    [55] Sudlow G., Birkett D. J., Wade D. N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol., 1976, 12(3): 1052-1061.
    [56] Kosa T., Maruyama T., Otagiri M. Species differences of serum albumin: Ⅰ. Drug binding sites. Pharm. Res., 1997, 14(5): 1607-1612.
    [57] He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(2): 209-215.
    [58] Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site Ⅰ on human albumin: concept about the structure of a drug binding site. Biochim. Biophys. Acta, 1996, 1295(1): 147-157.
    [59] Itoh T., Saura Y., Tsuda Y., Yamada H. Stereoselectivity and enantiomer-enantiomer interactions in the binding of Ibuprofen to human serum albumin. Chirality, 1997, 9(3): 643-649.
    [60] Peters T. (Ed.). All About Albumin. San Diegio: Academic Press, 1996.
    [61] Sjoholm I., Ekman. B., Kober. A., Ljungstedt-Pahlman. L., Seiving. B., Sjodin. T. Binding of Drugs to Human Serum Albumin: Ⅺ. The Specificity of Three Binding Sites as Studied with Albumin Immobilized in Microparticals. Mol. Pharmacol., 1979, 16(3): 767-777.
    [62] Fehske. K. J., Schlafer. U., Wollert. U., Muller. W. E. Characterization of an important drug binding area on human serum albumin including the high-affinity binding sites of Warfarin and azapropazone. Mol. Pharmacol., 1982, 21(2): 387-393.
    [63] He. X. M., Carter. D. C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(2): 209-215.
    [64] Olthof M. R., Hollman P. C., Vree T. B., Katan M.B. Bioavailabilities of quercetin-3- glucoside and quercetin-4'-glucoside do not differ in humans. J. Nutr., 2000, 130(5): 1200-1203.
    [1] 李端主编.药理学.第四版.北京:人民卫生出版社,1999.
    [2] 刘学剑.抗菌药物饲料添加剂的应用.饲料工业,1997,18(3):30-33.
    [3] 沈建忠.药物饲料添加剂的应用及其展望.中国饲料,1994,(12):18-21.
    [4] Wang R.L., Yuan Z.P. HandbookofChemical Products Drug. 3rd Ed. Beijing: Chemical Industry Press, 1999: 161-162.
    [5] Zhang W,S., Li A.L. Medicinal Chemistry. Beijing: Higher Education Press, 1999: 545-563.
    [6] Willmot C.W.J, Critchlow S.E., Eperon I.C. The complex ofDNA gyrase and quinolone drugs with DNA forms a barrier to. transcription by RNA polymerase. J. Mol. Biol., 1994, 242(2):351-363.
    [7] Permana P.A. Quinobenoxazines: a class of novel antitumor quinolones and potent mammalian DNA topoisomerase Ⅱ catalytic inhibitors. Biochem., 1994, 33(37): 11333-11339.
    [8] Shen L.L., Pernat A.G. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acidthe target of the drugs is DNA. Proc. Natl. Acad. Sci. U.S.A., 1985, 82(2): 307-311.
    [9] Shen L.L., Mitscher L.A., Sharma P.N. Cooperative Drug-DNA Binding Model. Biochemistry, 1989, 28(30): 3886-3894.
    [10] Paluq V.S., Ciarrocchi G. Quinolone binding to DNA is mediated by magnesium ions (norfloxacin/plasmid DNA/ternary complex). Proc. Natl. Acad. Sci. U.S.A., 1992, 89(30): 9671-9675.
    [11] Ulrich K.H. Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev., 1981, 33(1): 17-53.
    [12] 易贵平,刘俊峰,商志才,俞庆生.荧光光谱法研究亚甲基蓝与蛋白质的结合反应.光谱学与光谱分析,2001,21(6):926-928.
    [13] Peter T. All About Albumin. Biochemistry, Genetics and Medical Applications, Academic Press, San Diego, CA, 1996, pp9-75.
    [14] Moreno F., Gonzalez-Jimenez J. Binding of Promen fluorescent probe to human serum albumin. A fluorescence spectroscopic study. Chem. Biol. Interactions, 1999, 121(2): 237-252.
    [15] 严琳,严拯宇,邵秀芬,姜新民,胡育筑.左氧氟沙星与牛血清白蛋白相互作用的研究.中国药科大学学报,2004,35(5):456-459.
    [16] Dewey T.G. (Ed.). Biophysical and Biochemical Aspects of Fluorescence Spectroscopy. New York: Plenum Press, 1991, pp. 1-41.
    [17] 严拯宇,邵秀芬,姜新民,胡育筑.巴洛沙星与牛血清白蛋白相互作用的研究.光谱学与光谱分析,2006,26(8):1494-1498.
    [18] Lakowicz J.R. Principles of Fluorescence Spectroscopy. Second ed. New York: Plenum Press, 1999, pp. 237-265.
    [19] Jiang C.Q., Gao M.X., Meng X.Z. Study ofthe interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples. Spectrochim. Acta A, 2003, 59(7): 1605-1610.
    [20] Alaln M., Michel B., Michel D. How to illustrate ligand-protein binding in a class experiment: An elementary fluorescent assay. J. Chem. Educ., 1986, 63(4): 365-371.
    [21] Scatchard G., Ann N.Y. The attraction of proteins for small molecules and ions. Acad. Sci., 1949, 51: 660-672.
    [22] 赵长春,郑维发,李梦秋.小檗碱与人血清白蛋白的相互作用.光谱学与光谱分析,2004,24(1):111-113.
    [23] Bi S.Y., Song D.Q., Tian Y., Zhou X., Liu Z.Y., Zhang H.Q. Molecular spectroscopic study on the interaction of tetracyclines with serum albumin. Spectrochim. Acta A, 2005, 61(3): 629-636.
    [24] Ross D.P., Sabramanian S. Thermodynamics of protein association reaction: Forces contributing to stability. Biochemistry, 1981, 20(9): 3096-3099.
    [25] Valeur B., Brochon J.C. New Trends in Fluorescence Spectroscopy. Berlin: Springer Press. 2001, p. 25.
    [26] 黄波,邹国林,杨天鸣.阿霉素与牛血清白蛋白结合作用的研究.化学学报,2002,60(10):1867-1871.
    [27] 张立伟,杨频,王芳.二价铜、锌离子对盐酸巴马亭与牛血清白蛋白结合反应光谱的影响研究.无机化学学报,1999,15(4):545-548.
    [1] 易平贵,俞庆森,商志才,宗汉兴.氧氟沙星与牛血清白蛋白相互作用机制.药学学报,2000,35(10):774-777.
    [2] 徐岩,黄汉国,沈含熙.喹诺酮类药物对人血清白蛋白的荧光猝灭研究.分析化学,1998,26(5):1494-1498.
    [3] 贺吉香,江崇球,王洪鉴,王敬政.酮咯酸、菲普拉宗与牛血清蛋白相互作用的研究.高等学校化学学报,1999,20(10):1548-1550.
    [4] 张立伟,杨频,王芳.二价铜、锌离子对盐酸巴马亭与牛血清白蛋白结合反应光谱的影响研究.无机化学学报,1999,15(4):545-548.
    [5] 赵长春,于俊生.介质环境对小檗碱荧光光谱影响的研究.动物分析杂志,2000,20:109-110.
    [6] 徐宏,邓洪,胡红雨,刘建忠,巢晖,刘杰,计亮年.多吡啶钌(Ⅱ)配合物的合成及其与RNA相互作用的光谱学研究.高等学校化学学报,2003,24(1):25-27.
    [7] 赵广超,朱俊杰,陈洪渊.电化学诱导咪唑铜配合物断裂DNA的研究.高等学校化学学报,2003,24(3):414-418.
    [8] Jiang C. Q., Gao M. X., Meng X. Z. Study of the Interaction Between Daunorubicin and Human Serum Albumin and the Determination of Daunorubicin in Blood Serum Samples. Spectrochim. Acta A, 2003, 59(5): 1605-1610.
    [9] Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site Ⅰ on human serum albumin: concept about the structure of a drug binding site. Biochim. Biophys. Acta, 1996, 1295(1): 147-157.
    [10] 张晓威,赵凤林,李克安.环丙沙星与牛血清白蛋白相互作用的研究.高等学校化学学报,1999,20(7):1063-1067.
    [11] 王树玲,于俊生.表面增强拉曼光谱研究小檗碱与DNA的相互作用.高等学校化学学报,2002,23(5):1676-1679.
    [12] Il'ichev Y. V., Perry J. L., Ruker F., Dockal M., Simon J. D. Interaction ofochratoxin A with human serum albumin. Binding sites localized by competitive interactions with the native protein and its recombinant fragments. Chem. Bio. Int., 2002, 141(2): 275-293.
    [13] 颜承农,上官云凤,童金强,刘义,庞代文,潘祖亭,屈松生.双喀达莫与牛血清白蛋白结合热力学特征的荧光光谱法研究.光谱学与光谱分析,2003,23(3):543-546.
    [14] 潘祖亭,余军平.盐酸多西环素与牛血清白蛋白的相互作用研究.武汉大学学报,2003,49(4):415-418.
    [15] 颜承农,上官云凤,潘祖亭,刘义.甲苯咪哇与牛血清白蛋白作用的荧光光谱特征.分析测试学报,2003,22(4):24-27.
    [16] Pucell M., Neault J. F., Tajmir-Riahi H. A. Interaction oftaxol with human serum albumin. Biochim. Biophys. Acta, 2000, 1478(1): 64-68.
    [17] Sulkowska A. Interaction of drugs with bovine serum and human serum albumin. J. Mol. Stru., 2002, 614(2): 227-232.
    [18] Cui F.L., Fan J., Li W. Fluorescence spectroscopy studies on 5-aminosalicylic acid and zinc 5-aminosalylicylate interaction with human serum albumin. J. Pharm. Biomed. Anal., 2004, 34(1): 189-197.
    [19] Esposito B.P., Faljoni-Alario A., de Menezes J.F.S. A circular dichroism and fluorescence quenching strudy of the interactions between rhodium (II) complexes and human serum albumin. J. Inorg.Biochem., 1999,75(1): 55-61.
    [20] Gelamo E.L., Silva C.H.T.P., Imasato H., Tabak M. Interaction BSA and HSA with ionic surfactants: spectroscopy and modeling. Biochim. Biophys. Acta, 2002,1594(1): 84-99.
    [21] Ribou A.C., Vigo J., Viallet P. Interaction of a protein, BSA, and a fluorescent probe, Mag-Indo-1,influrence of EDTA and calcium on the equilibrium. Biophys. Chem., 1999, 81(1): 179-189.
    [22] Cui F.L., Fan J., Li J.P. Interactions between 1-benzoyl-4-p- chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorg. Med. Chem., 2004,12(1): 151-158.
    [23] Tauler R., Kowalski B.R., Flemming S. Multivariate curve resolution applied to process analysis. Anal. Chem., 1993, 65(7): 2040-2047.
    [24] Tauler R., Barcelo D. Multivariate curve resolution applied to liquid chromatography diode array detection. Trends Anal. Chem., 1993,12(2): 319-327.
    [25] Tauler R., Smilde A.K., Henshaw J.M., Burgess L.W., Kowalski B.R. Multicomponent Determination of Chlorinated Hydrocarbons Using a Reaction-based Chemical Sensor. Part 2. Chemical Speciation Using Multivariate Curve Resolution. Anal. Chem., 1994, 66(8): 3337-3344.
    [26] Tauler R. Multivariate curve resolution applied to second order data. Chemom. Intel. Lab. Syst., 1995,30(1): 133-146
    [27] Malinowski E.R. Statistical F-tests for abstract factor analysis and target testing. J. Chemom., 1989,3(1): 49-60.
    [28] Gampp H., Maeder M., Meyer C.J., Zuberbuhler A.D. Calculation of equilibrium constants from multiwavelength spectroscopic data—III: Model-free analysis of spectrophotometric and ESR titrations. Talanta, 1985,32(12): 1133-1139.
    [29] Maeder M., Zuberbuhler A.D. The resolution of overlapping chromatographic peaks by evolving factor analysis. Anal. Chim. Acta, 1986,181(2): 287-291.
    [30] Maeger M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal Chem., 1987, 59(3): 527-530.
    [31] Keller H.R., Massart D.L. Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Anal. Chim. Acta, 1991, 246(2): 379-390.
    [32] Kvalheim O.M., Liang Y.Z. Heuristic evolving latent projections: resolving two-way multicomponent data. 1. Selectivity, latent-projective graph, datascope, local rank, and unique resolution. Anal. Chem.,1992, 64(4): 936-946.
    [33] Liang Y.Z., Kvalheim O.M., Keller H.R., Massart D.L., Kiechle P., Erni F. Heuristic evolving latent projections: resolving two-way multicomponent data. 2. Detection and resolution of minor constituents.Anal. Chem., 1992, 64(4): 946-953.
    [34] Vandeginste B., Esser R., Bosman T., Reijnen J., katman G. Three-component curve resolution in liquid chromatography with multiwavelength diode array detection. Anal. Chem., 1985, 57(4): 971-985.
    [35] Burdick D.S., Tu X.M., McGown L.B., Wmillican D. Resolution of multicomponent fluorescent mixtures by analysis of the excitation-emission-frequency array. J. Chemom., 1990, 4(1): 15-28.
    [36] Sanchez E., Kowalski B.R. Tensorial resolution: A direct trilinear decomposition. J. Chemom., 1990,4(1): 29-45.
    [37] Izquierdo-Ridorsa A., Saurina J., Hemandez-Cassou S., Tauler R. Second-order multivariate curve resolution applied to rank-deficient data obtained from acid-base spectrophotometric titrations of mixtures of nucleic bases. Chemom. Intell. Lab. Syst., 1997, 38(1):183-196.
    [38] De Juan A., Rutan S.C., Tauler R., Massart D.L. Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets. Chemom. Intell. Lab. Syst., 1998,40(1): 19-32.
    [39] Tauler R., Kowalski B., Fleming S. Multivariate curve resolution applied to spectral data from multiple runs of an industrial process. Anal. Chem., 1993, 65(7):2040-2047.
    [40] Tauler R., Smilde A.K., Henshaw J.M., Burgess L.W., Kowalski B.R. Multicomponent Determination of Chlorinated Hydrocarbons Using a Reaction-based Chemical Sensor. Part 2. Chemical Speciation Using Multivariate Curve Resolution. Anal. Chem., 1994,66(8): 3337-3344.
    [41] Tauler R., Durand G., Barcelo D. Deconvolution and Quantitation of complex unresolved mixtures of pesticides in liquid chromatography-diode array detection using evolving factor analysis.Chromatographia, 1992, 33(2): 244-254.
    [42] De Juan A., Izquierdo-Ridorsa A., Tauler R., Fonrodona G., Casassas E. A soft-modeling approach to interpret thermodynamic and conformational transitions of polynucleotides. Biophys. J., 1997, 73(8):2937-2948.
    [43] Saurina J., Leal C, Compano R., Granados M., Prat M.D., Tauler R. Estimation of figures of merit using univariate statistics for quantitative second-order multivariate curve resolution . Anal. Chim. Acta, 2001,432(2): 245-255.
    [44] Navea S., De Juan A., Tauler R. Detection and Resolution of Intermediate Species in Protein Folding Processes Using Fluorescence and Circular Dichroism Spectroscopies and Multivariate Curve Resolution. Anal Chem., 2002,74(30): 6031-6039.
    [45] Kudrev A., Gargallo R., Izquierdo-Ridorsa A., Tauler R., Casassas E. Study of the acid-base equilibria and conformational changes of double stranded polyadenylic acid in aquesous solution. Anal. Chim.Acta, 1998, 363(1): 119-132.
    [46] Mendieta J., Diaz-Cruz M.S., Esteban M., Tauler R. Multivariate Curve Resolution: A possible Tool in the Detection of the Intermediate Structures in Protein Folding. Biophys. J., 1998, 74(8): 2876-2882.
    [47] Gargallo R., Tauler R., Izquierdo-Ridorsa A. Spectrosc. Biol. Mol.: Mod. Trends [Eur.Conf.], 7th, 1997,Carmona P., Navarro R., Hernanz A. [Eds.]; Kluwer: Dordrecht, Neth., 1997, pp 249.
    [48] De Juan A., Izquierdo A., Tauler R. Spectrosc. Biol. Mol.: Mod. Trends [Eur.Conf.], 7th, 1997, Carmona P., Navarro R, Hemanz A, [Eds.]; Kluwer: Dordrecht, Neth., 1997; pp247.
    [49] Tauler R., Gargallo R., Vives M., Izquierdo-Ridorsa A. Resolution of temperature dependent conformational multiequilibria processes. Chemom. Intell. Lab. Syst., 1999, 46(2): 275-295.
    [50] Furusjo E., Danielsson L.G., Konberg E., Rentsch-Jonas M., Skagerberg B. Evaluation techniques for two-way data from in situ fourier transform mid-infrared reaction monitoring in aqueous solution. Anal.Chem., 1998, 70(9): 1726-1734.
    [51] Hamilton J.H., Gemperline P.J. Mixture analysis using factor analysis. II: Self-modeling curve resolution. J. Chemom., 1990,4(1): 1-13.
    [52] Amrhein M., Srinivasan B., Bonvin D., Schumacher M.M. On the rank deficiency and rank augmentation of the spectral measurement matrix. Chemom. Intell. Lab. Syst., 1996, 33(1): 17-33.
    [53] Izquierdo-Ridorsa A., Saurina J., Hernandez-Cassou S., Tauler R. Second-order multivariate curve resolution applied to rank-deficient data obtained from acid-base spectrophotometric titrations of mixtures of nucleic bases. Chemom. Intell. Lab. Syst., 1997,38(1): 183-196.
    [54] Gargallo R., Tauler R., Cuesta-Sanchez F., Massart D.L. Validation of the alternating least squares multivariate curve resolution for the chromatographic resolution and quantitation. Trends Anal. Chem.,1996,15(2): 279-286.
    [55] De Juan A., Heyden Y.V., Tauler R., Massart D.L. Assessment of new constraints applied to the alternating least squares (ALS) method. Anal. Chim. Acta, 1997, 346(2): 307-318.
    [56] Peter T. All About Albumin. Biochemistry, Genetics and Medical Applications, Academic Press, San Diego, CA, 1996, pp9-75.
    [57] 陈国珍,黄贤智,许金钩,郑朱梓,王尊本.荧光分析法.第二版.北京:科学出版社,1990.
    [58] Khan M.M., Tayyab S. Protein Structure and Molecular Enzymology. Biochim. Biophys. Acta, 2001, 1545(2): 263-277.
    [59] 赵长春,郑维发,李梦秋.小檗碱与人血清白蛋白的相互作用.光谱学与光谱分析,2004,24(1):111-113.
    [60] Tauler R. Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst., 1995, 30(1): 133-146.
    [61] Vires M., Gargallo R., Tauler R. Resolution of temperature dependent conformational multiequilibria processes by using multivariate curve resolution. Anal. Chem., 1999, 71(11): 4328-4333.
    [62] Manne R. On the resolution problem in hyphenated chromatography. Chemom. Intell. Lab. Syst., 1995, 27(1): 89-94.
    [63] Malinowski E.R., Howery D.E. Factor Analysis in Chemistry. New York: Wiley Press, 1991.
    [64] Golub G.H., van Loan C.F. Matrix Computation. Johns Hopkins University Press, Baltimore, MD, 1989.
    [65] Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal Chem., 1987, 59(3): 527-530.
    [66] Windig W., Guilment J. Interactive self-modeling mixture analysis. Anal. Chem., 1991, 63(14): 1425-1432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700