多吡啶钌配合物与DNA相互作用的光电化学性能及电化学组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钌最外层具有4d~75s~1结构,其离子常见价态为Ru(Ⅰ)、Ru(Ⅱ)和Ru(Ⅲ),并易于形成六配位的八面体结构配合物。钌中心离子与配体结合后,中心钌离子的氧化还原电位会受到配体共轭程度以及配体的空间结构的影响。多吡啶钌配合物与DNA相互作用的强度也受配体结构的影响。本论文选择了具有不同共轭程度或空间结构配体的多吡啶钌配合物:A[Ru(bpy)_2tatp(ClO_4)_2],B [Ru(bpy)_2dmt(ClO_4)_2],C[Ru(phen)_2dmt(ClO_4)_2],D [Ru(dmp)_2dmt(ClO_4)_2],E [Ru(bpy)_3Cl_2](bpy=2,2′-联吡啶,tatp=1,4,8,9-四氮三苯,dmt=2,3-二甲基-1,4,8,-四氮三联苯,phen=邻菲咯啉,dmp=2,9-二甲基邻菲咯啉)作为研究的对象,深入地研究了配体的变化对于多吡啶钌配合物电子吸收光谱、荧光光谱、电化学性质、电致化学发光性质及其与DNA的相互作用,并在此基础上研究了钉配合物在ITO电极上的电化学组装及DNA对组装的促进作用。
     在第一章中,介绍了DNA以及多吡啶钌配合物的基本性质,并综述了DNA组装的发展现状,同时也介绍了多吡啶钌配合物组装的研究概况,DNA和多吡啶钌配合物的组装一般都是通过吸附作用、自组装、电化学方法、LB膜、共价键合作用和生物素-亲和素法等。
     在第二章中,介绍了本论文实验过程中所用的仪器、试剂、实验方法和相关的理论分析。
     在第三章中,研究了五种配合物的电子吸收光谱,并讨论了DNA的存在对四种多吡啶钌配合物A、B、C、D的电子吸收光谱的影响,发现DNA会使配合物的吸收峰发生减色和红移。计算了DNA与多吡啶钌配合物相互作用的键合常数,发现键合常数大小顺序为A>C>B>D,其中配合物A、B、C与DNA的相互作用主要为插入作用。离子强度对DNA-配合物相互作用也存在明显的影响,0.22 mol L~(-1)为转折点,NaCl浓度高于转折点时,DNA与配合物的相互作用变得非常弱。
     在第四章中,考察了DNA浓度及离子强度对了四种多吡啶钉配合物A、B、C、D荧光光谱的影响,发现配合物A、B、C在450 nm激发光下可以发射强的荧光,配合物D的荧光强度较弱。DNA的存在可以增强配合物在Tris-NaCl缓冲溶液中的荧光强度,并且在较低离子强度范围内(0~0.25 mol L~(-1)),DNA浓度越高,对配合物荧光的增强作用越强,NaCl对单纯配合物的荧光强度影响不大;但是NaCl浓度不利于DNA对配合物荧光的增强,高的NaCl浓度不利于DNA与配合物的相互作用。
     第五章中采用了循环伏安法、微分脉冲伏安法等电化学方法以及荧光显微镜方法研究了多吡啶钌配合物A、B、C、D的电化学行为,进而讨论了配合物在ITO电极上的组装。结果表明:四种配合物在pH=7.2的缓冲溶液中,电位范围是0.2~13.5 V时,在ITO电极上可以观察到一对扩散控制氧化还原峰,这对氧化还原峰归属于Ru(Ⅱ)氧化为Ru(Ⅲ),四种配合物的条件电位E~(o′)高低顺序为A>C≈D>B>E,这与相应物质的配体共轭程度相呼应。重复的伏安扫描可以获得一个新的前置峰,表示Ru(Ⅱ)的氧化产物形成了一层Ru(Ⅲ/Ⅱ)强吸附层吸附在ITO电极上。通过荧光显微镜观察电极上的组装层,发现配合物在490 nm波长激发光下发出橙红色的光。离子强度会影响配合物的电化学性质,并且影响配合物在电极上的组装。高的离子强度阻碍配合物在电极上的组装。
     第六章中,研究了缓冲溶液中存在0.224 mmol L~(-1)DNA时配合物A、B、C、D分别在ITO电极上的电化学行为及DNA-多吡啶钉配合物在ITO电极上的组装,发现DNA/多吡啶钌配合物混合溶液在电极上发生准可逆反应,其速度控制步骤主要为扩散控制;DNA的存在影响多吡啶钌配合物中心离子在电极上的反应:比较离子强度对多吡啶钌配合物/DNA混合体系和钌配合物电化学性质的影响。采用重复的伏安扫描可以形成和控制DNA促进多吡啶钉配合物在ITO电极上的组装;DNA分子促进多吡啶钌配合物在ITO电极上的组装,并且可以增强组装层的荧光性质。低的离子强度可以促进DNA-配合物在ITO电极上的组装,但是更高的离子强度将阻碍组装的进行。在本章中还初步探讨了组装体的应用,认为在0.2 mmol L~(-1)[Ru(bpy)_2tatp]~(2+)/0.224mmol L~(-1)DNA体系中获得的修饰电极对检测[Ru(bpy)_2L]~(2+)(L:tatp,bpy,dmt)与DNA间的相互作用有良好的效果,为进一步发展DNA-多吡啶钌配合物修饰电极提供了新的思路。
     第七章着重讨论了五种多吡啶钌配合物A、B、C、D、E的电致化学发光性能,并研究了DNA、NaCl浓度对配合物A、B、C、D电致化学发光性能的影响,多吡啶钌配合物A:[Ru(bpy)_2tatp]~(2+),B:[Ru(bpy)_2dmt]~(2+),C:[Ru(phen)_2dmt]~(2+)在缓冲溶液中有无DNA存在时都有良好的电致化学发光性能,配合物D[Ru(dmp)_2dmt]~(2+)在无DNA存在时,在缓冲溶液中呈现出较弱的电致化学发光。当多吡啶钌配合物溶液中没有DNA存在时,NaCl浓度对配合物A、B、C的ECL强度影响不大;而DNA存在在较大程度上影响多吡啶钌配合物的ECL性能。
Ruthenium possesses 4d~75s~1 electronic structure and its ions haveforms of Ru(Ⅰ), Ru(Ⅱ) and Ru(Ⅲ). Ru(Ⅱ) can form easily octahedralruthenium (Ⅱ) complex with chelating atoms. The redox potentials ofruthenium center ion and DNA binding of the complexes are affected byconjugated intensity and spacial structure of ligands. We choose fourpolypyridine ruthenium (Ⅱ) complexes with different ligands such as A[Ru(bpy)_2tatp(ClO_4)_2], B [Ru(bpy)_2dmt(ClO_4)_2], C [Ru(phen)_2dmt(ClO_4)_2],D [Ru(dmp)_2dmt(ClO_4)_2], and E [Ru(bpy)_3Cl_2] (where bpy=2,2′-bi-pyridine, tatp=1,4,8,9-tetra-aza-triphenylene, dmt=2,3-dimethyl-1,4,8,9-tetraazatriphenylene, phen=1,10-phenanthroline and dmp= 2,9-di-methyl-1,10-phenanthroline) as our researchful object. The effects of theligands on the electronic absorption spectra, fluorescence spectra,electrochemical behavior, electrochemiluminescence properties of thesecomplexes have been investigated. Based on these results, the interactionof these compounds with DNA and their electrochemical assembly in theabsence and presence of DNA are also been studied.
     In chapter 1, the basic properties of DNA and polypyridyl rutheniumcomplexes are first introduced. Then, the progresses on assembly of DNAand/or polypyridyl ruthenium complexes are also reviewed. Theimmobilization for them on the substrates is fulfilled by using the methodsincluding chemical adsorption, self-assembly monolayer, electrochemicalmethod, Langmuir-Biodgett technique, Biotin-Avidin system, and covalentbinding.
     In chapter 2, all chemicals, instruments and experimental methodsused in this thesis are briefly described.
     In chapter 3, the electronic absorption spectra of polypyridylruthenium complexes A, B, C, D and E have been studied in thc absenceand presence of DNA. The results show that the presence of DNA canresult in obvious hypochromism, red shift. According to the hypochromism,bathochromism phenomena, and the binding constants, the interactivestrength of these complexes with DNA conforms the order A>C>B>D. TheDNA binding of the complexes A, B and C is suggested to be intercalativemodes. Furthermore, the effects of ion strength on the interaction of thesecomplexes with DNA have been studied. NaCl concentration of 0.22 molL~(-1) is a turning point. When the concentration of NaCl is higher than theturning point, the interaction of complex with DNA becomes extremelyweak.
     In chapter 4, the fluorescence properties of these complexes A, B, Cand D in buffer solution have been studied. The complexes A, B, C exhibitstrong fluorescence properties at about 590 nm, but D indicates weakfluorescence. The results show that the presence of DNA can enhance thefluorescence strength of these ruthenium complexes at 450 nm excitedlight. At the low ion strength (<0.25 mol L~(-1)), fluorescence strengthbecomes stronger with the increasing concentration of DNA. Theconcentration of NaC1 is proved to have an obvious effect on theDNA-binding of these complexes.
     In chapter 5, the electrochemical properties of these complexes havebeen studied by using the methods such as cyclic voltammetry, differentialpulse voltammetry, the fluorescence microscope imaging. Moreover, theassembly mechanism of these complexes on ITO electrode is explored. Inthe potential range from 0.2 to 1.5 V, a couple of well-defined redox wavesare observed in pH=7.2 buffer solution, the oxidize wave is ascribedRu(Ⅲ)] from Ru(Ⅱ). The formal E~(o′) of these complexes conforms thefollowing A>C≈D>B>E. The order matches with the conjugated intensity of ligands. When continuous voltammetric sweeping is carriedout in the potential range from 0.2 V to 1.5 V a new wave appears,representing the oxidation of dissolved reactant Ru(Ⅱ)to form a layer ofproduct Ru(Ⅲ)adsorbed strongly on the ITO clectrode. Through thefluorescence microscope observation assembled layer on ITO electrode,the orange-red light is discovered at 490 nm excited wavelength. Theelectrochemical properties and assembly of these complexes on theelectrode are affected by the ion strength. High ion strength is discoveredto influence the assembly of these complexes on the electrode.
     In chapter 6, the electrochemical properties and assembly of thesecomplexes A, B, C, and D on the ITO electrode in the buffer solutioncontaining 0.224 mmol L~(-1) DNA have been investigated. The resultsindicate that the redox reaction at more positive potential exhibits a quasi-reversible process. The effects of ion strength on the electrochemicalproperties of the interactive products between these complexes and DNAare discovered. Compared with the in absence of DNA, DNA can promotethe assembly of the complexes on the ITO electrode. The fluorescencestrength of the assembly layer is stronger than the complexes themselves.The electrochemical assembly of these complexes on the electrode isaffected by the ion strength. The high ion strength may be hindered theassembly of the complexes in the presence of DNA. The of the assembledlayer is applied in the determination of the DNA-binding for thesecomplexes. The assembled layer obtained from 0.2 mmol L~(-1)[Ru(bpy)_2tatp]~(2+)/0.224 mmol L~(-1)DNA in buffer solution is used as theprobe of DNA-binding mode for [Ru(bpy)_2L]~(2+) (L: tatp, bpy, dmt).
     In chapter 7, the Electrochemiluminescence (ECL) properties of five kinds ofruthenium complexes A, B, C, D and E have been studied. The results show that thesecomplexes exhibit an excellence ECL signals in the absence and presence of DNA,but complexes D has weak ECL intensity. The influence of ion strength on ECLproperties of the ruthenium complexes in buffer solution containing DNA is largercompared with that in absence of DNA.
引文
[1] 鞠熀先.电分析化学与生物传感技术[M].科学出版社(第一版),2006:204.
    [2] M. Guo, J. Chen, D. Liu, L. Nie, S. Yao. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes [J]. Bioelectrochem., 2004, 62: 29-35.
    [3] H. Cai, X. Cao, Y. Jiang, P. He, Y. Fang. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection [J]. Anal. Bioanal. Chem. 2003, 375: 287-293.
    [4] 郎杰,刘鸣华.DNA薄膜的制备及性质研究进展[J].化学通报,2001,(4):197-200.
    [5] F. Davis, S. P. J. Higson. Structured thin films as functional components within biosensors [J]. Biosens. Bioelectron., 2005, 21 (1): 1-20.
    [6] S. Baitalik, U. Florkef, K. Nag. Homo- and heterobimetallic complexes of ruthenium (Ⅱ) and osmium (Ⅱ) with pyrazole- 3,5-dicarboxylic acid and 2,2'-bipyridine as co-ligands. Synthesis, structure, stereochemistry, spectroscopy and redox activities [J]. Inorg. Chim. Acta, 2002, 337: 439-449.
    [7] A. Fahnrich, M. Prabda, G. G. Guilbault. Recent application of electrogenerated chemiluminescence in chemical analysis [J]. Talanta, 2004, 54: 531-559.
    [8] A. B. Nielsen, P. Hveilplund, S. B. Nielsen. Ruthenium diimine complexes in unusual charge states formed in collisional electron transfer [J]. Intern. J. Mass Spectrom., 2004, 232: 79-82.
    [9] 蒋才武,巢辉,李润华,等.钌(Ⅱ)多吡啶配合物的合成、表征及其三阶非线性光学性质研究[J].化学学报,2002,60(1):65-70.
    [10] L. N. Ji, X. H. Zou, J. G. Liu. Shape- and enantioselective interaction of Ru(Ⅱ)/Co(Ⅲ) polypyridyl complexes with DNA [J]. Coor. Chem. Rev. 2001, 216-217: 513-536.
    [11] S. Ling, Z. K. He, E Chen, et al. Single-mismatch detection using nucleic acid molecular 'light switch' [J]. Talanta, 2003, 59: 269-275.
    [12] C. Bertolino, M. Macsweeney, J. Tobin, et al. A monolithic silicon based integrated signal generation and detection system for monitoring DNA hybridization [J]. Biosens. Bioelectron., 2005, 21: 565-573.
    [13] W. P Tai. Photoelectrochemical properties of ruthenium dyesen- sitized nanocrystalline SnO_2:TiO_2 solar cells[J]. Sol. Energy Mater. Sol. Cells, 2003, 76: 65-73.
    [14] N. Chanda, B. Mondal, V. G. Puranik, et al. Ruthenium mono-terpyridine complexes incorporating a,a'-diimine based ancillary functions. Synthesis, crystal structure, spectroelectro- chemical properties and catalytic aspect[J]. Polyhedron, 2002, 21: 2033-2043.
    [15] A. L. B. Marques, W. H. Li, E. P. Marques, et al. Electrocatalytic activity of surface adsorbed ruthenium-alizarin complexone toward the oxidation of benzyl alcohol [J]. Electrochim. Acta, 2004, 49: 879-885.
    [16] E. M. Sussuchi, A. A. de Lima, W. F. De Giovani. Synthesis and electrochemical, spectral and catalytic properties of diphosphinepolypyridyl ruthenium complexes [J]. Polyhedron, 2006, 25 (6): 1457-1463.
    [17] K. Nonomura, T. Yoshida, D. Schlettwein, H. Minoura. Onestep electrochemical synthesis of ZnO/Ru(dcbpy)2(NCS)_2 hybrid thin films and their photoelectrochemical properties [J]. Electro- chim. Acta, 2003, 48 (20-22): 3071-3078.
    [18] M. Hepel, I. Dela, T. Hepel, J. Luo, C.J. Zhong, T. Y. Lee, J. B. Yoo. Adsorption characteristics of Ru (Ⅱ) dye on carbon nanotubes for organic solar cell [J]. Diamond Relat. Mater., 2005, 1(11-12): 1888-1890.
    [19] G. M. Liu, A. Klein, A. Thissen, W. Jaegermann. Electronic properties and interface characterization of phthalocyanine and Ru-polypyridine dyes on TiO_2 surface [J]. Surf. Sci., 2003, 539 (1-3): 37-48.
    [20] S. O. Pinheiro, J. R. de Sousa, M. O. Santiago, I. M. M. Carvalho, A. L.R. Silva, A. A. Batista, E. E. Castellano, J. Ellena, I. S. Moreira, I. C. N. Diogenes. Synthesis, characterization and structure of ruthenium (Ⅱ) phosphine complexes with N-heterocyclic thiolate ligands [J]. Inorg. Chim. Acta, 2006, 359 (2): 391-400.
    [21] H. Li, Y. J. Liu, J. Xu, Z. H. Xu, L. N. Ji, W. S. Li, H. Y. Chen. DNA-enhanced assembly of [Ru(bpy)_2ITATP]~(3+/2+)on an ITO electrode[J]. Electrochim. Acta, 2007, 52 (15): 4956-4961.
    [22] G. Zou, K. Fang, P. S. He, W. X. Lu. Self-quenching of a photo-excited ruthenium complex in component-controllable mixed Langrnuir-Blodgett films[J]. Thin Solid Films, 2004, 457 (2): 365-371.
    [23] F. Geneste, C. Moinet. Electrocatalytic oxidation of alcohols by a [Ru(tpy)(phen)(OH_2)]~(2+) modified electrode [J]. J. Electroanal. Chem., 2006, 594, (2): 105-110.
    [24] J. Wang, G. Liu, M. R. Jan, Q. Zhu. Electrochemical hybri- dization based on carbon-nanotubes loaded [J]. Electrochem. Commun., 2003, 5: 1000-1004.
    [25] W. W. Chen, C. H. Tzang, J. X. Tang, M. S. Yang, S. T. Lee. Covalently linked deoxy ribonucleic acid with multiwall carbon nanotubes-synthesis and characterization [J]. Appl. Phys. Letts., 2005, 86: 103114-103117.
    [26] K. A. Williams, T. M. Peter, B. G. V. Torre, R. Eritja, C. Dekker. Nanotechnology: carbon nanotubes with DNA recognition [J]. Nature, 2002, 420: 761-762.
    [27] N. Nakashima, S. Okuzono, H. Marakami, T. Nakai, K. Yoshikawa, DNA dissolves single-walled carbon nanotubes in water [J], Chem. Lett. 2003, 32: 465-466.
    [28] M. Hazani, R. Naaman, F. Hennrich, M. M. Kappes. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes [J], Nano Lett., 2003, 3: 153-155.
    [29] B. J. Taft, A. D. Lazareck, G. D. Withey, A. Yin, J. M. Xu, S. O. Kelley. Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes [J]. J. Am. Chem. Soc., 2004, 126: 12750-12751.
    [30] G. Lee, C. Chen, T. Wang, W. Lee. Affinity chromatography of DNA on nonporous copolymerized particles of styrene and glycidyl methacrylate with immobilized polynucleotide [J]. Anal. Biochem. 2003, 312: 235-241.
    [31] X. Q. Lin, Q. Miao, B. K. Jin. DNA Immobilization on Nano-Gold Modified Glassy Carbon Electrode [J]. Chin. Chem. Lett., 1999, 10 (2): 157-160.
    [32] 缪谦,金葆康,林祥钦.ss-DNA在纳米金上固载和杂化的电化学传感研究[J].高等学校化学学报,2000,21(1):27-30.
    [33] H. Cai, X. Cao,Y. Jiang, P. He, Y. Fang, Carbon nanotube- enhanced electrochemical DNA biosensor for DNA hybridization detection [J]. Anal. Bioanal. Chem. 2003, 375: 287-293.
    [34] G. F. Cheng, J. Zhao, Y. H. Tu, P. A. He, Y. H. Fang. A sensitive DNA electrochemical biosensor based on magnetite with a glassy-carbon electrode modified by multiwalled carbon nanotubes in polypyrrole [J], Anal. Chim. Acta, 2005, 533: 11-13.
    [35] J. Wang, A. Kawde, M. R. Jan. Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization [J]. Biosens. Bioelectr. 2004, 20: 995-1000.
    [36] J. Wang, M. Ozsoz, X. Cai, G. Rivas, H. Shiraishi, D. H. Grant, M. Chicharro, J. Fernandes, E. Palecek. Interactions of antitumor drug daunomycin with DNA in solution and at the surface [J]. Bioelectrochem. Bioenerg,, 1998, 45 (1): 33-40.
    [37] J. Wang, M. Chicharro, G. Rivas, X. Cai, N. Dontha, P. A. M. Farias, H. Shiraishi. DNA Biosensor for the Detection of Hydrazines. Anal. Chem., 1996, 68 (13): 2251-2254.
    [38] 唐婷,彭图治,时巧翠.碳纳米管修饰金电极检测特定序列DNA[J].化学学报,2005,63(22):2042-2046.
    [39] Y. Lvov, G. Decher, G.Sukhorukov. Assembly of Thin Films by Means of Successive Deposition of Alternate Layers of DNA and Poly(allylamine) [J]. Macromolecules, 1993, 26: 5396-5399.
    [40] J. Lang, M. H. Liu. Layer-by-Layer Assembly of DNA Films and Their Interactions with Dyes [J]. J. Phys. Chem., 1999, 103 (51): 11393-11397.
    [41] 林全愧,计剑,谭庆刚,任科峰,沈家骢.层层自组装技术在生物医用材料领域中的应用研究进展[J].高分子通报,2006,(8):58-63.
    [42] K. Hashimoto, K. Ito, Y. Ishimori. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye [J]. Anal. Chem., 1994, 66 (21): 3830-3833.
    [43] S. O. Kelley, J. K. Barton, N. M. Jackson, et al. Electrochemistry of methylene blue bound to a DNA-modified electrode [J]. Biocon-jugate Chem., 1997, 8 (1): 31-34
    [44] 孙伟,尚智美,杨茂霞,焦奎.巯基乙酸自组装膜DNA电化学传感器对转基因NOS的定量检测[J].高等学校化学学报,2006,27(10):1859-1861.
    [45] 赵元弟,庞代文,张敏,程介克,戴鸿平.DNA修饰电极的研究(Ⅸ)-DNA探针在金基底上的固定、表征及其表面分子杂交[J].高等学校化学学报,2001,22(5):744-748.
    [46] T. Wink, S. J. van Zuilen, A. Bult, et al. Self-assembled mono- layers for biosensors [J]. Analyst, 1997, 122 (4): 43-50.
    [47] 李金花,胡劲波.功能化纳米金增强的DNA电化学检测和序列分析[J].化学学报,2004,62(20):2081-2088.
    [44] F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl. Short Protocols in Molecular Biology [M], John Wiley & Sons, New York, 1992.
    [49] 庞代文,陆琪,赵元弟,张敏.DNA修饰电极的研究Ⅷ.1,10-菲咯啉存在时钴离子在ss-DNA修饰电极上的电化学行为及痕量钴的检测 [J].化学学报,2000,58(5):524-528.
    [50] 任科峰,计剑,沈家骢.层-层自组装构建固相可降解基因传递体系的研究[J].高等学校化学学报,2004,25(8):1576-1578.
    [51] 王美佳,纪小会,王连英,刘敏,刘艳梅,白玉白,李铁津.DNA在纳米金标上的组装、杂交、检测与银增强[J].物理化学学报,2003,19(9):879-882.
    [52] 魏晓红,梁文权,潘远江.PEG化壳聚糖/DNA自组装复合物的制备、表征和体外Hela细胞转染研究[J].高等学校化学学报,2003,24(11):1993-1996.
    [53]周剑章,吴玲玲,董丽琴,林种玉,颜佳伟,董平,包烨,林仲华.长链DNA在金基底上的固定化和电化学标记[J].电化学,2001,7(3):276-280.
    [54] J. J. P. Jeroen, van den Beucken, M. R. J. Vos, et al. Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes [J]. Biomaterials, 2006, 27 (5): 691-701.
    [55] L. Q. Luo, J. Y. Liu, Z. X. Wang, X. R. Yang, S. J. Dong, E. K. Wang. Fabrication of layer-by-layer deposited multilayer films containing DNA and its interaction with methyl green [J]. Biophys. Chem., 2001, 94:11-22.
    [56] 焦奎,任勇,徐桂云,张旭志.脱氧核糖核酸在硬脂酸铝离子膜上固定杂交及BAR基因片段检测[J].分析化学,33(10):1381-1384.
    [57] Y. D. Zhao, D. W. Pang, S. Hu, Z. L. Wang, J. K. Cheng, H. P. Dai. DNA-modified electrodes; part 4: optimization of covalent immobilization of DNA on self-assembled monolayers [J]. Talanta, 1999, 49 (4): 751-756.
    [58] X. Y. Sun, P. G. He, S. H. Liu, J. L. Ye, Y. Z. Fang. Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications [J]. Talanta, 1998, 47 (2): 487-495.
    [59] C. W. Ge, J. H. Liao, W. Yu, N. Gu. Electric potential control of DNA immobilization on gold electrode [J]. Biosens. Bioelectron., 2003, 18 (1): 53-58.
    [60] C. W. Ge, J. H. Liao, Y. H. Wang, K. J. Chen, N. Gu. DNA Assembly on 2-Dimensional Array of Colloidal Gold [J]. Biomed. Microdevices., 2003, 5 (2): 157-162.
    [61] C. W. Ge, W. J. Miao, M. J. Ji, N. Gu. Glutaraldehyde-modified electrode for nonlabeling voltammetric detection of p16INK4A gene [J]. Anal. Bioanal.Chem., 2005, 383 (4): 651-659.
    [62] 葛存旺,王南平,顾宁.DNA与5-氟尿嘧啶相互作用的电化学和谱学研究[J].化学学报,2006,64(17):1837-1842.
    [63] 侯学良,孙璐,吴立新,张刚,张希,沈家骢.自组装膜中原位光反应固定化脱氧核糖核酸及膜稳定性[J].高等学校化学学报,2002,23(8):1601-1604.
    [64] X. Chen, J. Wang, N. Shen, Y. Luo, L. Lin, M. Liu, R. K. Thomas. Gemini Surfactant/DNA Complex Monolayers at the Air-Water Interface: Effect of Surfactant Structure on the Assembly, Stability, and Topography of Monolayers [J]. Langmuir, 2002, 18 (16): 6222-6228.
    [65] V. Ramakrishman, K. N. Ganesh, M. Sastry. PNA-DNA Hybridization at the Air-Water Interface in the Presence of Octadecylamine Langmuir Monolayers [J]. Langmuir, 2002, 18 (16), 6307-6311.
    [66] V. Matti, J. Saily, S. J. Ryhanen, J. M. Holopainen, S. Borocci, G. Mancini, P. K. J. Kinnunen. Characterization of Mixed Monolayers of Phosphatidylcholine and a Dicationic Gemini Surfactant SS-1 with a Langrnuir Balance: Effects of DNA [J]. Biophys. J., 2001, 81 (4): 2135-2143.
    [67] C. D. Xiao, M. S. Yang, S. F. Sui. DNA-containing organized molecular structure based on controlled assembly on supported monolayers [J]. Thin Solid Films, 1998, 327-329: 647-651.
    [68] 戴树玺,张兴堂,杜祖亮,党鸿辛.DNA分子在气液界面的组装相变特性及其LB膜结构研究[J].化学学报,2003,61(12):2013-2015.
    [69] 张晓冬,靳健,杨文胜,符连社,张洪杰,李铁津.利用LB技术以寡聚DNA为模板构建CdS纳米结构[J].化学学报,2002,60(3):532-535.
    [70] 方华丰,周宜开.生物素-亲和素系统在生物传感中的应用[J].化学传感器,1997,17(3):177-183.
    [71] A. H. Al-Hakim, R. Hull. Studies towards the development of chemically synthesized non-radioactive biotinylated nucleic acid hybridization probes [J]. Nucl. Acids Res., 1986, 14 (24): 9965-9976.
    [72] F. Caruso, E. Rodda, D. N. Furlong, K. Niikura, Y. Okahata. Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Development [J]. Anal. Chem., 1997, 69 (11): 2043-2049
    [73] L. Alfonta, A. K. Singh, I. Willner. Liposomes Labeled with Biotin and Horseradish Peroxidase: A Probe for the Enhanced Amplification of Antigen-Antibody or Oligonucleotide-DNA Sensing Processes by the Precipitation of an Insoluble Product on Electrodes [J]. Anal. Chem. 2001, 73 (1): 91-102.
    [74] 王保珍,杜晓燕,郑晶,金滨锋.铂电极表面生物素-亲和素固载单链脱氧核糖核酸的电化学传感器[J].分析化学,2005,33(6):789-792.
    [75] 牟颖,赵晓君,王珍,张寒琦,金钦汉.γ-干扰素DNA传感器组装过程的表面等离子体子共振研究[J].化学学报,2000,58(5):500-504.
    [76] X. C. Zhou, L. Q. Huang, S. F. Li. Microgravimetric DNA sensor based on quartz crystal microbalance: comparison of oligonucleotide immobilization methods and the application in geneticdiagnosis [J].Biosens. Bioelectron., 2001, 16 (1-2): 85-95.
    [77] Y. Okahata, K. Ijiro, Y. Matsuzaki. A DNA-lipid cast film on a quartz-crystal microbalance and detection of intercalation behaviors of dye molecules into DNAs in an aqueous solution [J]. Langmuir, 1903. 9(1): 19-21.
    [78] K. Tanaka, Y. Okahata. A DNA-Lipid Complex in Organic Media and Formation of an Aligned Cast Film [J]. J. Am. Chem. Soc., 1996, 118 (4): 10679-10683.
    [79] M. Cattabriga, V. Ferri, E. Tran, P. Galloni, M. A. Rampi. Electrochemical characterization of redox centers organized at Hg surfaces [J]. Inorg. Chim. Acta, 2007, 360 (3): 1095-1101.
    [80] P. Corio, G. F. S. Andrade, I. C. N. Diogenes, I. S. Moreira, F. C. Nart, M. L A. Temperini. Characterization of the [Ru(CN)_5 (pyS)]~(4-) ion complex adsorbed on gold, silver and copper sub- strates by surface-enhanced Raman spectroscopy [J]. J. Electroanal. Chem., 2002, 520 (1-2): 40-46.
    [81] 李朝晖,T.P.Fehlner,付贤智.Ru-Fe异金属化合物及其在Au表面上SAM的电化学研究[J].高等学校化学学报,2004,25(11):2090-2094.
    [82] 赵剑英,马丽,金日哲,高连勋.石英片基表面联吡啶钌配合物的合成与表征[J].高等学校化学学报.2006,27(12):2337-2339.
    [83] 马慧嫒,彭军,韩占刚,冯宇华,王恩波.多金属氧酸盐-三(2,2’-联吡啶)钌层接层自组装纳米复合膜的制备及光致发光性质[J].高等学校化学学报,2004,25(11):1993-1995.
    [84] 张玉琦,高丽华,段智明,王科志,王业亮,高鸿钧.H_4SiW_(12)O_(40)和双偶极Ru(Ⅱ)配合物形成的静电自组装多层膜[J].化学学报,2004,62(7):738-741.
    [85] Y. Q. Zhang, K. Z. Wang, L. H. Gao. Electrostatically selfassembled multilayer film formed by a novel ruthenium (Ⅱ) complex and [Nd(SiW_9Mo_2O_(39))_2]~(13-) [J].Colloids Surf. A: Physicochem. Eng. Aspects, 2005, 257-258 (5): 391-394.
    [86] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, Conversion of light to electricity by cis-X_2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X=Cl~-, Br~-, I~-, CN~-, and SCN~-) on nanocrystalline titanium dioxide electrodes [J]. J. Am. Chem. Soc., 1993, 115 (14): 6382-6390.
    [87] H. Li, W. J. Mei, Z. H. Xu, D. W. Pang, L. N. Ji, Z. H Lin. Electrochemistry of a novel monoruthenated porphyrin and its interaction with DNA [J]. J. Electroanal. Chem., 2007, 600 (2): 243-250.
    [88] H. Li, Z. H. Xu, D. W. Pang, J. Z. Wu, L. N. Ji, Z. H. Lin. DNA-promoted electrochemical assembly of [Ru(bpy)_2IP]~(3+/2+) at an ITO electrode [J]. Electrochim. Acta, 2006, 51 (10): 1996-2002.
    [89] K. Wohnrath, J. R. Garcia, F. C. Nart, A. A. Batista, O. N. Oliveira Jr. Electrochemical characterization of Langrnuir-Blodgett films from the ruthenium complex mer-[RuCl(dppb)(4-Mepy)] [J]. Thin Solid Films, 2002, 402: 272-279.
    [90] J. X. He, A. Yamagishi, M. Iwao, Y. Abe, Y. Umemura. Creation of a novel solid surface as a model photosynthetic system Ⅱ: Application of the LB and self-assembly methods to fixation of a light-driven polypyridyl Ru (Ⅱ) complex [J]. Electrochem. Commun., 2004, 6 (1): 61-65.
    [91] W. X. Lu, H. L. Zhou, P. S. He, W. H. Guo. LB films formed from arachidic acid monolayers on an aqueous solution of a ruthenium (Ⅱ) complex [J]. Thin Solid Films, 2000, 365 (1): 67-71.
    [92] A. Aramata, S. Takahashi, G. P. Yin, et al. Ligand grafting method for immobilization of metal complexes on a carbon electrode [J]. Thin Solid Films, 2003, 424 (2): 239-246.
    [93] P. Baglioni, D. Berti. Self assembly in micelles combining stacking and H-bonding [J]. Curr. Opin. Colloid Interface Sci., 2003, 8: 55-61.
    [94] Y. Yang, H. Wang, D. A. Eriea. Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy [J]. Methods, 2003, 29: 175-187.
    [95] X. D. Sua, Y. J. Wu, W. Knoll. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization [J]. Biosens. Bioelectron., 2005, 21: 719-726.
    [96] I. Willner, F. Patolsky, Y. Weizmann, B. Willner. Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction [J]. Talanta, 2002, 56 (5): 847-856.
    [97] J. Wang. Nanoparticle-based electrochemical DNA detection [J]. Anal. Chim. Acta, 2003, 500: 247-257.
    [98] 董丽琴,周剑章,吴玲玲,董平,林仲华.自组装DNA吸附取向的表面增强拉曼光谱法研究[J].高等学校化学学报.2002,23(12):2303-2308.
    [1] M. T.Carter, M.Rodriguez, A J. Bard. Voltammetdc studies of interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt (Ⅲ) and iron (Ⅱ) with 1,10-phenanthroline and 2,2'-bipyridine [J]. J. Am. Chem. Soc., 1989, 111 (24): 8901-8911.
    [2] M. E. Reichmann, S. A. Rice, C. A. Thomas, P. Doty. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid [J]. J. Am. Chem. Soc., 1954, 76 (11): 3047-3053.
    [3] 甄启雄,叶保辉,刘劲刚,计量年,王雷.多吡啶钌配合物的合成 及插入配体的位阻效应对键合DNA的影响[J].高等学校化学学报,1999,20(11):1661-1666.
    [4] B. P. Sullivan, D. J. Salmon, T. J. Meyer. Mixed phosphine 2,2'-bipyridine complexes of ruthenium [J]. Inorg. Chem. 1978, 17 (12): 3334-3341.
    [5] 查全性等,电极过程动力学导论[M],北京,科学出版社,2002:104.
    [6] 愈马宏,靳松,陆路德,等.钌(Ⅱ)的氮杂环配体配合物的CNDO/2理论研究[J].无机化学学报,1997,13(3):276-279.
    [7] 魏丽勤,柳波,李岩.动蛋白相关蛋白在烟草花粉管高尔基体上的存在与分布[J].科学通报,2005,50(17):1852-1857.
    [8] 李勤,俞信,胡新奇,马瑜,张同存,曹恩华.超高灵敏度荧光显微镜及其在生物学中的应用[J].光学学报,2000,20(4):533-537.
    [9] H. Li, Z. H. Xu, D. W. Pang, J. Z. Wu, L. N. Ji, Z. H. Lin. DNA-promoted electrochemical assembly of [Ru(bpy)_2IP]~(3+/2+) at an ITO electrode [J]. Electrochim. Acta, 2006, 51 (10): 1996-2002.
    [10] H. Li, Y. J. Liu, J. Xu, Z. H. Xu, L. N. Ji, W. S. Li , H. Y. Chen. DNA-enhanced assembly of [Ru(bpy)_2ITATP]~(3+/2+) on an ITO electrode [J]. Electrochim. Acta, 2007, 52 (15): 4956-4961.
    [11] P. U. Maheswari, M. Palaniandavar. DNA binding and cle-avage activity of [Ru(NH_3)_4(diimine)]Cl_2 complexes [J]. Inorg. Chim. Acta, 2004, 357: 901-912.
    [12] A. Fahnrich, M. Pradam, G. G. Guilbault. Recent application of electrogenerated chemiluminescence in chemical analysis [J]. Talanta, 2004, 54 (4): 531-559.
    [13] M. M. Richter. Electrochemiluminescence [J]. Chem Rev., 2004, 104 (6): 3003-3036.
    [14] M. T. Chiang, C. W. Whang. Tris(2,2'-bipyridyl)ruthenium (Ⅲ) based electrochemiluminescence detector with indium/tin oxide working electrode for capillary electrophoresis [J]. J. Chrom. A, 2001, 934 (1-2): 59-66.
    [15] E. R. Shepherd. Chromatographic and related electrophoretic methods in the separation of transition metal complexes or their ligands [J]. Coord. Chem. Rev., 2003, 247: 147-184.
    [16] X. Chen, M. Sato, Y. J. Lin, et al. Study of the Electrochemi-luminescence Based on Tris (2,2'-bipyridine) Ruthenium(Ⅱ) and Alcohols in a Flow Injection System [J]. Microchem. J., 1998, 58(1): 13-20.
    [17] X. B. Yin, E. K. Wang. Capillary electrophoresis coupling with electrochemiluminescence detection: a review [J]. Anal. Chim. Acta, 2005, 533 (4): 113-120.
    [18] W. Miao, J. P. Choi, A. J. Bard. Electrogenerated Chemi- luminescence 69: The Tris(2,2'-bipyridine)ruthenium(Ⅱ), (Ru- (bpy)_3~(2+))/Tri-n-propylamine (TPrA)System Revisited-A New Route Involving TPrA~+ Cation Radicals [J]. J. Am. Chem. Soc., 2002, 124 (48): 14478-14485.
    [19] A. W. Knight, G. M. Greenway. Relationship between structural attributes and observed electrogenerated chemi- luminescence (ECL) activity of tertiary amines a potential analytes for the tris (2, 2'-bipyridine) ruthenium (Ⅱ) ECL reaction [J]. Analyst, 1996, 121 (11): 101R-106R.
    [20] I. Rubinstein, A. J. Bard. Electrogenerated chemiluminescence. 37. Aqueous ecl systems based on tris(2,2'-bipyridine) ruthenium (2+) and oxalate or organic acids [J]. J. Am. Chem. Soc, 1981, 103 (3): 512-516.
    [21] F. Li, X. Q. Lin, H. Cui. Comparative studies on the electrogenerated chemiluminescent and amperometric behavior of the Ru(bpy)_3~(2+) system on a paraffinimpregnated graphite electrode and a glassy carbon electrode [J]. J. Electroanal. Chem., 2002, 534 (1): 91-98.
    [22] H. Wang, G. Xu, S. Dong. Electrochemiluminescence of di- chlorotris (1,10-phenanthroline) ruthenium (Ⅱ) with peroxydisulfate in purely aqueous solution at carbon paste electrode [J]. Microchem. J., 2002, 72(1): 43-48.
    [23] P. E. Michel, N. F. De Rooij, M. Koudelka-Hep, et al. Redox- cycling type electrochemiluminescence in aqueous medium. A new principle for the detection of proteins labeled with a ruthenium chelate [J]. J. Electroanal.Chem., 1999, 474 (2): 192-194.
    [24] H. S. White, A. J. Bard. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2'-bpy)_3~(2+)-S_2O_8~(2-) system in acetonitrile-water solutions [J]. J. Am. Chem. Soc., 1982, 104 (25): 6891-6895.
    [1] E. V. Bichenkova, X. Yu, P. Bhadra, H. Heissigerova, S. J. A. Pope, B. J. Coe, S. Faulkner, K. T. Douglas. DNA mismatch de- tection by resonance energy transfer between ruthenium (Ⅱ) and osmium(Ⅱ)tris(2,2'-bipyridyl) chromophores [J]. Inorg. Chem., 2005, 44 (12):4112-4114.
    [2] A. C. S. Samia, J. Cody, C. J. Fahmi, C. Burda. The effect of ligand constraints on the metal-to-ligand charge-tranfer relaxation dynamics of copper(Ⅰ)-phenanthroline complexes: A comparative study by femtosecond time-resolved spectroscopy [J]. J.Phys. Chem., 2004. 108 (2): 563-569.
    [3] P. Lincoln, A. Broo, B. Norden. Diastereomeric DNA-binding geometries of intercalated ruthenium (Ⅱ) trischelates probed by linear dichroism: [Ru(phen)_2DPPZ]~(2+) and [Ru(phen)_2BDPPZ]~(2+) [J]. J. Am. Chem. Soc., 1996, 118 (11): 2644-2653.
    [4] F. Pierard, A. K.-De Mesmaeker. Bifunctional transition metal complexes as nucleic acid photoprobes and photoreagents [J]. Inorg. Chem. Commun., 2006, 9, (1): 111-126.
    [5] M. A. Haga, M. Ohta, H. Machida, M. Chikira, N. Tonegawa. Point-to-point capture of DNA with the aid of intercalation by immobilized rod-shaped Ru complexes at solid surface towards nanowiring [J]. Thin Solid Films, 2006, 499 (1-2): 201-206.
    [6] A. Romerosa, T. Campos-Malpartida, C. Lidrissi, M. Saoud, M. Serrano-Ruiz, M. Peruzzini, J. A. Garrido-Cardenas, F. Garcia- Maroto. Synthesis, characterization, and DNA binding of new water-soluble cyclopentadienyl ruthenium (Ⅱ) complexes incurpo- rating phosphines [J]. Inorg. Chem. 2006, 45 (3): 1289-1298.
    [7] 张黔玲,刘剑洪,任祥忠,魏波,徐宏,张培新,刘建忠,计亮年.不同配体对多吡啶钌配合物与DNA的作用和荧光性质的影响[J].无机化学学报,2003,19(6):645-649.
    [8] 王菊平,林丽君,陈锦灿,吴文娟,云逢存.[Ru(bpy)_2L]~(2+)、[Ru(phen)_2L]~(2+)(L=pytp,pztp)电子结构与抗癌活性研究[J].化学物理学 报,2005,18(4):547-551.
    [9] 邓洪,李红,徐宏,计亮年.配体的空间构型及疏水性对钌(Ⅱ)多吡啶配合物与DNA作用的影响[J].化学学报,2002,60(12):2159-2166.
    [10] 施锋,李宏洋,彭孝军,孙立成,孙世国,陈小强,张蓉.一种带有酯基并键合电子给体的新型Ru(bpy)_3的设计、合成及光谱和电化学性能[J].化学学报,2004,62(7):713-719.
    [11] H. Chao, B. H. Ye, H. Li, R. H. Li, J. Y. Zhou, L. N. Ji. Synthesis, electrochemical and spectroscopic properties of ruthenium(Ⅱ) complexes containing 1,3-bis([1,10]phenanthroline-[5,6- d]imidazol-2-yl)benzene [J]. Polyhedron, 2000, 19 (16-17): 1975-1983.
    [12] 吴建中,陈胜,计亮年.咪唑并邻菲咯啉类配体的钌配合物的光谱研究[J].分析测试学报,1999,18(2):17-20.
    [13] P. U. Maheswari, V. Rajendiran, M. Palaniandavar, R. Thomas, G. U. Kulkarni. Mixed ligand ruthenium(Ⅱ) complexes of 5,6-dimethyl-1,10-phenanthroline: The role of ligand hydropho- bicity on DNA binding of the complexes [J]. Inorg. Chim. Acta, 2006, 359 (14): 4601-4612.
    [14] A. Wolf, G. H. Shimer, Jr. T. Meehan. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochem., 1987, 26 (20): 6392-6396.
    [15] Q. X. Zhen, B. H. Ye, Q. L. Zhang, J. G. Liu, H. Li, L. N. Ji, L. Wang. Synthesis, characterization and the effect of ligand pla- narity of [Ru(bpy)_2L]~(2+) on DNA binding affinity [J]. J. Inorg. Biochem., 1999, 76 (1): 47-53.
    [16] A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro, J. K. Barton. Mixed-ligand complexes of ruthenium(Ⅱ): factors governing binding to DNA [J]. J. Am. Chem. Soc., 1989, 111 (8): 3051-3059.
    [17] A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton. A molecular light switch for DNA: Ru(bpy)_2(dppz)~(2+) [J]. J. Am. Chem. Soc., 1990, 112 (12): 4960-4962.
    [1] J. Liu, W. J. Mei, L. J. Lin, K. C. Zheng, H. Chao, F. C. Yun, L. N. Ji. Electronic effects on the interactions of complexes [Ru-(phen)_2(p-L)]~(2+) (L=MOPIP, HPIP, and NPIP) with DNA. Inorg. Chim. Acta [J], 2004, 357 (1): 285-293.
    [2] Q. L. Zhang, J. H. Liu, X. Z. Ren, H. Xu, Y. Huang, J. Z. Liu, L. N. Ji. A functionalized cobalt(Ⅲ) mixed-polypyridyl complex as a newly designed DNA molecular light switch [J]. J. Inorg. Biochem., 2003, 95 (2-3): 194-198.
    [3] 凌连生,何治柯,吴风武,罗庆尧,曾云鹗.核酸分子“光开关”的研究进展[J].高等学校化学学报,2000,21(4):527-531.
    [4] 张黔玲,刘剑洪,任祥忠,张培新,王芳,李翠华,刘建忠,计亮年.新型双核配合物的形成及荧光性质研究[J].高等学校化学学报,2006,27(10):1805-1810.
    [5] 张黔玲,刘剑洪,任祥忠,张培新,李翠华,王芳,徐宏,刘建忠,计亮年.新型双核配合物的形成、与DNA的作用机制及荧光性质研究[J].化学学报.2006,64(10):968-974.
    [6] P. J. Dandliker, R. E. Holmlin, J. K. Barton. Oxidative thymine dimer repair in the DNA helix [J]. Science, 1997, 275: 1464-1468.
    [7] E. K. Wilson. Flurry of new research, heated debate focuses on biomolecule. Insulator or wire? [J]. Chem. Eng. News, 1997, (75): 33-39.
    [8] 梅文杰,刘杰,李安兴,黄绮雯,计亮年.钌卟啉[Ru(bpy)_2-(MPyTPP)Cl]~+与DNA作用的研究[J].高等学校化学学报,2002,23(11):2049-2051.
    [9] 张黔玲,刘剑洪,徐宏,任祥忠,魏波,黄毅,张培新,刘建忠,计 亮年.不同配体对多吡啶钌配合物与DNA的作用和荧光性质的影响[J].无机化学学报,2003,19(6):660-664.
    [10] 张黔玲,刘剑洪,任祥忠,魏波,徐宏,张培新,刘建忠,计亮年.[Ru(bpy)_2tpphz]~(2+)与Zn~(2+)形成的双核配合物的荧光性质研究[J].无机化学学报,2003,19(6):645-648.
    [11] 郝强,段智明,韩美娇,郑帅至,吕媛媛,王科志.新型DNA分子光开关钌(Ⅱ)配合物的研究[J].高等学校化学学报,2006,27(7):1217-1219.
    [12] Y. J. Liu, H. Chao, J. H. Yao, L. F. Tan, Y. X. Yuan, L. N. Ji. Ruthenium(Ⅱ) complexes containing asymmetric 2-(pyrazin-2-yl) naphthoimidazole: syntheses, characterization, DNA-binding and photocleavage studies [J]. Inorg. Claim. Acta, 2005, 358 (6): 1904-1910.
    [1] L. F. Tan, B. H. Ye, H. Li, et al. Synthesis, characterization, DNA-binding and photocleavage studies of [Ru(bpy)_2(PPIP)]~(2+) and [Ru(phen)_2(PPIP)]~(2+) [J]. J. Inorg. Biochem., 2005, 99: 513-520.
    [2] J. G. Liu, B. H. Ye, H. Li, et al. Polypyridyl ruthenium(Ⅱ) complexes containing intramolecular hydrogen-bond ligand: syntheses, characterization, and DNA-binding properties [J]. J. Inorg. Biochem., 1999, 76: 265-271.
    [3] 愈马宏,靳松,陆路德,等.钌(Ⅱ)的氮杂环配体配合物的CNDO/2理论研究[J].无机化学学报,1997,13(3):276-279.
    [4] 俞马宏,靳松,杨绪杰,等.配体结构对钌(Ⅱ)联吡啶配合物的电子结构的影响[J].无机化学学报,1998,14(3):276-280.
    [5] C. Moucheron, A. Kirsch-De Mesmaeker, S. Choua. Photophysics of Ru(phen)_2(PHEHAT)~(2+): A Novel "Light Switch" for DNA and Photo- oxidant for Mononucleotides [J]. Inorg. Chem., 1997, 36 (4): 584-592.
    [6] Q. X. Zhen, B. H. Ye, J. G. Liu, et al. Synthesis, Characterization and DNA-binding properties of [Ru(phen)_2taptp]~(2+) and [Ru(phen)_2daptp]~(2+) [J]. Inorg. Chim. Acta, 2000, 303: 141-147.
    [7] P. U. Maheswari, M. Palaniandavar. DNA binding and cleavage activity of [Ru(NH_3)_4(diimine)]Cl_2 complexes [J]. Inorg. Chim. Acta, 2004, 357: 901-912.
    [8] S. Chardon-Noblat, P. D. Costa, A. Deronzier, et al. Electro-polymerization of [Ru(bpy)(CO)_2Cl_2] (bpy-2,2'-bipyridine: a revisited trans versus cis(Cl) isomeric influence study [J]. J. Electroanal. Chem., 2004, 90: 62-69.
    [9] P. K. Santra, T. K. Misra, D. Das, et al. Chemistry of azopyri-midines. Part Ⅱ. Synthesis, spectra, electrochemistry and X- ray crystal structures of isomeric dichloro bis[2-(arylazo)- pyrimidine] complexes of ruthenium(Ⅱ) [J]. Polyhedron, 1999, 18 (22): 2869-2878.
    [10] M. C. Lu, C. W. Whang. The role of direct oxalate oxidation in electrogenerated chemiluminescence of poly(4-vinylpyridine)-bound RuCopy)_2Cl~+/oxalate system on indium tin oxide electrodes [J]. Anal. Chim. Acta, 2004, 52: 25-33.
    [11] N. R. Armstrong, A. W. C. Lin, M. Fujihira, T. Kuwana. Electro-chemical and surface characteristics of tin oxide and indium oxide electrodes. Anal. Chem., 1976, 48 (4): 741-750.
    [12] J. Kim. Voltammetric Studies of Guanine and Its Derivatives by Ru(bpy)~(2+/3+) Mediator on Indium Tin Oxide Electrode. Bull. Korean Chem. Soc. 2000, 21 (7): 709-711.
    [13] A. J. Bard. L. R. Faulkner. Electrochemical Methods[M], New York: Wiley, 1980; p218.
    [14] H. Li, Z. H. Xu, D. W. Pang, J. Z. Wu, L. N. Ji, Z. H. Lin. DNA-promoted electrochemical assembly of [Ru(bpy)_2IP]~(3+/2+) at an ITO electrode [J]. Electrochim. Acta, 2006, 51 (10): 1996-2002.
    [1] S. Y. Gao, X. Li, C. P. Yang, T. H. Li, R. Cao. Layer-by-layer assembly of multilayer films of polyoxometalates and tris(phenanthrolinedione) complexes of transition metals [J]. J. Solid State Chem. 2006, 179 (5): 1407-1414.
    [2] Y. T. Hsueh, R. L. Simith, M. A. Northrup. A microfabricated, electrochemilumiescence cell for the detection of amplified DNA [J]. Sensor Actuat. B-Chem. 1996, 33: 110-114.
    [3] S. Nitahara, N. Terasaki, T. Akiyama, S. Yamada. Fabrication and photoelectrochemical properties of electron donoracceptor assemblies via titanium oxide interlayers [J]. Thin Solid Films, 2003, 438-439: 230-234.
    [4] G. Decher. Fuzzy nanoassemblies: Toward layered polymeric multi-composites [J]. Science, 1997, 277: 1232-1237.
    [5] Y. Du, H. Wei, J. Z. Kang, J. L. Yan, X. B. Yin, X. R. Yang, E. K. Wang. Microchip Capillary Electrophoresis with Solid-State Electrochemiluminescence Detector [J]. Anal. Chem., 2005, 77 (24): 7993-7993.
    [6] M. Fujihara, K. Aoki, S. Inoue, H. Takemura, H. Muraki, S. Aoyagui. Dye sensitization on SnO_2 and Au electrodes chemically modified with Langmuir-Blodgett films of surfactant derivatives of rhodamine B and Ru(Ⅱ)(bpy)_3~(2+) complexes [J]. Thin Solid Films, 1985, 132 (1-4): 221.
    [7] T. Taniguchi, Y. Fukasawa, T. J. Miyashita. Photoelectrochemical Response of Polymer Langmuir-Blodgett Films Containing Tris (2,2'-bipyridine)ruthenium(Ⅱ) Complex [J]. J. Phys. Chem. B, 1999, 103 (11): 1920-1924.
    [8] N. Fukuda, M. Mitsuishi, A. Aoki, T. Miyashita. Photocurrent Enhancement for Polymer Langmuir-Blodgett Monolayers Containing Ruthenium Complex by Surface Plasmon Resonance [J]. J. Phys. Chem. B, 2002, 106 (28): 7048-7052.
    [9] T. Miyashita, A. Aoki, J. Chen, Critical thermal variation of displacement of alkanethiols in self-assembled films [J]. Chem. Commun. 2002, 4 (6): 521-526.
    [10] M. Lahav, V. Heleg-Shabtai, J. Wasserman, E. Katz, I. Willner, H. Durr, Y. Z. Hu, S. H. Bossmann. Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays [J]. J. Am. Chem. Soc., 2000,122 (46): 11480-11487.
    [11] N. Terasaki, T. Akiyama, S. Yamada. Structural Characterization and Photoelectrochemical Properties of the Self-Assembled Monolayers of Tris(2,2'-bipyridine)ruthenium(Ⅱ)-Viologen Linked Compounds Formed on the Gold Surface [J]. Langmuir, 2002, 18 (22): 8666-8671.
    [12] T. Akiyama, K. Inoue, Y. Kuwahara, N. Terasaki, Y. Niidome, S. Yamada. Particle-size effects on the photocurrent efficiency of nanostructured assemblies consisting of gold nanoparticles and a ruthenium complex-viologen linked thiol [J]. J. Elcctroanal. Chem., 2003, 550-551: 303-307.
    [13] A. Aramata, S. Takahashi, G. Yin, Y. Gao, Y. Inose, H. Mihara, A. Tadjeddine, W. Q. Zheng, O. Plucheryd, A. Bittner, A. Yamagishi. Ligand grafting method for immobilization of metal complexes on a carbon electrode [J]. Thin Solid Films, 2003, 424 (1-2): 239-242.
    [14] F. Geneste, C. Moinet. Electrocatalytic oxidation of alcohols by a [Ru(tpy)(phen)(OH_2)]~(2+)-modified electrode [J]. J. Electroanal. Chem., 2006, 594 (2): 105-110.
    [15] P. He, M. Bayachou. Layer-by-Layer Fabrication and Charac-terization of DNA-Wrapped Single-Walled Carbon Nanotube Par-tides [J]. Langmuir, 2005, 21: 6086-6092.
    [16] J. F. Rusling. Sensors for toxicity of chemicals and oxidative stress based on electrochemical catalytic DNA oxidation[J]. Biosens. Bioelectron. 2004, 20: 1022-1028.
    [17] C. Luo, D. M. Guldi, M. Maggini, E. Menna, S. Mondini, N. A. Kotov, M. Prato. Stepwise Assembled Photoactive Films Containing Donor-Linked Fullerenes [J]. Angew. Chem. Int. Ed. Engl., 2000, 39 (21): 3905-3909.
    [18] A. F. Martin, T. A. Nieman. Chemiluminescence biosensors using tris(2,2'-bipyridyl)ruthenium(Ⅱ) and dehydrogenases immobilized in cation exchange polymers [J]. Biosens. Bioelectron., 1997, 12 (6): 479-489.
    [19] S. Rauf, J. J. Gooding, K. Akhtar, M. A. Ghauri, M. Rahman, M. A. Anwar, A. M. Khalid. Electrochemical approach of anticancer drugs-DNA interaction [J]. J. Pharmaceut. Biomed. Anal., 2005, 37 (2): 205-217.
    [20] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belster, A. Zelewsky. Ru(Ⅱ) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence [J]. Coor. Chem. Rev., 1988, 84: 85-277.
    [21] E. S. Handy, A. J. Pal, M. F. Rubner. Solid-State Light-Emitting Devices Based on the Tris-Chelated Ruthenium(Ⅱ) Complex. 2. Tris(bipyridyl)ruthenium(Ⅱ) as a High-Brightness Emitter [J]. J. Am. Chem. Soc., 1999, 121 (14): 3525-3528.
    [22] V. Balzani, A. Juris. Photochemistry and photophysics of Ru(Ⅱ)-polypyridine complexes in the Bologna group. From early studies to recent developments [J]. Coor. Chem. Rev., 2001, 211 (1): 97-115.
    [23] M. W. Grinstaff. How Do Charges Travel through DNA?-An Update on a Current Debate [J]. Angew. Chem. Int. Ed., 1999, 38 (24): 3629-3635.
    [24] A. Harriman. Electron tunneling in DNA [J]. Angew. Chem. Int. Ed., 1999, 38 (7): 945-949.
    [25] C. Li, T. Hatano, M. Takeuchi, S. Shinkai. Facile design of poly(3,4-ethylenedioxythiophene)-tris(2,2'-bipyridine)ruthenium (Ⅱ) com-posite film suitable for a three-dimensional light-harvesting system [J]. Tetrahedron, 2004, 60 (37): 8037-8041.
    [26] L. F. Tan, H. Cao, H. Li, Y. J. Liu, B. Sun, W. Wei, L. N. Ji. Synthesis, characterization, DNA-binding and photocleavage studies of [Ru(bpy)_2(PPIP)]~(2+) and [Ru(phen)_2(PPIP)]~(2+) [J]. J. Inorg. Biochem., 2005, 99 (2): 513-520.
    [27] M. T. Carter, M. Rodriguez, A. J. Bard. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(Ⅲ) and iron(Ⅱ) with 1,10-phenanthroline and 2,2'-bipyridine [J]. J. Am. Chem. Soc., 1989, 111 (24): 8901-8911.
    [28] D. W. Pang, H. D. Abruna. Micromethod for the Investigation of the Interactions between DNA and Redox-Active Molecules [J]. Anal. Chem., 1998, 70 (15): 3162-3169.
    [29] P. T. Selvi, M. Palaniandavar. Spectral, viscometric and electrochemical studies on mixed ligand cobalt (Ⅲ) complexes of certain diimine ligands bound to calf thymus DNA [J]. Inorg. Chim. Acta, 2002, 337: 420-428.
    [30] M. Aslanoglu, C. J. Isaac, A. Houlton, B. R. Horrocks. Voltammetric measurements of the interaction of metal complexes with nucleic acids[J]. Analyst, 2000, 125: 1791-1798.
    [31] W. J. Miao, A. J. Bard. Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)_3]~(2+)- Containing Microspheres [J]. Anal. Chem., 2004, 76 (18): 5379-5386.
    [32] G. C. Zhao, J. J. Zhu, H. Y. Chen. Spectroelectrochemical Studies on the Interactions of Complexes of Cu(phen)_2~(2+) and Cu(bpy)_2~(2+) with DNA [J]. Chem. Res. Chinese Univ. 1997, 13 (2): 117-125.
    [33] J. Labuda, M. Buckova, M. Vanickova, J. Mattusch, R. Wennrich. Voltammetric detection of the DNA interaction with. copper complex compounds and damage to DNA [J]. Electroanalysis, 1999, 11: 101-107.
    [34] A. Liu, J. Anzai, J. Wang. Multilayer assembly of calf thymus DNA and poly(4-vinylpyridine) derivative bearing [Os(bpy)_2Cl]~(2+): redox behavior within DNA film [J]. Bioelectrochem., 2005, 67 (1): 1-6.
    [35] C. Giaginis, E. Gatzidou, S. Theocharis. DNA repair systems as targets of cadmium toxicity [J]. Toxicol. Appl. Pharmacol., 2006, 213 (3): 282-290.
    [36] H. Li, Z. H. Xu, D. W. Pang, J. Z. Wu, L. N. Ji, Z. H. Lin. DNA-promoted electrochemical assembly of [Ru(bpy)_2IP]~(3+/2+) at an ITO electrode [J]. Electrochim. Acta, 2006, 51 (10): 1996-2002.
    [37] 甄启雄,叶保辉,刘劲刚,计量年,王雷.多吡啶钌配合物的合成及插入配体的位阻效应对键合DNA的影响[J].高等学校化学学报,1999,20(11):1661-1666.
    [1] Y. Du, H. Wei, J. Kang, et al. Microchip Capillary Electrophoresis with Solid-State Electrochemiluminescence Decetor [J]. Anal. Chem., 2005, 77 (24): 7993-7997.
    [2] K. A. Fahnrich, M. Prabda, G. G. Guilbault. Recent application of electrogenerated chemiluminescence in chemical analysis [J]. Talanta, 2004, 54 (4): 531-559.
    [3] M. Zhou, G. P. Robertson, J. Roovers. Comparative study of ruthenium (Ⅱ) tris (bipyridine) derivatives for electrochemi- luminescence application [J]. Inorg. Chem., 2005, 44: 8317-8325.
    [4] H. Wang, G. Xu, S. Dong. Electrochemiluminescence of dichlorotris (1,10-phenanthroline) ruthenium (Ⅱ) with peroxy-disulfate in purely aqueous solution at carbon paste electrode [J]. Microchem. J., 2002, 72 (1): 43-48.
    [5] P. Y. Liang, P. W. Chang, C. M. Wang. Can clay emit light? Ru(bpy)_3~(2+)-modified clay colloids and their application in the detection of glucose [J]. J. Electroanal. Chem., 2003, 560: 151-159.
    [6] H. Y. Wang, G. B. Xu, S. J. Dong. Classification of DNA-binding mode of antitumor and antiviral agents by the electro- chemiluminescence of ruthenium complex [J]. Talanta, 2001, 55: 61-67.
    [7] C. Z. Zhao, N. Egashira, Y. Kurauchi, et al. Electrochemi- luminescence oxalic acid sensor having a platinum electrode coated with chitosan modified with a ruthenium (Ⅱ) complex [J]. Electro-chim. Acta, 1998, 43 (14-15): 2167-2173.
    [8] H. Y. Wang, G. B. Xu, S. J. Dong. Electrochemiluminescence sensor using tris (2,2'-bipyridyl) ruthenium (Ⅱ) immobilized in Eastman-AQ55D-silica composite thin-films [J]. Anal. Chim. Acta, 2003, 480 (2): 285-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700