钢铁企业煤气系统预测及优化调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁企业煤气系统与主生产系统紧密耦合,当生产工况发生变化时,煤气的发生量、消耗量也会随之变化,规律性弱,依靠人工经验无法对其发生量、消耗量进行准确的预测,从而直接导致调度的滞后,考虑到大部分工况都是事后调度,而这在一定程度上会造成能源的严重浪费,尤其当有些工况出现时若发生事后调度时间过长,更会给煤气系统稳定高效运行带来压力。为解决上述问题,论文从煤气的半生命周期出发,系统全面地识别和评估影响煤气利用的各类因素,采用逐层递进优化的建模思路,建立了煤气系统分类预测模型,在预测模型的基础上从煤气系统全局出发,以固定用户、可变用户消耗燃料量最小为目标,考虑缓冲用户消耗煤气特性,采用规则调度与概率调度,建立优化调度模型;并基于模型研究了应用企业的煤气利用问题。具体研究内容如下:
     (1)在准确识别钢铁企业煤气发生、消耗影响因素的基础上,针对机理模型预测精度不高的实际情况,建立了SVC-HP-ENN-LSSVM-MC分类预测模型。整个建模过程采用预测前模型识别,预测中针对数据性质分解数据进行预测,预测后进行修正的方式。基于钢铁企业煤气发生、消耗频繁波动特性,首先利用SVC对煤气量进行工况分类,对不同工况建立不同模型进行预测。为描述不同工况煤气发生、消耗特性本文提出利用HP滤波把原始数据序列分为趋势序列和波动序列,融合Elman神经网络和最小二乘支持向量机优势分别对趋势序列和波动序列建立预测模型进行预测。并对预测后的残差序列,引入马尔科夫链状态转移矩阵进行修正。利用钢铁企业实际数据对所建模型进行Wilcoxon符号秩检验表明:在离线建立分类模型的基础上,建立不同工况的预测模型,能够反映所有工况,不仅减少了在线训练时间,而且可有效提高预测精度,尤其是当工况改变时,效果更佳。
     (2)依据钢铁企业煤气用户产消特性及煤气产生、消耗的预测结果,构建煤气系统优化调度模型。综合考虑煤气用户的热值要求、煤气混合熵增引起的能量损失及缓冲用户的缓冲能力等,以燃料消耗量最小为目标,遵循按质用能,达到能源梯级利用的目的,使能源结构趋于最优化,在此基础上建立优化调度模型。同时为减少计算过程的复杂程度,在调度过程中主要考虑固定用户、可变用户和缓冲用户,对于转换用户不纳入计算。本文所建立的煤气系统优化调度模型改变了以往单纯考虑固定用户、可变用户,而不考虑缓冲用户特性的缺陷。
     (3)为使煤气系统全局能源利用效率最高,本文提出两种建模方法对缓冲用户消耗煤气量进行调整。方法一:根据自备电厂锅炉工作特性,建立燃料消耗与锅炉负荷间的关系模型,从而得到锅炉运行经济区域,并在此基础上,建立缓冲用户煤气优化调度规则,保证煤气柜在安全范围内运行,并使锅炉在经济区域或靠近经济区域运行;方法二:在缓冲用户经济效益目标函数中采用变权惩罚函数处理能源成本和运行风险间的关系,提出了协调缓冲用户煤气调度的经济性和运行风险间关系的概率模型。通过建立锅炉变权惩罚函数、煤气柜柜位变权惩罚函数,能科学合理地描述调度情况,有效避免常规多目标优化时人为定权重与实际煤气波动情况相距甚远,导致对惩罚估计偏差较大,影响正确决策。
     本论文建立了钢铁企业煤气系统预测和优化调度模型。所建预测模型与其它模型相比具有较高的预测精度,并且具有适应工况时变的能力,煤气量预测平均相对误差都小于或等于2.3%,并通过了Wilcoxon符号秩检验,满足工业生产需要。针对典型工况得到的调度方案合理、实用,调度结果表明:运用所建预测调度模型,应用于钢铁企业正常生产工况将节约煤气折标煤16.63kgce/t钢,按此计算一年将节约197956.29toe,节能潜力巨大。
Gas system of iron and steel enterprises enjoys close coupling with main production system. With the change of production conditions, occurrence and consumption of gas will change accordingly but with small regularity. Personal experiences can not predict gas consumption accurately, which leads to the backwardness of management. Given that most production condition are controlled after the change, especially when it takes long time to control it, it will cause huge waste of energy, and bring high pressure on the operation of gas system. In order to solve the above problems, starting from the half life circle of gas, this paper systematically defines and evaluates factors affecting gas utilization. It adopts the thinking of gradual optimization and establishes a prediction model of classifying gas system. With this prediction model, this paper takes a perspective of overall situation of gas system, targeting at the minimum consumption of fixed and variable users. Taking the characteristics of potential users'using gas into consideration, a model of optimized scheduling is constructed. Gas utilization of enterprises is explored based on the scheduling model. Detailed investigation is as follows.
     (1) Based on the identification of factors affecting gas occurrence and consumption in iron and steel enterprises, a SVC-HP-ENN-LSSVM-MC classification prediction model is established to cope with the reality of little prediction accuracy of the mechanistic model. The whole modeling process adopts the recognition of pre-prediction model, that is, data is predicted based on their qualities and then modified correspondingly. The occurrence and consumption of gas in iron and steel enterprises fluctuate frequently. SVC is used to classify the production condition and different prediction models are built to deal with different production conditions. HP wave filtering is used to divide original data sequence into trend and volatility series. Elman neural network and advantages of least square support vector machine are combined to build a prediction model. After prediction, Markov transition matrix is introduced to modify residual series. Wilcoxon rank test is conducted to examine data of iron and steel enterprises. Results show that:based on offline classification model, prediction models reflecting all production conditions are established, which not only reduces online training time, but also improves the accuracy of prediction, especially when the production condition changes, the outcome is more satisfactory.
     (2) Based on consumption characteristics of gas users and prediction results of gas occurrence and consumption in iron and steel enterprises, the paper builds a optimized scheduling model of gas system based on factors like heat demand by gas users, energy loss in gas mixing entropy and users' interruptible capacity. It aims at the minimum fuel consumption. In line with its quality, energy cascade utilization is realized. Meanwhile, in order to reduce the computational complexity, fixed users, variable users and interruptible users are taken into calculation except transferred users. This model compensates the drawback of ignoring interruptible users.
     (3) In order to realize the utmost utilization of gas as a whole, this paper presents two modeling approaches for interruptible users to adjust the consumed amount of gas. Method1:according to the working features of captive power plant boilers, a model reflecting the relation between fuel consumption and boiler load is built to acquire boilers' economic area. Based on this model, optimal scheduling rules to ensure gas operates with safety within the economic area is set up for interruptible users. Method2:in the objective function of interruptible users'economic benefits, variable weight penalty function is adopted to deal with the relation between energy cost and operational risks. It presents probability model coordinating the relationship between economic quality of scheduling and operational risks for interruptible users. Boilers' variable weight penalty function and gas tank counter variable weight penalty function, are constructed to scientifically and reasonably depict scheduling situation, which effectively avoids the shortage of conventional multi-objective optimization that artificially fixed weights is far from the actual gas fluctuation, leading to large deviation of penalty estimation and making hcorrect decisions.
     The paper establishes prediction and optimized scheduling models of gas system in iron and steel enterprises. The prediction model enjoys high accuracy than other models, and has the capability to adapt to production condition's change. The average relative error of gas consumption prediction is less than or equal to2.3%, and endures Wilcoxon rank test, which meets the need of industrial production. For typical operating conditions, the scheduling scheme is reasonable and practical. Results show that:if the prediction and scheduling models apply in iron and steel enterprises with normal production conditions, it will save gas about16.63kgce/t steel and save197956.29tce per year, which enjoys broad prospects for energy saving.
引文
[l]王社斌,许并社.钢铁生产节能减排技术[M],化学工业出版社:北京,2009.
    [2]刘鸿亮,曹凤中.节能减排与钢铁工业的发展[J].中国地质大学学报,2008,8(3):28-30.
    [3]张琦,蔡九菊,杜涛.钢铁联合企业煤气系统优化利用[J].冶金能源,2005,24(5):9-11.
    [4]Teruo Okazaki, Mitsutsune Yamaguchi. Accelerating the transfer and diffusion of energy saving technologies steel sector experience-Lessons learned[J]. Energy Policy, 2011:39:1296-1304.
    [5]Qiang Wang, Yong Chen. Energy saving and emission reduction revolutionizing China's environmental protection[J]. Renewable and Sustainable Energy Reviews,2010,14: 535-539.
    [6]Feng He, Qingzhi Zhang, Jiasu Lei et al. Energy efficiency and productivity change of China's iron and steel industry:Accounting for undesirable outputs[J]. Energy Policy, 2013,54:204-213.
    [7]Z.C. Guo, Z.X. Fu. Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China[J]. Energy,2010,35:4356-4360.
    [8]Ali Hasanbeigi, William Morrow, Jayant Sathaye. A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry[J]. Energy,2013,50:315-325.
    [9]胡亚敏,胡亚慧,方其庆等.我国钢铁企业环境与经济协调发展评价分析[J].计算机与数字工程,2012,40(9):27-28.
    [10]李贵奇,聂祚仁,周和敏等.钢铁生产的环境协调性评价[J].中南工业大学学报,2002,33(2):145-147.
    [11]翟圣佳,任洪岩,苏艺等.我国钢铁行业环境现状分析与对策研究[J].环境保护科,2012,38(3):106-110.
    [12]Mikihiro Hayashi, Tomohiro Mimura. Steel Industries in Japan Achieve Most Efficient Energy Cut-off Chemical Absorption Process for Carbon Dioxide Capture from Blast Furnace Gas[J]. Energy Procedia,2013,37:7134-7138.
    [13]Wei Hsin Chen, Mu Rong Lin, Tzong Shyng Leu. An evaluation of hydrogen production from the perspective of using blast furnace gas and coke oven gas as feedstocks[J]. International Journal of Hydrogen Energy,2011,36(18):11727-11737.
    [14]Reduction Behavior of Sinter Based on Top Gas Recycling-Oxygen Blast Furnace[J]. Journal of Iron and Steel Research, International,2012,19(9):13-19.
    [15]M. Modesto, S.A. Nebra. Exergoeconomic analysis of the power generation system using blast rnace and coke oven gas in a Brazilian steel mill[J]. Applied Thermal Engineering,2009,29(11/12):2127-2136.
    [16]M.G Rasul, B.S. Tanty, B. Mohanty. Modelling and analysis of blast furnace performance for efficient utilization of energy[J]. Applied Thermal Engineering,2007, 27(1):78-88.
    [17]JaeOu Choi, JangGyu Kim. CO2 Reduction by blast furnace top gas recycling combined with waste hydrocarbon gasification[J]. Studies in Surface Science and Catalysis,2004,153:125-130.
    [18]Y. Jianwei, S. Guolong, K. Cunjiang, et al. Oxygen blast furnace and combined cycle (OBF-CC)-an efficient iron-making and power generation process[J]. Energy,2003, 28(8):825-835.
    [19]党占东,崔安平.高炉煤气利用途径探讨与效益分析[J].钢铁,2006,41(2):618-620.
    [20]王宝军,王树忠,张荣静.高炉煤气综合利用的实践与体会[J].冶金能源,2006,25(3):3-6.
    [21]Rauf Razzaq, Chunshan Li, Suojiang Zhang. Coke oven gas:Availability, properties, purification, and utilization in China Review Article[J]. Fuel,2013,113:287-299.
    [22]J.M. Bermudez, N. Ferrera-Lorenzo, S. Luque et al. New process for producing methanol from coke oven gas by means of CO2 reforming. Comparison with conventional process[J]. Fuel Processing Technology,2013,15:215-221.
    [23]J.M. Bermudez, B. Fidalgo, A. Arenillas et al. Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis[J]. Fuel,2010,89(10): 2897-2902.
    [24]Hongwei Cheng, Baohua Yue, Xueguang Wang. Hydrogen production from simulated hot coke oven gas by catalytic reforming over Ni/Mg(Al)O catalysts[J]. Journal of Natural Gas Chemistry,2009,18(2):225-231.
    [25]J.M. Bermudez, A. Arenillas, J.A. Menendez. Equilibrium prediction of CO2 reforming of coke oven gas:Suitability for methanol production[J]. Chemical Engineering Science,2012,82:95-103.
    [26]Jose M. Bermudez, Ana Arenillas, Rafael Luque, et al. An overview of novel technologies to valorise coke oven gas surplus[J]. Fuel Processing Technology, 2013,110:150-159.
    [27]邵秀永.焦炉煤气的回收与利用现状及发展方向[J].河北化工,2012,35(2):13-15.
    [28]杨丽,汪红有.焦炉煤气的综合利用技术[J].河北化工,2011,34(2):11-12.
    [29]张凤辰.焦炉煤气的综合利用途径[J].煤矿机电,2005,(2):61-63.
    [30]李昊堃,沙永志.焦炉煤气利用途径分析[J].冶金能源,2010,29(6):37-44.
    [31]Aihua WANG Jiuju CAI,Xiuping LI et al. Affecting Factors and Improving Measuresfor Converter Gas Recovery. Journal of Iron and Steel Research, International,2007,14(6):22-26.
    [32]Junguo LI, Yanan ZENQ Jianqiang WANG, et al. Simulation of Flow Field ofOxygen Lance Gas Jet Utilized for 50 t Converter[J]. Journal of Iron and Steel Research, International,2011,18(4):11-18.
    [33]Sen Li, Xiaolin Wei, Linxin Yu. Numerical study on NOx/CO emissions in the diffusion flames of high-teMRErature off-gas of steelmaking converter[J]. Applied Energy,2011,88(4):1113-1119.
    [34]Hongxin ZHAO, Zhangfu YUAN, Wenjing WANGA, et al. Novel Method of Recycling CO2 for Slag Splashing in Converter[J]. Journal of Iron and Steel Research, 2010,17(12):11-16.
    [35]Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry[J]. Energy,2013,54:113-128.
    [36]孙贻公.转炉煤气回收利用系统介绍[J].工业炉,2004,26(5):31-33.
    [37]黄卫超,马林.转炉煤气的回收及利用[J].宝钢技术,2009,(3):17-20.
    [38]潘秀兰.常桂华,冯士超等.转炉煤气回收和利用技术的最新进展[J].冶金能源. 2010,29(5):37-42.
    [39]陈志斌.国内转炉煤气回收利用技术的现状及发展[J].冶金动力,2003,(1):9-12.
    [40]王鼎,邓万里.宝钢副产煤气利用及减排技术的开发与实践[J].宝钢技术,2009,(3):2-6.
    [41]陈冠军,滑铁钢,刘秀珍.首钢节能技术进步.全国能源与热工2010学术年会,336-340.
    [42]王绪.首钢三高炉TRT控制系统的研究和实现[D].沈阳:东北大学,2009.
    [43]温燕明,马健,吴洪亮.济钢循环经济之路[J].2007年全国冶金燃气专业年会论文集,36-38.
    [44]孟现俭,周茂林,龙海波.莱钢转炉煤气系统研究与优化,2003中国钢铁年会论文集,北京:中国金属协会,2003,891-895.
    [45]刘春燕,梁凯丽,王元仓.莱钢煤气系统的优化与应用[J].冶金能源,2002,21(5):12-15.
    [46]J. Lundgren, T. Ekbom, C. et al. Hulteberg,Methanol production from steel-work off-gases and bio mass based synthesis gas[J]. Applied Energy, In Press, Corrected Proof; Available online 3 April 2013.
    [47]Jinghui Yang, Wenqiang Sun, Jiuju Cai, et al. Development of Supply-Demand Balance and Distribution Software of Gas System for Iron and Steel Industry[J]. Procedia Engineering,2011,15:5143-5147.
    [48]M.H. Habeebullah, M. Akyurt, Y.S.H. Najjar, et al. Experimental performance of a waste heat recovery and utilization system with a looped water-in-steel heat pipe[J]. Applied Thermal Engineering,1998,18(7):595-607.
    [49]Guangyu Ma, Jiuju Cai, Wenwei Zeng, et al. Analytical Research on Waste Heat Recovery and Utilization of China's Iron & Steel Industry[J]. Energy Procedia,2012, 14:1022-1028.
    [50]Yihui Tian, Qinghua Zhu, Yong Geng. An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry. Energy Policy,2013,56:352-361.
    [51]Marcus Kirschen, Victor Risonarta, Herbert Pfeifer. Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry[J]. Energy,2009,34(9):1065-1072.
    [52]P.V. Ramana, R.N. Singh, K.N. Patil. Development and performance evaluation of a producer gas based system for hardening of steels[J]. Renewable Energy,2005,30(5): 773-782.
    [53]Ullash K. Rout, Alfred Voβ, Anoop Singh. Energy and emissions forecast of China over a long-time horizon[J]. Energy,2011,36(1):1-11.
    [54]GuangYan Zhu, Michael A. Henson, Lawrence Megan. Dynamic modeling and linear model predictive control of gas pipeline networks [J]. Journal of Process Control,2001, 11(2):129-148.
    [55]Wenfei LI, Yanjun ZHOU, Yan XUE. Corrosion Behavior of 110S Tube Steel in Environments of High H2S and CO2 Content[J]. Journal of Iron and Steel Research, International,2012,19(12):59-65.
    [56]A. Fragiel, S. Serna, R. Perez. Electrochemical study of two microalloyed pipeline steels in H2S environments[J]. International Journal of Hydrogen Energy,2005, 30(12):1303-1309.
    [57]K. Sohaili. The Impact of Improvement in Iran Iron and Steel Production Technology on Environment Pollution[J]. Procedia Environmental Sciences,2010,2:262-269.
    [58]Fredrik Skarp, Lars-Erik Gadde. Problem solving in the upgrading of product offerings-A case study from the steel industry[J]. Industrial Marketing Management, 2008,37(6):725-737.
    [59]Ron Joseph. Painting problem solver:Guidance on finishing mild steel parts for office environments[J]. Metal Finishing,2010,108(1):41-41.
    [60]Tom Blomberg. Correlation of the corrosion rates of steels in a straw fired boiler with the thermodynamically predicted trend of KOH(g) in the flue gases[J]. Biomass and Bioenergy,2012,39:489-493.
    [61]Seongho Yang, Zinhyoung Lee. A method for predicting nitrogen gas pores in nitrogen alloying stainless steels[J]. Materials Science and Engineering:A,2006,417(1/2): 307-314.
    [62]M. Yousefieh. M. Shamanian. A. Saatchi. Optimization of the pulsed current gas tungsten arc welding (PCGTAW) parameters for corrosion resistance of super duplex stainless steel (UNS S32760) welds using the Taguchi method [J]. Journal of Alloys and Compounds,2011,509(3):782-788.
    [63]Prediction Charpy impact energy of bcc and fcc functionally graded steels in crack divider configuration by strain gradient plasticity theory[J]. Computational Materials Science,2011,50(11):3178-3183.
    [64]GR. Lehnhoff, K.O. Findley. Influence of austenite stability on predicted cyclic stress-strain response of me tastable austenitic steels[J]. Procedia Engineering,2011, 10:1097-1102.
    [65]M.R. Daymond, C.N. Tome, M.A.M. Bourke. Measured and predicted intergranular strains in textured austenitic steel[J]. Acta Materialia,2000,48(2):553-564.
    [66]Goutam Ghosh, Lata Panicker, R.S. Ningthoujam, et al. Counter ion induced irreversible denaturation of hen egg white lysozyme upon electrostatic interaction with iron oxide nanoparticles:A predicted model[J]. Colloids and Surfaces B: Biointerfaces,2013,103:267-274.
    [67]Comparison between experimental and predicted specific absorption rate of functionalized iron oxide nanoparticle suspensions[J]. Journal of Magnetism and Magnetic Materials,2011,323(20):2463-2469.
    [68]A new empirical formula for the calculation of MS teMREratures in pure iron and super-low carbon alloy steels[J]. Journal of Materials Processing Technology,2001, 113(1/3):556-562/9.
    [69]Yunan WANQ Yanping BAO, Heng CUI, et al. Final TeMRErature Prediction Model of Molten Steel in RH-TOP Refining Process for IF Steel Production[J]. Journal of Iron and Steel Research, International,2012,19(3):1-5.
    [70]Anda lonescu, Yves Candau. Air pollutant emissions prediction by process modeling-Application in the iron and steel industry in the case of a re-heating fumnace[J]. Environmental Modelling & Software,2007,22(9):1362-1371.
    [71]L.J. Ren, W.J. Wang. Analysis of Existing Problems and Carbon Emission Reduction in Shandong's Iron and Steel Industry[J]. Energy Procedia,2011,5:1636-1641.
    [72]Wei HAN, Xianming MENG, Junbao ZHANG, et al. Elastic Modulus of 304 Stainless Steel Coating by Cold Gas Dynamic Spraying[J]. Journal of Iron and Steel Research, International,2012,19(3):73-78.
    [73]J.H. Kim, H. Yi, C. Han, et al. Plant-wide multiperiod optimal energy resource distribution and byproduct gas holder level control in the iron and steel making process under varying energy demands[J]. Computer Aided Chemical Engineering, 2003,15:882-887.
    [74]B. Nciri, L. Vandenbulcke. Theoretical and experimental study of the aluminization of iron and steel in the pack and in the gas phase[J]. Thin Solid Films,1986,139(3): 311-324.
    [75]K.S. Abdel Halim. Effective utilization of using natural gas injection in the production of pig iron[J]. Materials Letters,2007,61(14/15):3281-3286.
    [76]Liyuan SUN, Jingshe LI, Lifeng ZHANG Production of Nitrogen-Bearing Stainless Steel by Injecting Nitrogen Gas[J]. Journal of Iron and Steel Research, International, 2011,18(11):7-11.
    [77]Min Wu, Ping Duan, Weihua Cao, et al. An intelligent control system based on prediction of the burn-through point for the sintering process of an iron and steel plart[J]. Expert Systems with Applications,2012,39(5):5971-5981.
    [78]Anda Ionescu, Yves Candau. Air pollutant emissions prediction by process modeling-Application in the iron and steel industry in the case of a re-heating fumace[J]. Environmental Modelling & Software,2007,22(9):1362-1371.
    [79]Zhao, J., Wang,W., Liu,Y., et al.. A two-stage online prediction method for a blast furnace gas system and its application. IEEE Transactionson Control Systems Technology,2011,19(3),507-520.
    [80]刘健,胡胜利,蓝仁雷.热轧混合煤气用量预测模型的开发[J].冶金动力,2011,(3):19-21.
    [81]姜曙光.济钢能源中心煤气平衡预测模型研究[D].山东:山东大学,2009.
    [82]张琦,谷延良,提威等.钢铁企业高炉煤气供需预测模型及应用[J].东北大学学报,2010,31(12):1737-1740.
    [83]Jian Chen. A predictive system for blast furnaces by integrating a neural network with qualitative analysis. Engineering Applications of Artificial Intelligence.2001,14(1): 77-85.
    [84]时非非.基于改进ESN的高炉煤气系统预测方法的研究田[D].大连:大连理工大 学,2009.
    [85]梁青艳,孙彦广,顾佳晨等。基于灰色时序组合模型的高炉热风炉煤气消耗量的预测[J].冶金自动化,2009 S1
    [86]吴玉杰.钢铁企业煤气预测与调度建模[D],天津:天津大学,2010.
    [87]刘颖,时飞飞,赵珺等.基于改进回声状态网络的高炉煤气产耗预测[J].系统仿真学报,2011,23(10):
    [88]李玲玲.钢铁企业煤气消耗预测模型及其应用研究[D].长沙:中南大学,2004.
    [89]张晓平,赵珺,王伟等.转炉煤气柜位的多输出最小二乘支持向量机预测[J].控制理论与应用,2010,27(11):
    [90]聂秋平,吴敏,杜友武等.基于灰色RBF神经网络的炼钢煤气消耗预测[J].系统仿真学报,2011,23(11):2460-2464.
    [91]汤振兴.钢铁焦炉煤气产消及柜位预测方法与应用[D].大连:大连理工大学,2009.
    [92]张晓平,汤振兴,赵瑁等.钢铁企业高炉煤气发生量的在线预测建模[J].信息与控制,2010,39(6):774-782.
    [93]田相伟.基于参数优化LSSVM在转炉煤气系统预测中的应用[D].大连:大连理工大学,2010.
    [94]Jun Zhao, YingLiu, Xiao ping Zhang, WeiWang. A MKL based on-line prediction for gasholder level in steel industry[J]. Control EngineeringPractice,2012,20:629-641.
    [95]Xiao ping Zhang, Jun Zhao, Wei Wang, Li qun Cong, Wei min Feng. An optimal method for prediction and adjustment on byproduct gas holder in steel industry [J], Expert Systems with Applications,2011, (38):4588-4599.
    [96]Ullash K. Rout, Alfred Voβ, Anoop Singh, et al. Energy and emissions forecast of China over a long-time horizon[J], Energy,2011,36(1):1-11.
    [97]Nastaran Ansari, Abbas Seifi. A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry[J]. Energy,2012,43(1):334-343.
    [98]Rauf Razzaq, Chunshan Li, Suojiang Zhang. Coke oven gas:Availability, properties, purification, and utilization in China[J]. Fuel,2013,113:287-299.
    [99]Hui-ning ZHANQ An-jun XU, Jian CUI, et al. Establishment of Neural Network Prediction Model for Terminative TeMRErature Based on Grey Theory in Hot Metal Pretreatment[J]. Journal of Iron and Steel Research, International,2012,19(6):25-29.
    [100]Laibin Zhang, Zhaohui Wang, Shangxin Zhao. Short-term fault prediction of mechanical rotating parts on the basis of fuzzy-grey optimising method[J]. Mechanical Systems and Signal Processing,2007,21(2):856-865.
    [101]A new grey prediction model FGM(1,1)[J]. Mathematical and Computer Modelling, 2009,49(7/8):1416-1426.
    [102]Predicting stock price using fuzzy grey prediction system[J]. Expert Systems with Applications,2002,22(1):33-38.
    [103]Tzu-Li Tien. A research on the prediction of machining accuracy by the deterministic grey dynamic model DGDM(1,1,1)[J]. Applied Mathematics and Computation, 2005,161(3):923-945.
    [104]W.P. Wang, Y.H. Peng, X.Y. LL Fuzzy-grey prediction of cutting force uncertainty in turning[J]. Journal of Materials Processing Technology,2002,129(1/3):663-666.
    [105]Hexiang Liu, Da-Lin Zhang. Analysis and prediction of hazard risks caused by tropical cyclones in Southern China with fuzzy mathematical and grey models[J]. Applied Mathematical Modelling,2012,36(2):626-637.
    [106]LingMing Kung, ShangWu Yu. Prediction of index futures returns and the analysis of financial spillovers-A comparison between GARCH and the grey theorem[J]. European Journal of Operational Research,2008,186(3):1184-1200.
    [107]Hee-Yeal Yu, Sung-Yang Bang. An improved time series prediction by applying the layer-by-layer learning method to FIR neural networks[J]. Neural Networks,1997, 10(9):1717-1729.
    [108]Harris Papadopoulos, Haris Haralambous. Reliable prediction intervals with regression neural networks[J]. Neural Networks,2011,24(8):842-851.
    [109]Guoqiang Zhang, Michael Y. Hu, B Eddy Patuwo, et al. Artificial neural networks in bankruptcy prediction:General framework and cross-validation analysis[J]. European Journal of Operational Research,1999,116(1):16-32.
    [110]Eleni I. Vlahogianni, Matthew G. Karlaftis, John C. Golias. Optimized and meta-optimized neural networks for short-term traffic flow prediction:A genetic approach[J]. Transportation Research Part C:Emerging Technologies,2005,13(3): 211-234.
    [111]Q.P. Hu, M. Xie, S.H. Ng, et al. Robust recurrent neural network modeling for software fault detection and correction prediction[J]. Reliability Engineering & System Safety,2007,92(3):332-340.
    [112]R. Noori, A.R. Karbassi, A. Moghaddamnia, et al. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction[J]. Journal of Hydrology, 2011,401(3/4):177-189.
    [113]A model of basic oxygen furnace (BOF) end-point prediction based on spectrum information of the furnace flame with support vector machine (SVM)[J]. Optik-International Journal for Light and Electron Optics,2011,122(7):594-598.
    [114]Satar Mahdevari, Hamid Shirzad Haghighat, Seyed Rahman Torabi. A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation[J]. Tunnelling and Underground Space Technology,2013,38:59-68.
    [115]Aixia Yan, Xianglei Nie, Kai Wang, et al. Classification of Aurora kinase inhibitors by self-organizing map (SOM) and support vector machine (SVM)[J]. European Journal of Medicinal Chemistry,2013,61:73-83.
    [116]Ashish Anand, Ganesan Pugalenthi, P.N. Suganthan. Predicting protein structural class by SVM with class-wise optimized features and decision probabilities[J]. Journal of Theoretical Biology,2008,253(2):375-380.
    [117]Iwao HIGASHI. Energy balance of steel mills and the utilization of by-product gases[J].Transactions ISIJ,1982,22:57-65.
    [118]Kim, J.H. and Han, C., "Short-term Multiperiod Optimal Planning of Utility Systems using Heuristics and Dynamic Programming," Ind. Eng. Chem. Res.,40,1928 (2001).
    [119]齐二石,孔海宁,何曙光.钢铁企业煤气多周期动态优化调度[J].系统工程理论与实践,2010,30(11):2071-2079.
    [120]孔海宁.钢铁企业煤气系统优化调度研究[D],天津:天津大学,2011.
    [121]Fukuda, K., Makino, H.,Suzuki, et al..Optimal energy distribution control at the steel worksl[C]. IFAC simulation of control systems, Vierma, Austria,1986,337-342.
    [122]Jeong Hwan Kim, Heui-Seok Yi and Chonghun Han, Plant-wide Optimal Byproduct Gas Distribution and Holder Level Control in the Iron and Steel Making Process[J], Korean J. Chem. Eng.,2003,20(3),429-435.
    [123]Han, C.,Chu, Y.H., Kim,J.H., et al. Control of gas holder level by trend prediction based on time-series analysis and process heuristics, in Proceedings Seventh International Symposium Advanced Control of Chemical Processes,2004,633-638.
    [124]杨亮.Web技术在煤气调度中的设计与研究[D].北京:北京交通大学,2006.
    [125]明德廷,李娟,尹怡欣.钢铁企业煤气优化调度模型研究[J].计算机工程与设计,2008,29(6):
    [126]张琦.钢铁联合企业煤气资源合理利用及优化分配研究[D].沈阳:东北大学,2008.
    [127]余志刚,顾佳晨,孙要夺.基于大系统思想的钢铁企业煤气优化调度问题探讨[J].冶金自动化,2009,SI:535-538.
    [128]江浩,张寿全.煤气管网输配调度系统总体设计[J]..机械与电子,2008(3)
    [129]陈红萍,王胜春.煤气基础知识[M].北京:化学工业出版社,2008,85-106.
    [130]P.V Ramana, R.N. Singh, K.N. PatiL Development and performance evaluation of a producer gas based system for hardening of steels[J]. Renewable Energy,2005, 30(5):773-782.
    [131]J. Lundgren, T. Ekbom, C. Hulteberg, et al. Methanol production from steel-work off-gases and biomass based synthesis gas[J]. Applied Energy, In Press, Corrected Proof, Available online 3 April 2013.
    [132]Marcus Kirschen, Victor Risonarta, Herbert Pfeifer. Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry[J]. Energy,2009,34(9):1065-1072.
    [133]Hua Yao, Deren Sheng, Jianhong Chen, et al. Exergoeconomic analysis of a combined cycle system utilizing associated gases from steel production process based on structural theory of thermoeconomics[J]. Applied Thermal Engineering, March 2013,51(1/2):476-489.
    [134]田永淑,朱靖,刘永新.煤气输配管道及设备[M].北京:化学工业出版社,2007.
    [135]Hodrick R.J., and Prescott, E.C., Postwar U.S. Business Cycles:an Empirical Investigation[J]. Journal of Money, Credit and Banking,1997,29:1-1.
    [136]W. Razzak. The Hodrick-Prescott technique:A smoother versus a filter An application to New Zealand GDP[J]. Economics Letters,1997,57:163-168.
    [137]A. Maravall, A. del Rio. Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter[J]. Computational Statistics & Data Analysis,2007,52: 975-998.
    [138]吴丹宇.路桥投资项目后评价建模与算法研究p].武汉:武汉理工大学.
    [139]项永兵,高玉堂,詹绍康.Wilcoxon型趋势检验统计量及其应用[J].数理医药学杂志,1995,8(2):177-178.
    [140]航标灯质参数漂移的显著性检验- Wilcoxo符号秩检验应用[J].质量论坛,1998,1:27-28.
    [141]N.H.Packard, J. PCrutchfietd, J.D.Farmer, et al. Geometry from a time series. Phys. Rev. Lett,1980,45(9):712-716.
    [142]ETakens. Deterrning strange attractors in turbulence. Lecture notes in Math,1981,89: 361-38L
    [143]郑永康.基于相空间重构和支持向量机的电能扰动分类方法[J].电力系统自动化,2007,31(5):70-75.
    [144]PHAM D T, LIU X. Training of elman networks and dynamic system modeling[J]. International of System Science,1996,27(2)221-226.
    [145]Cheng Y C, Qi W M, Cai W Y. Dynamic properties of Elman and modified Elman neural network[C].2002 International Conference on Machine Learning and Cybernetics,2002(2):637-640.
    [146]Jun Zhao, Xiaoliang Zhu, Wei Wang, et al. Extended Kalman filter-based Elman networks for industrial time series prediction with GPU acceleration[J]. Neurocomputing,2013,118(22):215-224.
    [147]Pham D T, Liu X. Training of Elman networks and dynamic system modeling[J]. International Journal of Systems Science,1996,27(2):2212-2261.
    [148]Wei Wan, Hua Xu, Wenhao Zhang, et aL Questionnaires-based skin attribute prediction using Elman neural network[J]. Neurocomputing,2011,74(17): 2834-2841.
    [149]X.Z. Gao, S.J. Ovaska, A.V. Vasilakos. Temporal difference method-based multi-step ahead prediction of long term deep fading in mobile networks[J]. Computer Communications,2002,25(16):1477-1486.
    [150]Li Jinyang, Meng Xiaofeng. TeMRErature decoupling control of double-level air flow field dynamic vacuum system based on neural network and prediction principle[J]. Engineering Applications of Artificial Intelligence,2013,26(4): 1237-1245.
    [151]Li Xiang, Chen Guanrong, Chen Zengqian et al. Chaotifying linear Elman networks[J]. IEEE Transactions on Neural Networks 2002,13(5):1193-1199.
    [152]Cheng Y L, Huang J C,Yang W C. Modeling word perception using the Elman network[J]. Neurocomputing,2008,71(16/17/18):3150-3157.
    [153]Gao X Z. Gao X M. Ovaska S J. Trajectory control based on a modified Elman neural network[C]. Orlando Florida, USA:IEEE International Conference on SMC,1995, 6(5):1212-1228.
    [154]Vapnik V N. The Nature of Statistical Learning Theory,2nd Edition. New York: Springer Verlag,1999.
    [155]Suykens J A K, Gestel T V, Brabanter J D, et al. Least Squares Support Vector Machines. Singapore:World Scientific Pub. Co.,2002.
    [156]WANG Shuai, YU Lean, TANG Ling, et al. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower supply forecasting in China[J]. Energy,2011,36(11),6542-6555.
    [157]付长贺.马尔科夫链在传染病预测中的应用[J].沈阳师范大学学报,2009,27(1):28-30.
    [158]郭书坡.基于灰色马尔科夫链的优化模型及其在茶叶产量预测中的应用[D].兰州:兰州大学,2010.
    [159]Jeffrey J. Hunter. Mixing times with applications to perturbed Markov chains[J]. Linear Algebra and its Applications,2006,417(1):108-123.
    [160]YiFan Wang, Shihmin Cheng, MeiHua Hsu. Incorporating the Markov chain concept into fuzzy stochastic prediction of stock indexes[J]. Applied Soft Computing,2010, 10(2):613-617.
    [161]Ramesh R. Sarukkai. Link prediction and path analysis using Markov chains[J]. Computer Networks,2000,33(1/6):377-386.
    [162]查浩,韩学山,王勇等.电力系统安全经济协调的概率调度理论研究[J].中国电机工程学报,2009,29(13):16-22.
    [163]朱海岳.一种基于遗传算法的车间作业调度求解算法[J].河北工程技术高等专科学校学报,2007,9(3):4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700