基于满意度函数的多响应曲面稳健优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究具有多个质量特性的产品或过程稳健参数优化问题,目的在于获得对某些不确定性扰动不敏感的稳健最优解。以此为目标,本文使用响应曲面法建立各个响应变量与设计因子之间的经验模型,然后借助满意度函数法对多响应问题进行处理。本文重点考虑两种误差扰动:因子的制造容差和响应曲面模型的预测误差,并使用稳健对等方法定义满意度函数的稳健性指标。具体研究内容包括:
     首先,分别引入遗传算法和模拟退火这两种智能算法对总体满意度函数进行极大化寻优,并使用模式搜索算法对返回的解进行进一步细探。算例表明,与模式搜索算法相比,智能算法更适合处理复杂函数优化问题;与单一智能优化算法相比,混合算法则能够提高解的收敛精度。
     其次,针对因子的容差扰动定义满意度函数的稳健对等式,并使用遗传+模式搜索混合算法对稳健最优解进行搜索。算例表明,该方法能够成功获得稳健可行域中的解,这样的解对因子的制造误差不敏感。
     再次,分析预测响应的波动特性对满意度函数的影响,并借助蒙特卡罗方法模拟出满意度函数的分布形状并研究其统计规律。算例表明,传统满意度函数法所获得的全局最优解可能具有太高的概率风险,而局部最优解所处的可行域往往对预测响应的波动更加稳健,这有助于对稳健最优解的进一步探索。
     最后,将响应曲面模型的预测误差考虑到满意度函数法的优化模型中,使用稳健对等方法定义满意度函数的稳健性指标,并借助遗传+模式搜索混合算法对该稳健性指标进行极大化寻优。算例表明,该方法能够成功返回稳健可行域中的解,并且大大减小满意度的波动范围,使其对模型的预测误差抗干扰。
     尽管本文所使用的算例来自化工和半导体行业,但本文所给出的多响应稳健优化方法不局限于这些行业,而是对不同领域中的稳健设计与优化问题均具有一定的普适性。
This study copes with robust parameter optimization of product or process involving multiple independent quality characteristics. The purpose is to acquire robust optimal solutions which are insensitive to some pre-defined uncertainties. In this thesis, the response surface model is established to relate each response and design factors, and then the desirability function method is utilized to compromise all the responses. Using robust counterpart approach to measure robustness, we mainly deal with two types of uncertainty, i.e. tolerances bands on design factors and prediction errors of response surface models. The topics discussed in this paper are outlined as following.
     Firstly, we develop two intelligent algorithms, i.e. the genetic algorithm (GA) and the simulated annealing (SA) algorithm to find the maximum of overall desirability function. The pattern search (PS) algorithm is utilized to refine solutions found by GA and SA. Computational examples reveal that the intelligent algorithms have outperformed a single PS algorithm when the optimization problem is complex, but the PS algorithm can enchance the convergence precision of GA and SA. Thus, we propose to use the hybrid algorithm in this study rather than a single algorithm alone.
     Secondly, we present the robust counterpart for the desirability function method when the variations on input variables are considered. The GA post-hybridized with PS algorithm is employed to search for the robust optimum. The numerical example demonstrates that the proposed method can successfully find solutions lying in the robust feasible region. The so-obtained solutions are of more practical meanings since they are robust against production tolerances or manufacturing imprecision.
     Thirdly, we investigate the impact of (poor) model predictions on the desirability function. The Monte Carlo approach is used to simulate the distribution of desirability function and to give a statistical analysis of the simulated results. The case example shows that the traditional global optimum is more likely to have a high probabilistic risk, while the local optimum usually implys a new feasible operating region, which is helpful to guide for robust optimum solutions.
     Finally, we embed the uncertainty information of model predictions into the standard desirability function method. The GA combined with PS algorithm is used to find the robust optimum. The illustrated example indicates that the presented approach is very useful in indentifying solutions lying in the robust feasible region. It can also alleviate the impact of prediction errors a great deal on the desirability function. The found solutions are of more practical values because they are insensitive to model prediction errors.
     Although the examples illustrated in this thesis are motivated from the chemical or semiconductor industry, the procedures are quite general and are not restricted to these fields.
引文
[1]王晶,基于响应曲面法的多响应稳健性参数优化方法研究: [博士学位论文],天津:天津大学, 2009.
    [2] Park G-J, Lee T-H, Lee K-H, Hwang K-H, Robust design: an overview, AIAA Journal, 2006, 44(1): 181-191.
    [3] Beyer H-G, Sendhoff B, Robust optimization - a comprehensive survey, Computer Methods in Applied Mechanics and Engineering, 2007, 196(33-34): 3190-3218.
    [4] Taguchi G, Quality Engineering through Design Optimization, New York: Kraus International Publications, 1984.
    [5] Taguchi G, Introduction to Quality Engineering: Design Quality into Products and Processes, New York: Kraus International Publications, 1986.
    [6] Taguchi G, Systems of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost, New York: Kraus International Publications, 1987.
    [7] Nair VN, Taguchi’s parameter design: a panel discussion, Technometrics, 1992, 34(2): 127-161.
    [8] Box GEP, Wilson KB, On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society, 1951, Series B, 13(1): 1-15.
    [9] Box GEP, Hunter JS, Multifactor experimental designs for exploring response surfaces, The Annals of Mathematical Statistics, 1957, 28(1): 195-241.
    [10] Box GEP, Draper NR, A basis for the selection of a response surface design, Journal of the American Statistical Association, 1959, 54(287): 622-654.
    [11] Box GEP, Draper NR, The choice of a second order rotatable design, Bimetrika, 1963, 50(3-4): 335-352.
    [12] Vining GG, Myers RH, Combing Taguchi and response surface philosophies: a dual response surface approach, Journal of Quality Technology, 1990, 22(1): 38- 45.
    [13] Myers RH, Carter WH, Response surface techniques for dual response systems, Technometrics, 1973, 15(2): 301-317.
    [14] Copeland KAF, Nelson PR, Dual response optimization via direct function minimization, Journal of Qualtiy Technoloby, 1996, 26(3): 331-336.
    [15] Lin DKJ, Tu W, Dual response surface optimization, Journal of Quality Technology, 1995, 27(1): 34-39.
    [16] Ding R, Lin DKJ, Duan W, Dual-response surface optimization: a weighted MSE approach, Quality Engineering, 2004, 16(3): 377-385.
    [17] Kim K, Lin DKJ, Dual response surface optimization: a fuzzy modeling approach, Journal of Quality Technology, 1998, 30(1): 1-10.
    [18] Kim YJ, Cho BR, Develpoment of priority-based robust design, Quality Engineering, 2002, 14(3): 355-363.
    [19] Tang LC, Xu K, A unified approach for dual response surface optimization, Journal of Quality Technology, 2002, 34(4): 437-447.
    [20] K?ksoy O, Doganaksoy N, Joint optimization of mean and standard deviation using response surface methods, Journal of Quality Technology, 2003, 35(3): 239-252.
    [21] Welch WJ, Yu TK, Kang SM, Computer experiments for quality control by parameter design, Journal of Quality Technology, 1990, 22(1): 15-22.
    [22] Shoemaker AC, Tsui KL, Wu CFJ, Economical experimentation methods for robust design, Technometrics, 1991, 33(4): 415-427.
    [23] Myers RH, Khuri AT, Vining GG, Response surface alternatives to the Taguchi robust parameter design approach, The American Statistician, 1992, 46(2): 131-139.
    [24] Lucas JM, How to achieve a robust process using response surface methodology, Journal of Qualtiy Technology, 1994, 26(4): 248-260.
    [25] Borkowski JJ, Lucas JM, Designs of mixed resolution for process robustness studies, Technometrics, 1997, 39(1): 63-70.
    [26] Aggarwal ML, Kaul R, Combined array approach for optimal designs, Communications in Statistics– Theory and Methods, 1999, 28(11): 2655-2670.
    [27] Borror CM, Montgomery DC, Myers RH, Evaluation of statistical designs for experiments involving noise variables, Journal of Quality Technology, 2002, 34 (1): 54-70.
    [28] Wu CFJ, Hamada M, Experiments: Planning, Analysis and Parameter Design Optimization (2nd Edn), New York: John Wiley & Sons, 2009.
    [29] Nelder JA, Lee Y, Generalized linear models for the analysis of Taguchi-type experiments, Applied Stochastic Models and Data Analysis, 1991, 7(1): 107- 120.
    [30] Engel J, Huele AF, A generalized linear modeling approach to robust design, Technometrics, 1996, 38(4): 365-373.
    [31] Box GEP, Jones S, Split-plot designs for robust product experimentation, Journal of Applied Statsitics, 1992, 19(1): 3-26.
    [32] Bingham D, Sitter RR, Fractional factorial split-plot design for robust parameter experiments, Technometrics, 2003, 45(1): 80-89
    [33] Robinson TJ, Borror CM, Myers RH, Robust parameter design: a review, Quality and Reliability Engineering International, 2004, 20(1): 81-101.
    [34] Diaz-Garcia JA, Ramos-Quiroga R, Carera-Vicencio E, Stochastic programming methods in the response surface methodology, Computational Statistics & Data Analysis, 2005, 49(3): 837-848.
    [35] Xu D, Albin SL, Robust optimization of experimentally derived objective functions, IIE Transactions, 2003, 35(9): 793-802.
    [36] Chipman H, Handling uncertainty in the analysis of robust design experiments, Journal of Quality Technology, 1998, 30(1): 11-17.
    [37] Stinstra E, Hertog D, Robust optimization using computer experiments, European Journal of Operational Research, 2008, 191(3): 816-837.
    [38] Ben-Tal A, Nemirovski A, Robust optimization - methodology and applications, Mathematical Proagramming, 2002, 92(3): 453-480.
    [39] Belegundu AD, Zhang S, Robustness of design through minimum sensitivity, Journal of Mechanical Design, 1992, 114: 213-217.
    [40] Parkinson A, Sorensen C, Pourhassan, A general approach for robust optimal design, Journal of Mechanical Design, 1993, 115(1): 74-80.
    [41] Agarwall H, Reliability Based Design Optimization: Formulations and Methodologies: [博士学位论文], South Bend: University of Notre Dame, 2004.
    [42] Agarwal H, Renaud J, Reliability based design optimization using response surfaces in application of multidisciplinary systems, Engineering Optimization, 2004, 36(3): 291-311.
    [43]陈立周,工程稳健设计的发展现状与趋势,中国机械工程, 1998, 9(8): 59-62.
    [44]陈立周,稳健设计,北京:机械工业出版社, 1999.
    [45] Nair VN,王金玉[译],王万中[校],关于田口参数设计的专家评论,数理统计与管理, 1993, 12(4): 51-58.
    [46] Nair VN,王金玉[译],王万中[校],关于田口参数设计的专家评论(II),数理统计与管理, 1993, 12(57): 49-58.
    [47]何桢,潘岳,刘子先,张生虎,因子试验、RSM与田口方法的比较研究,机械设计, 1999, 11: 1-4.
    [48]张志红,何桢,郭伟,望目特性稳健参数设计优化标准的构建,机械工程学报, 2008, 44(4): 133-137.
    [49]许焕卫,黄洪钟,何莉萍,稳健设计中的稳健可行性分析,清华大学学报(自然科学版), 2007, 47(S2): 1721-1724.
    [50]郭惠昕,产品质量的模糊稳健性研究及模糊稳健优化设计方法,中国机械工程, 2002, 13(3): 221-224.
    [51]郭慧昕,模糊目标与模糊约束时的稳健设计研究,西安交通大学学报, 2002, 36(1): 66-69.
    [52]郭惠昕,稳健设计研究现状与模糊稳健设计研究进展,机械设计, 2005, 22(2): 1-5.
    [53]刘德顺,岳文辉,朱萍玉,杜小平,基于性能稳健偏差的区间型稳健参数设计优化,中国机械工程, 2007, 18(8): 952-957.
    [54]刘德顺,岳文辉,杜小平,不确定性分析与稳健设计的研究进展,中国机械工程, 2006, 17(17): 1834-1841.
    [55]施亮星,何桢,应用稳健性设计改进真空镀膜过程质量,数理统计与管理, 2010, 29(2): 191-196.
    [56]何桢,张生虎,齐二石,结合RSM和田口方法改进产品/过程质量,管理工程学报, 2001, 15(1): 22-25.
    [57]何桢,张生虎,刘子先,齐二石,双响应曲面方法在改进产品设计中的应用研究,系统工程理论与实践, 2001(9): 140-144.
    [58]赵媚,潘尔顺,郭瑜,孙志礼,基于双响应曲面法的稳健参数设计,工业工程与管理, 2010, 15(1): 87-91.
    [59] Lind EE, Goldin J, Hickman JB, Fitting yield and cost response surfaces, Chemical Engineering Progress, 56: 62-68.
    [60] Montgomery DC, Design and Analysis of Experiments (6th Edn), New York: John Wiley & Sons, 2005.
    [61] Myers RH, Montgomery DC, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (2nd Edn), New York: John Wiley & Sons, 2002.
    [62] Harrington EC, The desirability function, Industrial Quality Control, 1965, 21: 494-498.
    [63] Derringer GC and Suich R, Simultaneous optimization of several response variables, Journal of Quality Technology 1980, 12(4): 214-219.
    [64] Derringer GC, A balancing act: optimizing a product’s properties, Quality Progress, 1994, 27(6): 51-57.
    [65] Shah HK, Impact of Correlated Responses on the Desirability Function: [博士学位论文], Arizona: Arizona State University, 2001.
    [66] Kim K-J, Lin DKJ, Simultaneous optimization of mechanical properities of steel by maximizing exponential desirability functions, Applied Statistics, 2000, 49(3): 311-325.
    [67] Murphy TE, Tsui K-L, Allen JK, A review of robust deisng methods for multiple responses, Research in Engineering Design, 2005, 16(3): 118-132.
    [68] Khuri A and Conlon M, Simultaneous optimization of multiple responses represented by polynomial regression functions, Technometrics 1981, 23(4): 363-375.
    [69] Vining GG, A compromise approach to multiresponse optimization, Journal of Quality Technology, 1998, 30(4): 309-313.
    [70] Kros JF, Mastrangelo CM, Comparing methods for the multi-response design problem, Quality and Reliability Engineering International, 2001, 17(5): 323- 331.
    [71] Park KS, Kim K-J, Optimizing multi-response surface problems: how to use multi-objective optimization techniques, IIE Transactions, 2005, 37(6): 523-532.
    [72] Xu K, Lin DKJ, Tang L-C, Xie M, Multiresponse systems optimization using a goal attainment approach, IIE Transactions, 2004, 36(5): 433-445.
    [73] Gembicki FW, Haimes YY, Approach to performance and sensitivity multiobjective optimization: the goal attainment method, IEEE Transactions on Automatic Control, 1975, 20(6): 769-771.
    [74] Marler RT, Arora JS, Survey of multi-objective optimization methods for engineering, Structural and Multidisciplinary Optimization, 2004, 26(6): 369- 395.
    [75]何桢,高雪峰,崔庆安,周延虎,基于三响应试验设计优化的满意度函数,系统工程, 2006, 24(7): 105-110.
    [76]高雪峰,何桢,周延虎,孙鹏,超高温灭菌牛奶杀菌工艺的多响应曲面优化研究,吉林农业大学学报, 2007, 29(1): 107-112.
    [77]马彦辉,何桢,赵有,基于熵权理论和渴求函数法的多响应优化设计研究,管理技术, 2007, 2: 99-102.
    [78]何桢,张于轩,多响应试验设计的优化方法研究,工业工程, 2003, 6(4): 35- 38.
    [79]宗志宇,何桢,孔祥芬,产品设计中多响应优化方法的比较研究,设计与研究, 2005, 12: 1-3.
    [80]宗志宇,何桢,孔祥芬,多响应优化方法的比较和应用研究,数理统计与管理, 2006, 25(6): 697-704.
    [81] Kim K-J, Lin DKJ, Optimization of multiple responses considering both location and dispersion effects, European Journal of Operational Resarch, 2006, 169(1): 133-145.
    [82] K?ksoy O, A nonlinear programming solution to robust multi-response quality problem, Applied Mathematics and Computation, 2008, 196(2): 603-612.
    [83] K?ksoy O, Mean square error criteria to multiresponse process optimization by a new genetic algorithm, Applied Mathematics and Computation, 2006, 175(2): 1657-1674.
    [84] Pignatiello JJ, Strategies for robust multiresponse quality engineering, IIE Transactions, 1993, 25(3): 5-15.
    [85] Ames AE, Mattucci N, Mac Donald S, Szonyi G, Hawkins DM, Quality loss functions for optimization across multiple response surfaces, Journal of Quality Technology, 1997, 29(3): 339-346.
    [86] Ko YH, Kim K-J, Jun KH, A new loss function-based method for multiresponse optimization, Journal of Quality Technology, 2005, 37(1): 50-59.
    [87] Romano D, Varetto M, Vicario G, Multiresponse robust design: a general framework based on combined array, Journal of Quality Technology, 2004, 36 (1): 27-37.
    [88]魏世振,韩玉启,陈传明,基于信噪比的多元质量损失函数研究,管理工程学报, 2004, 2: 4-6.
    [89]马义中,赵逢禹,多元质量特性的稳健设计及其实现,系统工程与电子技术, 2005, 27(9): 1580-1582.
    [90]宗志宇,何桢,孔祥芬,基于满意度函数法的多响应稳健性参数设计,系统管理学报, 2007, 16(5): 508-512.
    [91]宗志宇,何桢,孔祥芬,噪声因子存在下的多响应参数设计的优化,工业工程, 2007, 10(6): 127-130.
    [92]何桢,吕海利,多元质量特性稳健性设计方法的优化研究,管理科学, 2007, 20(1): 2-7.
    [93]耿金花,高齐圣,张嗣瀛,多因素、多指标产品系统的建模与优化,系统工程学报, 2008, 23(4): 449-454.
    [94]杨方,高齐圣,于增顺,多响应问题的稳健性设计优化,工业工程, 2010, 13(3): 43-46.
    [95] Chiao C-H, Hamada M, Analyzing experiments with correlated multiple responses, Journal of Quality Technology, 2001, 33(4): 451-465.
    [96] Peterson J, A posterior predictive approach to multiple response surface optimization, Journal of Quality Technology, 2004, 36(2): 139-153.
    [97] Chen W, Allen J, Tsui K-L, Mistree F, A procedure for robust design: minimizing variations caused by noise factors and control factors, ASME J Mech Des, 1996, 118(4): 478-493.
    [98] Gunawan S, Azarm S, Multiobjective robust design using a sensitivity region concept, Struc Multidiscip Optimization, 2005, 29(1): 50-60.
    [99] Li M, Azarm S, Boyars A, A new deterministic approach using sensitivity region measures for multi-objective robust and feasibility robust design optimization, Transactions on the ASME, 2006, 128(4): 874-883.
    [100] Datskov IV, Ostrovsky GM, Achenie LEK, Volin YM, An approach to multicreteria optimization under uncertainty, Chemical Engineering Science, 2006, 61(8): 2379-2393.
    [101] He Z, Wang J, Park SH, Robust optimization for multiple responses using response surface methodology, Applied Stochastic Models in Business and Industry, 2010, 26(2): 157-171.
    [102] Del Castillo E, Montgomery DC, McCarville DR, Modified desirability functions for multiple response optimization, Journal of Quality Technology, 1996, 28(3): 337-345.
    [103] Copeland KAF, Nelson PR, Dual response optimization via deirect function minimization, Journal of Quality Technology, 1996, 28(3): 331-336.
    [104] Ortiz F, Simpson JR, Pignatiello JJ, Heredia-Langner A, A genetic algorithm approach to multiple-response optimization, Journal of Quality Technology, 2004, 36(4): 432-450.
    [105] Carlyle WM, Montgomery DC, Runger GC, Optimization Problems and Methods in Quality Control and Improvement, Journal of Quality Technology, 2000, 32(1): 1-17.
    [106] Gen M, Yun Y, Soft computing approach for reiliability optimization: state-of-the-art survey, Reliability Engineering and System Safety, 2006, 91(9): 1008-1026.
    [107] Schueller GI, Jensen HA, Computational methods in optimization considering uncertainties– an overview, Computer Methods in Applied Mechanics and Engineering, 2008, 198(1): 2-13.
    [108] Talbi E-G, A taxonomy of hybrid metaheuristics, Journal of Heuristics, 2002, 8 (5): 541-564.
    [109] Jourdan L, Basseur M, Talbi E-G, Hybridizing exact methods and metaheuristics: a taxonomy, European Journal of Operational Research, 2009, 199(3): 620-629.
    [110] Anderson-Cook CM, Borror CM, Montgomery DC, Response surface design evaluation and comparison, Journal of Statistical Planning and Inference, 2009, 139(2): 629-641.
    [111] Jones B, Discussion of“Response surface design evaluation and comparison”by Christine Anderson-Cook, Connie Borror and Douglas Montgomery, Journal of Statistical Planning and Inference, 2009, 139(2): 642-644.
    [112] Parker PA, Discussion -“Response surface design evaluation and comparison”by Christine M. Anderson-Cook, Connie M. Borror, Douglas C. Montgomery, Journal of Statistical Planning and Inference, 2009, 139(2): 645-646.
    [113] Khuri AI, Discussion of“Response surface design evaluation and comparison”by Christine M. Anderson-Cook, Connie M. Borror, Douglas C. Montgomery, Journal of Statistical Planning and Inference, 2009, 139(2): 647-649.
    [114] Borkowski JJ, Discussion of“Response surface design evaluation and comparison”by Christine Anderson-Cook, Connie Borror and Douglas Montgomery, Journal of Statistical Planning and Inference, 2009, 139(2): 650- 652.
    [115] Piepel GF, Discussion of“Response surface design evaluation and comparison”by C.M. Anderson-Cook, C.M. Borror, and D.C. Montgomery, Journal of Statistical Planning and Inference, 2009, 139(2): 653-656.
    [116] Goos P, Discussion of“Response surface design evaluation and comparison”, Journal of Statistical Planning and Inference, 2009, 139(2): 657-659.
    [117] Lucas JM, Discussion of“Response surface design evaluation and comparison”by Christine Anderson-Cook, Connie Borror and Douglas Montgomery, Journal of Statistical Planning and Inference, 2009, 139(2): 660-661.
    [118] Atkinson AC, Optimum and other response surface designs. Comments on“Response surface design evaluation and comparison”by Anderson-Cook, Borror and Montgomery, Journal of Statistical Planning and Inference, 2009, 139(2): 662-668.
    [119] Robinson TJ, A discussion of“Response surface design evaluation and comparison”by Christine Anderson-Cook, Connie Borror and Douglas Montgomery, Journal of Statistical Planning and Inference, 2009, 139(2): 669-670.
    [120] Anderson-Cook CM, Borror CM, Montgomery DC, Rejoinder for“Response surface design evaluation and comparison”, Journal of Statistical Planning and Inference, 2009, 139(2): 671-674.
    [121]张志红,何桢,郭伟,在响应曲面方法中三类中心复合设计的比较研究,沈阳航空工业学院学报, 2007, 24(1): 87-91.
    [122] Box GEP, Draper NR, Empirical Model-Building and Response Surfaces (2nd Edn). New York: John Wiley & Sons, 2007.
    [123] Myers RH, Khuri AI, Carter WH, Response surface methodology: 1966-1988, Technometrics, 1989, 31(2): 137-157.
    [124] Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM, Response surface methodology: a restrospective and literature survey, Journal of Quality Technology, 2004, 36(1): 53-77.
    [125] Myers RH, Response surface methodology - current status and future directions, Journal of Quality Technology, 1999, 31(1): 30-44.
    [126] Anjum MF, Tasadduq I, Al-Sultan K, Response surface methodology: a neural network approach, Eurpoean Journal of Opeartional Research, 1997, 101(1): 65- 73.
    [127]何曙光,齐二石,何桢,神经网络在响应曲面分析中的应用,系统工程理论与实践, 2001, 12: 130-133.
    [128] Shin H, Cho S, Response modeling with support vector machines, Expert Systems with Applications, 2006, 30(4): 746-760.
    [129]崔庆安,何桢,崔楠,基于SVM的RSM模型拟合方法研究,管理科学学报, 2008, 11(1): 31-41.
    [130] Simpson TW, Peplinski JD, Koch PN, Allen JK, Metamodels for computer-based engineering design: survey and recommendations, Engineering with Computers, 2001, 17(2): 129-150.
    [131] Jin R, Chen W, Simpson TW, Comparative studies of metamodelling techniques under multiple modeling criteria, Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
    [132] Jin R, Du X, Chen W, The use of metamodeling techniques for optimization under uncertainty, Structural and Multidisciplinary Optimization, 2003, 25(2): 99-116.
    [133] Wang GG, Shan S, Review of metamodeling techniques in support of engineering design optimization, Transactions of the ASME, 2007, 129(4): 370- 380
    [134] Jeong I-J, Kim K-J, Interative desirability function approach to multi-response surface optimization, International Journal of Reliability, Quality and Safety Engineering, 2003, 10(2): 205-217.
    [135] Jeong I-J, Kim K-J, D-STEM: a modified step method with desirability function concept, Computers and Operations Research, 2005, 32(12): 3175-3190.
    [136] Jeong I-J, Kim K-J, An interactive desirability function method to multiresponse optimization, European Journal of Operational Research 2009, 195(2): 412-426.
    [137]马林,何桢,六西格玛管理(第二版),北京:中国人民大学出版社, 2007.
    [138] Del Castillo E, Montgomery DC, A nonlinear programming solution to the dual response problem, Journal of Quality Technology, 1993, 25(3): 199-204.
    [139] Box GEP, Hunter JS, Hunter WG, Statistics for Experimenters: Design, Innovation, and Discovery (2nd Edn), John Wiley & Sons, 2005.
    [140] Watson GA, Robust counterparts of errors-in-vairables problems, Computational Statistics & Data Analysis, 2007, 52(2): 1080-1089.
    [141] Phadke MS, Quality Engineering Using Robust Design, New York: Prentice- Hall, Englewood Cliff, 1989.
    [142] Hook R, Jeeves TA, Direct search solution of numerical and statistical problems, Journal of Association for Computing Machinery, 1961, 8(2): 212-229.
    [143] Nelder JA, Mead R, A simplex method for function minimization, The Computer Journal, 1965, 7(4): 308-313.
    [144] Powell MJD, An efficient method for finding the minimum of a function of several variables without calcuting derivatives, The Computer Journal, 1964, 7 (2): 155-162.
    [145] Lewis RM, Torczon V, Trosset M, Direct search methods: then and now, Journal of Computational and Applied Mathematics, 2000, 124: 191-207.
    [146] Kolda TG, Lewis RM, Torczon, Optimization by direct search: new perspectives on some classical and modern methods, SIAM Review, 2003, 45(3): 385-482.
    [147] Holland J, Adaptation in Natural and Artificial Systems, Ann Arbor, Michigan: University of Michigan Press, 1975.
    [148] Goldberg DE, Genetic Algorithms in Search, Optimization and Machine Learning, Massachusetts: Addison-Wesley, 1989.
    [149] Davis LD, Handbook of Genetic Algorithms, New York: Van Nostrand Reinhold Company, 1991.
    [150] Kirkpatrick S, Gelatt CD, Vecchi MP, Optimization by simulated annealing, Science, 1983, 220(4598): 671-680.
    [151] Metropolis N, Rosenbluth AW, Teller MN, Teller E, Euqation of state calculation by fast computer machine, Journal of Chemical Physics, 1953, 21(6): 1087- 1092.
    [152] Saridakis KM, Dentsoras AJ, Soft computing in engineering design– a review, Advanced Engineering Information, 2008, 22(2): 202-221.
    [153] Kelner V, Capitanescu F, Leonard O, Wehenkel L, A hybrid optimization technique coupling an evolutionary and a local search algorithm, Journal of Computational and Applied Mathematics, 2008, 215(2): 448-456.
    [154] Lee K-H, Park G-J, Robust optimization considering tolerances of design variables, Computers and Structures, 2001, 79(1): 77-86.
    [155] Lee J, Ahn B, DOE based robust optimization considering tolerance bands of design parameters, JSME International Journal, 2006, 49(4): 1223-1231.
    [156] Ross SM, Simulation (4th Edn), San Diego, CA: Academic Press, 2007.
    [157]杨自强,你也需要蒙特卡罗方法——一个得心应手的工具,数理统计与管理, 2007, 26(1): 178-188.
    [158]杨自强,你也需要蒙特卡罗方法——提高应用水平的若干技巧,数理统计与管理, 2007, 27(2): 365- 376.
    [159] Gülpinar N, Rustem B, Robust optimal decisions with imprecise forecasts, Computational Statistics & Data Analysis, 2007, 51(7): 3595-3611.
    [160] Wu F-C, Yeh C-H, Robust design of multiple dynamic quality characteristics, International of Adcanced Manufacturing Technology, 2005, 25(5-6): 579-588.
    [161] Drucker PE, Management: Tasks, Responsibilities, Practices, New Jersey: Transaction Publishers, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700