燃气涡轮冷却结构设计与气热弹多场耦合的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高涡轮前燃气温度是提升涡轮效率、增加推重比的重要手段。涡轮前进口温度的不断提高,远远超过了叶栅材料所能承受的温度范围。只有采用有效的涡轮热防护措施才能够保证叶片安全地正常工作。常用的的涡轮叶片冷却方式包括气膜冷却、冲击冷却、扰流肋片、尾缘劈缝等。现代燃气涡轮必须采用多种冷却方式的组合才能达到强化冷却的目的,以满足涡轮前温度升高叶片材料不变对冷却系统提出的新要求。随着CFD技术的不断进步,数值仿真越来越成为涡轮冷却设计中的有力工具,准确预测涡轮叶片温度以及应力分布,是提高涡轮寿命和可靠性的基础。本文的主要工作就是采用气热、热弹耦合计算方法对某燃气轮机叶栅进行数值模拟,通过对计算结果的理论分析,研究影响涡轮冷却效率的因素,并且将CFD计算结果加载到有限元节点上,分析叶片的等效应力状态以及变形量。最后对某两级四列叶栅进行了冷却结构设计,并且根据实际冷却效果,改进初始设计以满足冷却设计要求。
     几何建模和网格离散是数值仿真研究的重要步骤,对于现代燃气涡轮叶片来说,为了保证叶片正常工作通常采用多种复杂冷却手段,使得叶片总体的冷却结构非常繁杂。本文中对比了传统手工方法建模与参数化叶片建模两种方法,详细介绍了两种方法的建模过程。非参数化的燃气涡轮冷却叶片建模方法灵活、丰富的建模手段能够精细刻画局部冷却结构,多种形式的冷却孔如复合角度孔、后倾扩张孔都能够按照当地的冷却特点布置。但是,该方法存在建模周期长、操作繁琐而且易于出错等弊端,而且离散点的方式生成叶片实体结构精度有限。相对于非参数化的几何模型,涡轮叶片型线经过了参数化,即成为了一种由函数表达曲线的形式。相对于通常采用的一组离散点表达曲线的方法,函数表达的形式避免了由于离散点数量少、间距不合理、位置偏差等问题造成的插值误差,能够在造型过程中保证较高的精度,而且经过了参数化过程,在需要修改叶片几何外形的时候,通过改变相应的控制参数就能方便快捷的生成新的几何模型,大大缩短了设计周期。
     影响涡轮叶片冷却效率的因素有很多,本文中研究了不同主流湍流度和不同冷却气体配比条件下对于冷却效率的影响。结果发现,主流湍流度对于叶片型面上的压力系数和速度比的影响较小,而于对壁面上的换热作用影响较大。在叶片前缘处,低湍流度方案下的的冷却效率略高于高湍流度方案,低湍流度的情况减少了喷射冷气与主流的作用,使得冷气覆盖情况比高湍流度下的情况要好。而在叶片中后部区域,加速流动的主流在高湍流度下使得冷气的贴壁性较好,因此,叶片表面的冷却效率在高湍流度下要略高于低湍流度的情况,在叶片尾缘处,由于冷却气膜的散失,失去了对叶片表面的保护作用,各湍流度下的表面冷却效率趋于一致。在不同冷却气体流量配比条件下,高的喷射动量对压力面冷却是有益的,平均冷却效率整体均略高于低冷却气体流量配比的情况。在吸力面,从总体上看冷却射流动量的增加降低了冷却效率,高喷射动量的方案仅仅在叶片前缘迎着主流的小范围内提高了冷却效率,而后低喷射动量的方案冷却效率一直高于高喷射动量的方案。
     对某燃气轮机四列冷却叶栅进行了冷却结构的初始设计与改进,对初始设计的冷却结构进行了冷却效果的校核,并且以计算结果为基础改进了冷却效果不达标的区域。在冷却结构设计过程中,以典型的导叶和动叶冷却结构为基础,如导叶的全气膜覆盖、冲击冷却、尾缘扰流肋柱结构、动叶的带肋蛇形通道、光滑蛇形通道结构。对初始设计的冷却结构进行气热耦合计算,然后修改局部没有达到冷却要求的区域,通过参数化的几何模型快速生成新的模型,从而大大节省工作时间。
Increase the turbine inlet temperature was the important way which could improv the efficiency and thrust to weight ratio. At present, the inlet temperature has exceeded the turbine material sustainable limit. It was necessary to adopt effective cooling techniques which made the turbine run well. The most effective turbine cooling methods were film cooling , impingement cooling, turbulent ribs, trailing edge slot and so on. Compound cooling methods should be employed to fulfill the demand of modern gas turbine. With the rapid development of CFD technique, numerical simulation became powerful tools of turbine cooling structure design. Predict the blade temperature and stress status exactly was the foundation to improve the turbine cycle life and reliability. The main work of the dissertation investigated several rows of turbine blades using conjugate and thermal mechanical methods. The cooling efficiency which influenced by corresponding factors was studied through numerical analysis. After that, the CFD results was transferd to FEA mesh nodes and blade stress status and total deformation were presented. Finally, cooling structure was designed for four rows of gas turbine blades. The initial cooling configuration was improved according to the practical cooling effect.
     Geometry modeling and mesh generation was the key step of numerical simulation. In order to protect the blade, muiltple cooling mehthods were employed which made the whole cooling configuration comlicated. The dissertation compared two types of modeling methods which one was non parameterized methods and another was parameterized methods. The detailed modeling process was introduced. The non parameterized modeling methods was flexible to set cooling configuration at any area and many types of cooling holes, such as compound holes, laid back diffuse holes could be arranged based on the blade local flow character. Therefore, long time consumption, fussy operation and easy to make mistakes were the disadvantages of non parameterized modeling methods. The accuracy of the non parameterized modeling method was also limited. Compara to the non parameterized modeling methods, the blade profile became function format when parameterized methods was employed. This format avoid the drawbacks of interplotion error which result form less control points, non reasonable distance, location deviation and maintain high precision in the modeling process. When the blade was parameterized, it could esay to generate new geometry through control parameters and short the design period.
     The cooling efficiency was influenced by many factors,this dissertation studied the influence of different main flow turbulent intensity and cooling air mass flow rate. It was concluded that the main flow turbulent intensity has much more influence on blade surface temperature rather than Cp and Cu. The higher cooling efficiency was appeared in low turbulent intensity case at the leading edge. Low turbulent intensity reduce the mix of cooling air and main flow which result to high cooling efficiency. At the middle and rear of the blade , the accelerated mainflow made the cooling air close to the surface. Therefore, the cooling efficiency was little higher in high turbulent intensity case. Because of the film cooling air dissipatation, the cooling efficiency became identical at the rear of the blade in both two cases. The pressure side film cooling benefited from the high cooling flow injection. On the suction side, the average cooling efficiency was lower in that case. The high injection momtum just improved the situation at leading edge aera and the cooling efficiency in low turbulent intensity case was higher at the rest of areas.
     Initial cooling configuration design was implemented for four rows of gas turbine blade and the cooling effect was testified. Low cooling efficiency area was improved base on the calculation. In the cooling configuration design process, typical turbine blade cooling structure was adopted such as, full film cooling, impingement cooling, trailing edge turbulent ribs, rib roughed serpentine passage, smooth serpentine passage. The initial cooling configuration was testified using conjugate method and local cooling structure was modified. The new model was generated through parameterized blade which save much more time.
引文
1. Sautner, M., Clouser, S., and Han, J. C., Determination of Surface Heat Transfer and Film Cooling Effectiveness in Unsteady Wake FLow Conditions. AGARD Conference Proceedings 527, 1992, pp. 6-1 to 6-12
    2. W. Koop. Integrated High Performance Turbine Engine Technology(IHPTET)Program. ISABE 97-7175
    3.葛绍岩等.气膜冷却,科学出版社,1985.
    4.刘大响.对加快发展我国航空动力的思考.航空动力学报. 2001, 16(1): 1~7
    5.蒋洪德.美国航空发动机和计算流体力学发展情况介绍.气动热力学发展战略研讨会专题报告汇编. 1989, (3):29-36
    6.方昌德.航空发动机的发展前景.航空发动机. 2004.30(1):1~5
    7.高性能涡轮发动机技术(IHPTET)计划. http://www.fyjs.cn.
    8.方昌德.美国AIAA呼吁政府支持综合高性能涡轮发动机技术.中国航空工业发展研究中心航空技术所.
    9. Hennecke D.K., Turbine Cooling in Aeroengines. Von Karman Inst. LS 1982-02
    10.方昌德. 2020年前航空发动机的技术发展水平对比和对策研究.综合高性能涡轮发动机技术(IHPTET)计划文集.航空航天部航空科学技术情报研究所. 1992
    11.曹玉璋等.航空发动机传热学.北京航空航天大学出版社. 2005
    12.方昌德.借鉴国外经验发展我国的航空发动机.国际航空,2006.4.
    13.陈光.航空发动机发展综述.航空制造技术,2000年第06期
    14.刘大响,程荣辉.世界航空动力技术的现状及发展动向.北京航空航天大学学报.2002年10月.第28卷第5期
    15. Favorskii, Kopelov S.Z., Air Cooling of Gas-Turbine Blades. Thermal Engineering,Aug.1981,pp.435~438
    16. Hylton L. D., Milhec M. S., Turner E. R., Nealy D. A., York R. E., Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes[R]. NASA-CR-168015, 1983.
    17.韩介秦等,燃气轮机传热和冷却技术,西安交通大学出版社, 2005.
    18. Goldstein. R .J., Seol. W. S., Heat Transfer from Arrays of Impinging Jets withLarge Jet-to-Jet Spacing. 1991,ASME Journal of Heat and Mass Transfer, Vol.34, pp.2133-2147.
    19. Goldstein. R .J., Sobolik. K. A., Seol. W. S., Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface. ASME Journal of Heat Transfer. 1990,Vol.112, pp.608-611.
    20. Florschuetz, L. W., Berry, R. A. and Metzger, D. E. , 1980. periodic streamwise Variations of Heat Transfer coefficients for Inline and Staggered Arrays of Circular Jets with Crossflow of Spent Air ASME journal of Heat Transfer ,Vol. 102, pp. 132-137.
    21. Hollworth, B. R., and Berry, R. D., 1987 Heat Transfer from Arrays of Impinging Jets with Large Jet-to-Jet Spacing. ASME Journal of Heat Transfer , Vol. 100, pp. 352-357
    22. Goldstein, R. J., and Behbahani, A. I., 1982. Impingement of a Circular Jet with and without Cross Flow. International Journal of Heat Transfer , Vol. 25, pp. 1377-1382
    23. Sparrow, E. M., and Wong, T. C., 1975. Impingement Transfer Coefficients Due to Initially Laminar Slots Jets. International Journal of Heat and Mass Transfer, Vol. 18, pp. 597-605.
    24. Bouchez, J. P., and Goldstein, R. j., 1975. Impingement Cooling from a Circular Jet in a Cross Flow. International Journal of Heat and Mass Transfer, Vol. 18, pp. 719-730
    25. Han. J. C., Heat Transfer and Friction Characteristics in Recttangular Channels with Rib Turbulators. ASME Journal of Heat Transfer, 1988,Vol.110, pp. 321-328.
    26. Han. J. C., Park. J. S., Lei. C. K., Augumented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios with Rib Turbulators. International Journal of Heat and Mass Transfer. 1989, Vol.9, pp.1619-1630.
    27. Han. J. C., Zhang. Y. M., Lee. C. P., Augumented Heat Transfer in Square Channels with Parallel, Crossed, and V-Shaped Angled Ribs. ASME Journal of Heat Transfer, 1991, Vol.113, pp.590-596.
    28. Han. J. C., Zhang. P., High Performance Heat Transfer Ducts with Parallel Broken and V-Shaped Broken Ribs. International Journal of Heat and Mass Transfer, 1992,Vol.35, pp.513-523.
    29. Han, J. C., and Huang, J.J. , and Lee , C. P., 1993 Augmented Heat Transfer in Square Channels with Wedge-shaped and Delta-Shaped Turbulence Promoters. Enhaned Heat Transfer, Vol.1, No. 1,pp.37-52
    30. Han, J. C., Zhang, Y.M., 1992. Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels with Parallel, Crossed, and V Shaped Angled Ribs. ASME Journal of Turbomachinery, Vol.114 , pp. 872-880
    31. Webb, R.L., Eckert, E.R.G., and Goldstein, R.J.,1971 Heat Transfer and Friction in Tubes with Repeated-Rib Roughness. International Journal of Heat and Mass Transfer, Vol. 14,No.4, pp. 601-617
    32. Han, J.C., Glickman,L.r., and Rohsenow, W.M.,1978. An Investigation of Heat and Mass Transfer and Friction for Rib-Rough Surfaces International Journal of Heat and Mass Transfer, Vol. 21,pp. 1143-1156
    33. Xiangyun Liu, Shuiting Ding. Zhi Tao, Guoqiang Xu. Heat Transfer Characteristics Inside Two-Pass Variable Cross-Section Channels With Ribs and Bleed Holes. ASME Paper, GT2004-53529
    34. Aroon K. Viswanathan, Danesh K. Tafti. Samer Abdel-Wahab. Large Eddy Simulation of Flow and Heat Transfer in An Internal Cooling Duct With High Blockage Ratio 45°Staggered Ribs. ASME Paper, GT2005-68086
    35. Aroon K. Viswanathan, Danesh K. Tafti. Samer Abdel-Wahab. Large Eddy Simulation in A Duct With Rounded Skewed Ribs. ASME Paper, GT2005-68117
    36. Evan A. Sewall, Danesh K. Tafti. Large Eddy Simulation of Flow and Heat Transfer in The 180°Bend Region of A Stationary Ribbed Gas Turbine Internal Cooling Duct. ASME Paper, GT2005-68518
    37. Evan A. Sewall, Danesh K. Tafti. Large Eddy Simulation of Flow and Heat Transfer in The Developing Region of A Rotating Gas Turbine Blade Internal Cooling Duct With Coriolis and Buoyancy Forces. ASME Paper, GT2005-68519
    38. Aroon K. Viswanathan, Danesh K. Tafti. Samer Abdel-Wahab. Large Eddy Simulation of Fully Developed Flow and Heat Transfer in A Rotating Duct With
    45°Ribs. ASME Paper, GT2006-90229
    39. Bruno Facchini, Lorenzo Tarchi. Investigation of Innovative Trailing Edge Cooling Configurations with Enlarged Pedestals and Square or SemicircularRibs. Part I-Experimental Results. ASME Paper, GT2008-51047
    40. Bruno Facchini, Lorenzo Tarchi. Investigation of Innovative Trailing Edge Cooling Configurations with Enlarged Pedestals and Square or Semicircular Ribs. Part II-Numerical Results. ASME Paper, GT2008-51048
    41.王华阁主编.航空发动机设计手册.第16册.空气系统及传热分析.航空工业出版社, 2001
    42. Dunn M. G. Convective Heat Transfer and Aerodynamics in Axial Flow Turbines. ASME journal of turbomachinery, 2001, 123(4):637~686
    43. Goldstein R. J. Film Cooling. Advances in Heat Transfer, 1971,7:321~379
    44.葛绍岩等.气膜冷却.北京:科学出版社,1985
    45. Kercher D. M. A Film Cooling CFD Bibliography: 1971~1996. International Journal of Rotating Machinery, 1998,4(1) :61~72
    46. Kercher D. M. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972~1998. International Journal of Rotating Machinery, 2000,6(5): 313~319
    47. Dring, R.P., Blair, M. F., and Joslyn, H. D., An Experimental Investigation of Film Cooling on A Turbine Rotor Blade. ASME Journal of Engineering for Power .1980. Vol. 102, pp. 81~87
    48. Takeishi, K., Aoki, S., Sato, T., and Tsukagoshi, K., Film Cooling on A Gas Turbine Rotor Blade. ASME Journal of Turbomachinery, 1992. Vol. 114,pp. 828~834
    49. Nirmalan, N.V., and Hylton,L.D., An Experiment study of Turbine Vane Heat Transfer with Leading Edge and Downstream Film Cooling ASME Journal of Turbomachinery , 1990. Vol. 112, pp. 477~487
    50. Drost, U., and Bolcs, A., Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas Turbine Airfoil. ASME Journal of Turbomachinery.1999.Vol. 121, pp. 233~242
    51. Ames, F. E., Aspects of Vane Film Cooling with High Turbulence. Part1 : Heat Transfer. ASME Journal of Turbomachinery. 1998a.Vol.120 , pp.768~776
    52. Ames, F.E., Aspects of Vane Film Cooling with High Turbulence. Part2 : Adiabatic Effectiveness. ASME Journal of Turbomachinery. 1998a Vol.120 , pp.777~784
    53. James E. Mayhew,James W. Baughn,Aaron R. Byerley,The Effect of Freestream Turbulence on Film Cooling Heat Transfer Coefficient and AdiabaticEffectiveness Using Compound Angle Holes.ASME Paper,GT2004-53230
    54. Mayhew, J.E., Baughn, J.W., and Byerley, A.R., The Effect of Freestream Turbulence on Film Cooling Heat Transfer Coefficient.ASME Paper, GT2002-30173
    55. Mayhew, J.E., Baughn, J.W., and Byerley, A.R., The Effect of Freestream Turbulence on Film Cooling Adiabatic Effectiveness. ASME Paper, GT2002-30172
    56. Saumweber, C., Schulz, A., and Wittig, S., Freestream Turbulence Effect on Film Cooling Shaped Holes.ASME Paper, GT2002-30170
    57. Nix A.C., Diller T.E., Ng W.F., Experimental Measurements and Modeling of The Effects of Large-Scale Freestream Turbulence on Heat Transfer. ASME Paper, GT2004-53260
    58. Boyle R. J., Giel P.W., Forrest E. Ames, Predictions for the Effect of Freestream Turbulence on Turbine Blade Heat Transfer. ASME Paper,GT2004-54332
    59. Nix A.C., Diller T.E., Experiments on The Physical Mechanism of Heat Transfer Augmentation By Freestream Turbulence At A Cylinder Stagnation Point .ASME Paper,GT2005-68616
    60. Colban W., Thole K.A., Haendler M., A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on A Vane Endwall at Low and High Freestream Turbulence Levels. ASME Paper,GT2006-90021
    61. Friedrich. S., Hodson. H. P., Dawes. W. N., Distribution of Film Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique. ASME Journal of Turbomachinery, 1996, Vol.118, pp.613-621.
    62. Friedrich. S., Hodson. H. P., Dawes. W. N., The Design of Improved Endwall Film-Cooling. ASME Paper. 98-GT-483.
    63. Harasgama. S. P., Burton. C. D. Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Casade. Part I, Part II, ASME Journal of Turbomachinery, 1992, Vol.114, pp.734-746.
    64. Harvey N. W.,Rose N. G.,Coupland J.,Jose T. V.,Measurement and Calculation of Nozzle Guide Vane End Wall Heat Transfer. Transactions of the ASME. 1999, Vol.121, pp.184-190.
    65. Friedrich. Kost, Martin. Nicklas. Film-Cooled Turbine Endwall in a Transonic Flow Field: Part 1- Aerodynamic Measurements. ASME Paper, 2001-GT-0145
    66. Friedrich. Kost, Martin. Nicklas. Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II-Heat Transfer And Film-Cooling Effectiveness. ASME Paper, 2001-GT-0146
    67. Knost D.G., Thole K.A., Adiabatic Effectiveness Measurements of Endwall Film Cooling for A First Stage Vane. ASME Paper, GT2004-53326
    68. Christophel J.R., Couch E., Thole K.A. and Cunha F.J., Cooling The Tip of A Turbine Blade Using Pressure Side Holes: Part II-Heat Transfer Measurements. ASME Paper, GT2004-53254
    69. Christophel J.R., Couch E., Thole K.A. and Cunha F.J., Cooling The Tip of A Turbine Blade Using Pressure Side Holes: Part I-Adiabatic Effectiveness Measurements. ASME Paper, GT2004-53251
    70. Hasan Nasir, Srinath V. Ekkad, Ronald Bunker and Chander Prakash. Effects of Tip Gap Film Injection from Plain and Squealer Blade Tips. ASME Paper, GT2004-53455
    71. Shantanu Mhetras, Huitao Yang, Je-Chin Han. Film-Cooling Effectiveness on Squealer Rim Walls and Squealer Cavity Floor of A Gas Turbine Blade Tip Using Pressure Sensitive Paint. ASME Paper, GT2005-68387
    72. Jae H.Yoon, Ricardo F. Martinez-Botas. Film Cooling Performance in A Simulated Turbine Blade Tip Geometry. ASME Paper, GT2005-68863
    73. Haiping C., Dalin Z. and Taiping H. Impingement Heat Transfer Form Rib Roughened Surface Within Arrays of Circular Jet: The Effect of The Relative Position of The Jet Hole to The Ribs .ASME Paper, 97-GT-331
    74. Gau C., Lee C. C., Impingement Cooling Flow Structure and Heat Transfer Along Rib Roughened Walls. International Journal of Heat Transfer and Mass Transfer, 1992,35(11):3009~3020
    75. Taslim M. E., Li T. and Spring S. D., Measurements of Heat Transfer Coefficients in Rib-Roughened Trailing Edge Cavities with Crossover Jets. International Gas Turbine and Aeroengine Congress and Exposition, ASME Paper 98-GT-435
    76. Trabolt T. A., Obot N.T., Impingement Heat Transfer Within Arrays of Circular Jets. Part II : Effects of Crossflow in The Presence of Roughness Elements. International Gas Turbine and Aeroengine Congress and Exposition, Anaheim, Calif, May 31~June 4.,1987
    77. Shen J.R, Wang Z., Ireland P.T., Jones T.V. and Byerlye A.R., Heat Transfer Enhancement Within A Turbine Blade Cooling Passage Using Ribs and Combinations of Ribs With Film Cooling Holes. ASME Journal of Turbomachinery, 1996,118(3):428~434
    78.张净玉,常海萍.稀疏型气膜出流内部冷气侧换热特性研究.航空动力学报, 2003, 18(4): 502~506
    79.张净玉,常海萍.密集型气膜出流内部冷气侧换热特性研究.航空动力学报, 2003, 18(4): 515~518
    80. Yao-Hsien Liu, Michael Huh, Dong-Ho Rhee, Je Chin Han, and Hee Koo Moon. Heat Transfer in Leading Edge, Triangular Shaped Cooling Channels With Angled Ribs Under High Rotation Numbers. ASME Paper GT2008-50334
    81. Lorenzo Tarchi, Bruno Facchini, Investigation of Innovative Trailing Edge Cooling Configurations with Enlarged Pedestals and Square or Semicircular Ribs: Part I– Experimental Results. ASME Paper GT2008-51047
    82. Lorenzo Tarchi, Bruno Facchini, Investigation of Innovative Trailing Edge Cooling Configurations with Enlarged Pedestals and Square or Semicircular Ribs: Part I– Numerical Results. ASME Paper GT2008-51048
    83. Michael Maurer, Jens Von Wolfersdorf, Michael Gritsch, An Experimental and Numerical Study of Heat Transfer and Pressure Losses of V- and W-Shaped Ribs at High Reynolds Numbers. ASME Paper GT2007-27167
    84. Michael Maurer, Jens Von Wolfersdorf, Michael Gritsch, An Experimental and Numerical Study of Heat Transfer and Pressure Losses In A Rectangular Channel With V-Shaped Ribs. ASME Paper GT2006-90006
    85. Shyy Woer Chang, Tong-Miin Liou, Wen-Hsien Yeh, Jui-Hung Hung. Heat Transfer in A Radially Rotating Square-Section Duct With Two Opposite Walls Roughened By 45°Staggered Ribs. ASME Paper GT2006-90153
    86. Chakroun W. M., AL-Fahed S.F., Abdel-Rehman. Heat Transfer Augmentation For Air Jet Impinged On Rough Surface. International Gas Turbine and Aeroengine Congress and Exhibition, Orlando, Fla, June 2~5, 1997
    87. Azad G. M., Huang Y., Han J.C., Jet Impingement Heat Transfer on Pinned Surfaces Using A Transient Liquid Crystal Technique. International Symposium on Transport Phenomena and Dynamic of Rotating Machinery, 2000, Vol. II: 731~738
    88. Kercher D. M., Tabakoff W. Heat Transfer By A Square Array of Round Air Jets Impinging Perpendicular To A Flat Surface Including The Effect of Spent Air. ASME Journal of Engineering For Power, 1997,92:73~82
    89. Azad G. M., Huang Y., Han J.C. Jet Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique. AIAA Journal of Thermophysics and Heat Transfer, 2000, 14(2):186~193
    90. Dutta S., Dutta P., Jones R.E., Khan J.A., Heat Transfer Coefficient Enhancement with Perforated Baffles. ASME Journal of Heat Transfer, 1998,120:795~797
    91. Dutta P., Dutta S., Khan J.A., Internal Heat Transfer Enhancement By Two Perforated Baffles In A Rectangular Channel. ASME Paper 98-GT-55
    92. Glezer B., Moon H. K., O’Connell T., A Novel Technique for the Internal Blade Cooling. ASME Paper 96-GT-181
    93. Glezer B., Moon H. K., Kerrebrock J.L., Bons J., Guenette G., Heat Transfer in A Rotating Radial Channel With Swirling International Flow. ASME Paper 98-GT-214
    94. Guo S. M., Lai C. C., et, al. Influence of Surface Roughness on Heat Transfer and Effectiveness for Fully Film Cooled Nozzle Guide Vane Measured By Wide Band Liquid Crystals and Direct Heat Flux Gauges. ASME Paper 2000-GT-0204
    95. Mark K. Harrington, Marcus A. McWaters, et, al Full-Coverage Film Cooling With Short Normal Injection Holes. ASME Paper 2001-GT-0130
    96. Grady B. Kelly, David G. Bogard, An Investigation of The Heat Transfer for Full Coverage Film Cooling. ASME Paper GT-2003-38716
    97. Yuzhen Lin, Bo Song, Bin Li, et, al Investigation of Film Cooling Effectiveness of Full-Coverage Inclined Multihole Walls With Different Hole Arrangements. ASME Paper GT-2003-38881
    98. Shantanu Mhetras, Je-Chin Han, Ron Rudolph. Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness For a Gas Turbine Blade. ASME Paper GT2007-27071
    99. Sang Hyun Oh, Dong Hyun Lee, Kyung Min Kim, et, al Enhanced Cooling Effectiveness in Full-Coverage Film Cooling System With Impingement Jets. ASME Paper GT2008-50784
    100. Perelman T. L. On Conjugated Problems of Heat Transfer. Int. J. Heat Mass Transfer. 1961,3:293~303
    101. Steinthorsson, E., Ameri, A.A., Rigby, D.L., TRAF3D.MB - A Multi-Block Flow Solver for Turbomachinery Flows, AIAA Paper No. 97-996, 1997
    102. Heidmann. J. D., Kassab. A. J., Divo. E. A., Rodriguez. F., Steinthorsson. E., Conjugate heat transfer effects on a realistic film cooled turbine vane. ASME paper GT-2003-38553.
    103. Bohn. D., Kusterer. K., Sugimoto. T., Tanaka. R., Conjugate analysis of a test configuration for a film-cooled blade under off-design conditions. ISABE-2003-1176.
    104. Kusterer. K., Bohn. D., Sugimoto. T., Tanaka. R., Conjugate heat transfer analysis of a test configuration for a film-cooled blade. IGTC2003Tokyo TS-083.
    105. Kusterer. K., Bohn. D., Sugimoto. T., Tanaka. R., Conjugate calculations for a film-cooled blade under different operating conditions. GT2004-53719.
    106. Kusterer. K., Hagedorn. T., Bohn. D., Sugimoto. T., Tanaka. R., Improvement of a film-cooled blade by application of the conjugate calculation technique. GT2005-68555.
    107. Bohn. D., Kusterer. K., Blowing ratio influence on jet mixing flow phenomena at leading edge. AIAA-99-0670.
    108. Bohn. D., Heuer. T., Conjugate flow and heat transfer calculation of a high pressure turbine nozzle guide vane. AIAA-2001-3304.
    109. Bohn. D. E., Tümmers. C., Numerical 3-D conjugate flow and heat transfer investigation of a transonic convection-cooled thermal barrier coated turbine guide vane with reduced cooling fluid mass flow. ASME Paper, GT2003-38431.
    110. Bohn. D., Heuer. T., Kortmann. J., Numerical conjugate flow and heat transfer investigation of a transonic convection-cooled turbine guide vane with stress-adapted thicknesses of different thermal barrier coating. AIAA 2000-1034.
    111. York. W. D., Leylek. J. H., Three dimensional conjugate heat transfer simulation of an internally cooled gas turbine vane. ASME Paper, GT2003-28551.
    112. Facchini. B., Magi. A., Greco. A. S. D., Conjugate heat transfer simulation of aradially cooled gas turbine vane. ASME Paper GT2004-54213.
    113. Mazur. Z., Hernandez-Rossette. A., Garcia-Illescas. R., Luna-Ramirez. A., Analysis of conjugate heat transfer of a gas turbine first stage nozzle. ASME Paper, GT2005-68004.
    114. Takahashi. T., Watanabe. K., Sakai. T., Conjugate heat transfer analysis of a rotor blade with rib-roughened internal cooling passages, ASME Paper, GT2005-68227.
    115. H.W. Forsching气动弹性力学原理.上海科学技术文献出版社, 1982:1~7
    116.姜贵庆,杨希霓.气动防热理论的某些发展与应用.空气动力学发展论文集国防工业出版社,1997:267~287
    117. Perelman T. L. On Conjugated Problems of Heat Transfer. Int. J. Heat Mass Transfer. 1961, 3:293~303
    118. Kays and Crawford, Convective Heat and Mass Transfer 2nded McGraw-Hill, New York, 1980:21~217
    119.武新华,马晓峰.叶片热弹耦合场分析.汽轮机技术,2001,45(1):14~16
    120. Nowinski J. L. Theory of Thermoelasticity with Application [M]. Sijtjoff Noordhoff International Publishers B V, 1978
    121. Boley B. A., Weinen J.H. Theory of Thermal Stress [M]. John Wileysons Inc, 1960
    122. Nowinski J. L. Theory of Thermoelasticity with Applications. Sijthoff & Noordhoff Intcrnational Publishers B.V.,1978:1~20
    123. Kalyano Y. M., Shter EI. Themoelasticity of Non homogeneous Media. J EngPhys, 1980:1~24
    124. Inoue T, Nagaki S. A Constitutive Modeling of Thermoviscoelastic-plastic Materials. J Thermal Stresses. 1978, 1(1): 53~62
    125. Chung T. J., Prater J. L., A Constitutive Theory for Anlsotropic Hygrothemoelasticity with Finite Element Applications. J Thermal Stresses. 1980, 3(3): 435~452
    126.树学峰,张晓晴,张晋香.周边固支圆板非线性热弹耦合振动分析.应用数学和力学. 2000, 21(6): 647~654.
    127.兰姣霞,张晓晴,树学峰.轴对称圆柱壳非线性热弹耦合振动基本方程.华北工学院学报. 2000, 21(6): 36~38
    128.于文芳,兰姣霞,树学峰.热弹耦合温度场中短圆柱壳动力响应分析.太原理工大学学报. 2003, 34(2): 119~121
    129.李志刚,树学峰.一类变厚度圆板非线性热弹耦合的振动分析.太原理工大学学报. 2004, 35(1) :9~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700