富水巷道顶板强度弱化机理及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当煤矿巷道顶板围岩含水时,在开挖和服务期间,巷道顶板岩石吸水或失水过程中将会导致其强度和完整性显著弱化,严重时发生围岩大变形、甚至冒顶,严重影响矿井的安全生产。因此,开展富水巷道顶板强度弱化机理及其控制研究,具有重要的科学与工程意义。
     论文在现场调查了富水巷道工程地质特征、变形破坏因素以及顶板强度弱化特征的基础上,提出了富水巷道的概念,并解释了其含义和特点。
     针对典型的富水巷道顶板条件,对富水巷道顶板的岩层矿物组分、微结构特征,及其软弱岩层的物理性质弱化规律、不同含水状态下含水砂岩强度损伤特征,以及含水砂岩的分类进行了系统研究,发现富水巷道顶板岩层富含粘土矿物且粒间孔隙较为发育、连通性好,遇水后强度降低,这是富水巷道顶板围岩强度弱化的内在影响因素。并根据含水砂岩不同含水状态下的声发射特征,提出了富水巷道顶板稳定性预测预报的技术原理。
     应用弹塑性理论的基本知识,对富水圆形巷道在无支护、锚杆支护下围岩塑性区半径和位移进行了理论研究,发现水作用下巷道塑性区半径及位移较无水状态下增大,并分析得到了富水巷道塑性区半径和位移与原岩应力、支护强度、原始渗透水压力、有效水压力系数以及内聚力之间的变化规律。现场钻孔探测与COMSOL3.5a多场耦合数值模拟相结合,详细研究了顶板强度弱化规律,发现水作用下富水巷道顶板裂隙在掘进稳定期间仍在扩展发育,且顶板下沉量随着岩石含水率增加而逐渐变大,从而揭示了富水巷道顶板强度弱化的基本原理和规律。
     以富水巷道顶板遇水前后物理力学性质特征、直接顶岩性以及顶板水赋存层位为依据,建立了富水巷道顶板不同顶板条件下的分阶段控制技术体系;现场实测和数值模拟发现富水巷道顶板水赋存层位岩石裂隙较为发育且顶板水具有可控性的特点,提出了有控疏水、合理保水技术以减少顶板水对岩石侵蚀弱化作用和提高围岩自身强度的基本思路;利用FLAC模拟研究得到了富水巷道顶板锚杆支护主要技术参数。
When the surrounding rocks of roadway roof contain water in coal mine, the strength and integrality of roof rocks would be weaken significantly in process of wa-ter absorption and loss, large deformations of surrounding rocks even roof-fall acci-dent which have a strong impact on safety production of the mine will happen in se-vere case. Therefore, researches on strength weakening mechanism and control of water-enriched roofs in mine roadway will have an important science and engineering significance.
     Based on field investigation of engineering geological characteristics, deforma-tion destruction factors and roof strength weakening characteristics in water-enriched roadway, the concept of water-enriched roadway is put forward by this paper. In the meanwhile,this paper explains the meanings and features of water-enriched roadway.
     Aiming at the condition of roof in representative water-enriched roadway, the systematic researches about rock mineral components, microstructure characteristics, physical property and weakening rules of weak strata, the strength damage features of water-bearing sandstone under different water-bearing states and classification of wa-ter-bearing sandstone have been done in the laboratory. It is found that the roof strata in water-enriched roadway is rich in clay mineral with developmental intergranule pores and good connectivity, its lower strength after encountering water is the internal influence factor for strength weakening of roof. According to AE features of wa-ter-bearing sandstone under different water-bearing states, this paper presents a tech-nical principle of roof stability forecast in water-enriched roadway.
     Basic knowledge of elasto-plasticity theory is applied to research plastic zone ra-dius and displacement of surrounding rocks in water-enriched circular roadway under the condition of no support or anchor bolt support. It is found that plastic zone radius and displacement under the effect of water is bigger than the case without water. The change rules between plastic zone radius, displacement and in-situ stress, support strength, original seepage water pressure, effective water pressure coefficient, cohe-sion are analysed in water-enriched roadway. Roof strength weakening rules have been researched in detail by field hole detection combined with COMSOL3.5a mul-ti-field coupling numerical simulation software. Results indicate that roof fractures are still expanding and developing at stability period of excavating under the effect of water in water-enriched roadway and roof convergence increases gradually along with the augment of rock water ratio. Thus the basic principles and rules of roof strength weakening in water-enriched roadway are given by this paper.
     According to the roof physical mechanical properties of pre and post encounter-ing water, lithology of immediate roof and occurrence horizon of roof water, control technique system by roofs and by stages in different regions of water-enriched road-way is established by this paper. Results of field measurement and numerical simula-tion show that the rock fractures in occurrence position of water which has controlla-bility develop a lot, hereby the thinking of controlled drain and reasonable wa-ter-preserved technology is put forward to decrease the erosion weakening effect of rocks with water and increase own strength of surrounding rocks. FLAC simulation software is used to determine the main technological parameters of roof bolt support in water-enriched roadway. Field application shows that this coal mine gains fairly good technical and economic effect by the research achievements from this paper.
引文
[1]侯朝炯,郭励生,勾攀峰,等.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999:1-6.
    [2]康红普,王金华.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007:6-7,83-86.
    [3]侯朝炯,郭宏亮.我国煤巷锚杆支护技术的发展方向[J].煤炭学报,1996,21(2):113-118.
    [4]王志清,万世文.顶板裂隙水对锚索支护巷道稳定性的影响研究[J].湖南科技大学学报,2005,20(4):26-29.
    [5]许兴亮,张农.富水条件下软岩巷道变形特征与过程控制研究[J].中国矿业大学学报,2007,36(3):298-302.
    [6]王思恩,郑少林,于菁珊,等.中国地层典-侏罗系[M].北京:地质出版社,2000:4-7.
    [7]符俊辉.西北地区侏罗系煤层分布规律及划分对比的几个标志[J].西北地质,1997,18(1):7-11.
    [8] YAO Q. L., Zhang F. T., Ding X. L., et al. Experimental research on instability mechanism of silty mudstone roofs under action of water and its application[J].Procedia Earth and Plane-tary Science 1,2009,402-408.
    [9]曾佑富,伍永平,来兴平,等.复杂条件下大断面巷道顶板冒落失稳分析[J].采矿与安全工程学报,2009,26(4):423-427.
    [10]杨忠民,张建华,来兴平,等.复杂特厚富水煤层大采高开采岩层运动局部化特征[J].煤炭学报,2010,35(11):1868-1872.
    [11]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994:71-75.
    [12]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1994:9-14.
    [13]魏可忠.矿井水文地质[M].北京:煤炭工业出版社,1991:12-15,68-78.
    [14]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002:68-70,116-119.
    [15]康红普.水对岩石的损伤[J].水文地质工程地质,1994(3):39-40.
    [16]苟晓琴,陈迪云.当代环境中石造物的腐蚀破坏机理和保护[J].华东地质学院学报,1991,17(4):389-394.
    [17]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335-341.
    [18] Anderson,O. L.,P. C. Grew. Stress corrosion theory of crack propagation with applications to geophysics [J]. Rev. Geophys,1977,15(1):77-104.
    [19] Tzong-Tzeng Lin,Chyi Sheu,Juu-En Chang. Slaking mechanisms of mudstone liner im-mersed in water [J]. Journal of Hazardous Materials,1998,58(1-3):261-273.
    [20] Peak L. Stress corrosion and crack propagation in Sioux Quartzite [J]. Journal of Geophysi-cal Research,1983,88(B6):5037-504.
    [21] Atkinson,B. K.,Meredith,P. G. Stress corrosion and cracking of quartz:A note on the influence of chemical environment [J]. Tectonophysics. 1981(1-2),77:T1-T11.
    [22] Swanson,P. L. Subcritical crack growth and other time-and environment-dependent behavior in crustal rocks [J]. Journal of Geophysical Research,1984,89(B6):4137-4152.
    [23]黄伟,周文斌,陈鹏.水-岩化学作用对岩石的力学效应的研究[J].西部探矿工程,2006, 117(1):122–125.
    [24] DYKE C. G.,Dobereiner L. Evaluating the strength and deformability of sandstones [J]. Quarterly Journal of Engineering Geology and Hydrogeology,1991,24(1):123-134.
    [25] Logan J. M,Blackwell M. I. The influence of chemically active fluids on the frictional be-havior of sandstone [J].EOS Trans. Am Geophys. Union,1983,64(2):835-840.
    [26] Burshtein L. S. Effect of moisture on the strength and deformability of sandstone [J].Journal of Mining Science,1969,5(5):573-576.
    [27] Vasarhelyi B.,Van P. Influence of water content on the strength of rock [J].Engineering Geology,2006,84(1/2):70-74.
    [28] Colback P. S. B.,Wiid B. L. Influence of moisture content on the compressive strength of rock [A]. In:Proc.3rd Canadian Rock Mech. Symp[C].Canada:University of Toronto,1965,385-391.
    [29] Laijtai E. Z.,Schmidtke R. H.,Bielus L. P. The effect of water on the time-dependent de-formation and fracture of granite [J]. Int.J.Rock Mech. Min. Sci. & Geomech. Abstr.,1987,24(4):247-255.
    [30]孙钧,胡玉银.三峡工程饱水花岗岩抗拉强度时效特性研究[J].同济大学学报,1997,25(2):127-134.
    [31] Hawkins A. B.,Mcconnell B. J. Sensitivity of sandstone strength and deformability to changes in moisture content [J].Quarterly Journal of Engineering Geology and Hydroge-ology,1992,25(2):115-130.
    [32] Ojo O. and Brook N. The effect of moisture on some mechanical properties of rock [J]. Mo-berly, Mining Science and Technology,1990,10(2):145-156.
    [33]韩琳琳,徐辉,李男.干燥与饱水状态下岩石剪切蠕变机理的研究[J].人民长江,2010,41(15):71-74.
    [34] Chugh Y. P.,R. A. Missavage. Effects of moisture on strata control in coal mines [J]. Engi-neering Geology,1981,17(4):241-255.
    [35] Chang C. D.,Haimson B. Effect of fluid pressure on rock compressive failure in a nearlyimpermeable crystalline rock:Implication on mechanism of borehole breakouts [J]. Engi-neering Geology,2006(10):10-16.
    [36]唐春安,唐世斌.岩体中的湿度扩散与流变效应分析[J].岩土力学,2010,27(3),292-298.
    [37]刘光廷,胡昱,李鹏辉.软岩遇水软化膨胀特性及其对拱坝的影响[J].岩石力学与工程学报,2006,25(9):1729-1734.
    [38]常春,周德培,郭增军.水对岩石屈服强度的影响[J].岩石力学与工程学报,1998,17(4):407-4l1.
    [39]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005:34-40.
    [40]周翠英,彭泽英,尚伟,等.论岩土工程中水-岩相互作用研究的焦点问题[J].岩土力学,2002,23 (1):124-128.
    [41]汪亦显,曹平,黄永恒,等.水作用下软岩软化与损伤断裂效应的时间相依性[J].四川大学学报(工程科学版),2010,42(4):55-62.
    [42]沈荣喜,刘长武,刘晓斐.压力水作用下碳质页岩三轴流变特征及模型研究[J].岩土工程学报,2010,32(7):1031-1034.
    [43]汤连生,张鹏程,王洋.水作用下岩体断裂强度探讨[J].岩石力学与工程学报,2004,23(19):3337-3341.
    [44]朱珍德.地下水对裂隙岩体强度的影响[J].山东科技大学学报(自然科学版),2000,19(1):18-20.
    [45]朱珍德,张勇,王春娟.大理岩脆-延性转换的微观机理研究[J].煤炭学报,2005,30(1):31-35.
    [46]杨天鸿,唐春安,徐涛,等.岩石破裂过程的渗流特征[M].北京:科学出版社,2004:42-47.
    [47] Hoek E.,Bray J. W. Rock slope engineering(Revised Third Edition)[M].London:Institution of Mining and Metallurgy,1981:83-113.
    [48]胡耀青,段康廉,张文,等.孔隙水压对煤体变形特性影响的研究[J].山西矿业学院学报,1990,8(4):419-425.
    [49]费晓东,董正筑,李玉寿,等.动态孔隙水作用下砂岩力学特性试验研究[J].采矿与安全工程学报,2010,27(3):425-428.
    [50]郭富利,张顶立,苏洁,等.地下水和围压对软岩力学性质影响的试验研究[J].岩石力学与工程学报,2007,26(11):2324-2332.
    [51]荣传新,程桦.地下水渗流对巷道围岩稳定性影响的理论解[J].岩石力学与工程学报,2004,23(5):741-744.
    [52]卢应发,孙慧,陈高峰,等.岩石和水耦合参数在破裂过程中的演化规律[J].工程力学,2010,27(2):19-29.
    [53]刘建,乔丽苹,李鹏.砂岩弹塑性力学特性的水物理化学作用效应-试验研究与本构模型[J].岩石力学与工程学报,2009,28(1):20-29.
    [54] Oneil J. R.,Hanks T. C. Geomechanical evidence for water-rock interaction along the San Andreas and Garlock faults of Califorrnia [J]. J. Geophys. Res.,1980 ,85:6286-6292.
    [55] Dewerw T.,Ortoleva P.Mechano-chemical coupling via texture dependent solubility in stressed rocks [J]. Geochim Cosmochim Acta,1988(89):4196-4202.
    [56] Feucht L. J,John M. L. Effects of chemically active solutions on shearing behavior of sandstone [J]. Tectonophysics,1990(175):159-176.
    [57]汤连生,王思敬.工程地质地球化学的发展前景及研究内容和思维方法[[J].大自然探索,1999,68(2):34-43.
    [58]朱珍德,孙钧.裂隙岩体非稳态渗流场与损伤场耦合分析模型[J].四川大学学报(工程科学版),1999,3(4):73-80.
    [59]汤连生.水-岩土反应的力学与环境效应研究[J].岩石力学与工程学报,2000, 19(5):681-682.
    [60] Feng X. T.,Li S. J.,Chen S. L.Effect of water chemical corrosion on strength and cracking characteristics of rocks[J].Key Engineering Materials,2004:1355-1360.
    [61] Jing Z. Z.,Kimio W.,Jonathan W.,et al.A 3D water/rock chemi-cal interaction model for prediction of HDR/HWR geothermalreservoir performance [J].Geothermics,2002,31:1-28.
    [62] Freiman S. M. Effects of the chemical environments on slow crack growth in glasses and ceramics [J].J. Geophys. Res.,1984(89):4 072-4 077.
    [63] Karfakis M. G.,Askram M. Effects of chemical solutions on rock fracturing [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1993,37(7):1 253-1 259.
    [64]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4):526-531.
    [65] Dunning J.,Douglas B.,Miller M.,et al. The role of the chemical environment in frictional deformation:stress corrosion cracking and comminution[J].Pure and Applied Geophysics,1994,43(1/3):151-178.
    [66] Liste J. R,Kerr R. C. Fluid-mechanical models of crack propagation and their application to magma transport in Dykes [J]. J.Geophys.Res.,1991,96(B6):10049~10077.
    [67] Dieterich J.H.,Conrad G. Effects of humidity on time and velocity dependent friction in rocks [J]. J.Geophys.Res.,1984(89):4196-4202.
    [68]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴压缩力学效应的试验[J].东北大学学报(自然科学版),2003,24(3):292-295.
    [69]陈四利,冯夏庭,李邵军.岩石单轴抗压强度与破裂特征的化学腐蚀效应[J].岩石力学与工程学报,2003,22(4):547-551.
    [70] Ieterich J. H.,Conrad G.Effects of humidity on time and velocity dependent friction in rocks [J].J. Geophys Res,1984(89):4196-4202.
    [71] Yuan H. P.,Cao P.,Xu W. Z.Mechanism study on subcritical crack growth of flabby and intricate ore rock [J].Trans Nonferrous Met Soc China,2006,16(3):723-727.
    [72]杨建辉,尚岳全,祝江鸿,等.层状结构顶板锚杆组合拱梁支护机制理论模型分析[J].岩石力学与工程学报,2007,26(增2):4215-4220.
    [73]徐金海.锚固体强度与组合拱承载能力的研究与应用[J].中国矿业大学学报,1999,28(5):482-485.
    [74] Guo S.,Stankus J. Control mechanism of a tensioned bolt system in the laminated roof with a large horizontal stress [A].16th Int. Conf. on Ground Control in Mining,Morgantown,West Virginia,1997.
    [75] Stankus J.,Guo S. Computer automated finite element analysis-a powerful tool for fast mine design and ground control problem diagnosis and solving [A]. 5th Conf. on the Use of Computers in the Coal Industry,Morgantown,West Virginia,1996.
    [76]侯朝炯.煤巷锚杆支护的关键理论与技术[J].矿山压力与顶板管理,2002(1):1-5.
    [77]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [78]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [79]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998:18-19,35-62.
    [80]康红普.巷道围岩的关键圈理论[J].力学与实践,1997,19(1):34-36.
    [81]朱建明,任天贵,徐秉业,等.巷道围岩主次承载区协调作用[J].中国矿业,2000,9(2):41-44.
    [82]李树清.深部煤巷围岩控制内、外承载结构耦合稳定原理的研究[D].长沙:中南大学,2008.
    [83]许兴亮,张农,李桂臣,等.巷道覆岩关键岩梁与预应力承载结构力学效应[J].中国矿业大学学报,2008,37(4):560-564.
    [84]林崇德.煤巷软弱顶板锚杆支护机理与技术研究[D].徐州:中国矿业大学,1999.
    [85]赵庆彪.深井破碎围岩煤巷锚杆-锚索协同作用机理研究[D].北京:中国矿业大学(北京校区),2004.
    [86]周华强.巷道支护限制与稳定作用理论的研究[D].徐州:中国矿业大学,2000.
    [87]康红普.煤矿井下应力场类型及相互作用分析[J].煤炭学报,2008,33(12):1329-1332.
    [88]宋宏伟.非连续岩体中锚杆横向作用的新研究[J].中国矿业大学学报,2003,32(2):161-164.
    [89]贾颖绚,宋宏伟,段艳燕.非连续岩体锚杆导轨作用的物理模拟研究[J].中国矿业大学学报,2007,36(4):614-617.
    [90]陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理,2002(1):12-15.
    [91]郭颂.美国煤巷锚杆支护技术概况[J].煤炭科学技术,1998,26(4):50-54.
    [92]马念杰,潘玮,李新元.煤巷支护技术与机械化掘进[M].徐州:中国矿业大学出版社,2008:1-7,20-35.
    [93]何川,谢红强.多场耦合分析在隧道工程中的应用[M].成都:西南交通大学出版社,2007:41-48.
    [94]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):1-20.
    [95]陈宗基.应力释放对开挖工程稳定性的重要影响[J].岩石力学与工程学报.1992,1(11):1-10.
    [96]高明仕,张农,张连福,等.伪硬顶高地压水患巷道围岩综合控制技术及工程应用[J].岩石力学与工程学报,2005,24(21):3996-4002.
    [97]韦立德,陈从新,徐建,等.考虑渗流和锚固作用的强度折减有限元法研究[J].岩石力学与工程学报,2008,27(增2):3471-3476.
    [98]黄乃斌,孔德惠.大断面交岔点顶板变形与加固控制技术研究[J].采矿与安全工程学报,2006,23(2):249-252.
    [99]汪班桥,门玉明,沈星.水作用下黄土土层锚杆的预应力损失[J].水文地质工程地质,2010,37(1):76-79.
    [100]朱维申,李晓静,杨为民,等.大岗山水电站地下厂房稳定性的流固耦合计算分析[J].岩土力学,2006,27(增刊):1-4.
    [101]李国富,李珠,李玉辉,等.泥质类膨胀软岩巷道注浆强化防水控制研究[J].太原理工大学学报,2009,40(2):148-151.
    [102]薛亚东,黄宏伟.水对树脂锚索锚固性能影响的试验研究[J].岩土力学,2005,26(增刊):31-34.
    [103]李铀,白世伟,方昭茹,等.预应力锚索锚固体破坏与锚固力传递模式研究[J].岩土力学,2003,24(5):686-690.
    [104]张发明,陈祖煜,刘宁.岩体与锚固体间粘结强度的确定[J].岩土力学,2001,22(4):470-473.
    [105]朱行宝,郭运行.注浆堵水确保树脂锚杆支护质量[J].矿山压力与顶板管理,2005(4):123-124.
    [106]勾攀峰,陈启永,张盛.钻孔淋水对树脂锚杆锚固力的影响分析[J].煤炭学报,2004,29(6):680-683.
    [107]张盛,勾攀峰,樊鸿.水和温度对树脂锚杆锚固力的影响[J].东南大学学报(自然科学版),2005,35(增刊I):49-54.
    [108]张玉军.考虑水-应力耦合作用的地下洞室的锚杆支护效果[J].岩石力学与工程学报,2005,24(15):2683-2688.
    [109]薛亚东,黄宏伟.锚索锚固力影响因素的试验分析研究[J].岩土力学,2006,27(9):1523-1526.
    [110]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995:1-14.
    [111]康红普,王金华,高富强.掘进工作面围岩应力分布特征及其与支护的关系[J].煤炭学报,2009,34(12):1585-1593.
    [112]刘长武,陆士良.软岩的风化效应及其对巷道维护的影响[J].中国矿业大学学报,2000,29(1):70-72.
    [113] Chigira,M. A mechanism of the chemical weathering of mudstone in a mountainous area [J]. Engineering Geology,1990(29):119-138.
    [114] Chigira,M.,Sone,K. Chemical weathering mechanisms and their effects on engineering properties of soft sandstone and conglomerate cemented by zeolite in a mountainous area [J]. Engineering Geology,1991(30):195-219.
    [115] Takahiro Oyama,Masahiro Chigira. Weathering rate of mudstone and tuff on old unlined tunnel walls [J]. Engineering Geology,1999(55):15-27.
    [116] Yen F. S. Relationships between morphology and weathering-erosion behavior of mudstone slopes in the Southwestern Taiwan. National Science Council,NSC 75-0414-P006-04,Taipei,Taiwan,1987.
    [117]张鹏飞.沉积岩石学[M].北京:煤炭工业出版社,1990:87-101.
    [118] Chen Z. J. Research on deformation and damage of expansive rock [J]. Chinese Journal of Rock. Mechanics and Engineering,1994,13(3):206–212.
    [119]周思孟.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社,1998:210-219.
    [120]付国彬,路彪,陆士良,等.煤巷顶板的风化膨胀及其控制[J].矿山压力与顶板控制,1998(1):30-32.
    [121]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006:10-13,153-159,165-169.
    [122]谭罗荣.关于粘土岩崩解、泥化机理的讨论[J].岩土力学,2001,22(1):1-5.
    [123]缪协兴,陈纯智.软岩力学[M].徐州:中国矿业大学出版社,1995:104-111.
    [124] Gysel. M. Design methods for structure in swelling rock [J]. ISRM,1975(18):377-381.
    [125] Wittke. W. Foundations for the design and construction of tunnel in swelling rock [J]. Proc. 4th int.Cong. Rock Mech.,Montreux,1979(2):219-229.
    [126]杨庆,廖国华.膨胀岩的三轴膨胀试验的研究[J].岩石力学与工程学报,1994,13(1):51-58.
    [127] Holtz W. G. and Gibbs J. J. Engineering properties of expansive clays [J]. Proc. Am. Soc. Civ. Eng,1956(121):641-677.
    [128] Huder. J. and Amberg G. Quellung in Mergel, Opalinuston and Anhydrit[J]. Schweizerische Bauzeitung,1970,88(43):975-980.
    [129] Komornik A. and Zeitlen J. G. Laboratory determination of lateral and vertical stresses in compacted swelling clay [J]. Journal of Materials,1970,5(1):108-128.
    [130]温春莲,陈新万.初始含水率、容重及载荷对膨胀岩特性影响的试验研究[J].岩石力学与工程学报,1992,11(3):304-311.
    [131]中华人民共和国地质矿产部.岩石物理力学性质试验规程[M].北京:地质出版社,1988:66-74.
    [132]姚强岭,李学华,瞿群迪.富水煤层巷道顶板失稳机理与围岩控制技术研究[J].煤炭学报,2011,36(1),12-17.
    [133]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994:56-57,61-65,221-223.
    [134]尤明庆.岩石非均匀变形破坏和承载能力的研究[D].徐州:中国矿业大学,1997.
    [135]袁振明,马羽宽,何泽云.声发射技术及其应用[M].北京:机械工业出版社,1985:1-16.
    [136]尹菲.声发射技术用于工程岩体灾害预报的试验研究初探[J].中国地质灾害与防治学报,1991,2(增刊):74-79.
    [137] Obert L.,Duvall W. I. Micro-seismic method of determing the stability of underground openings [M]. Washington:United States Government Printing Office,1957:1-18.
    [138]张发明,陈祖煜,刘宁.岩体与锚固体间粘结强度的确定[J].岩土力学,2001,22(4):470-473.
    [139]李世平.岩石力学简明教程[M].徐州:中国矿业学院出版社,1986:97-106,115-120.
    [140]刘树新,张飞,赵学友.深埋隧硐含水围岩弹塑性稳定极限平衡分析[J].包头钢铁学院学报,2005(3):1-4.
    [141]郑颖人,刘怀恒.隧洞粘弹-塑性分析及其在地下工程中的应用[J].地下工程,1980(7):20-29.
    [142]倪国荣.圆形井巷含水围岩的岩体-水力学分析[J].长沙铁道学院学报,1989(3):57-68.
    [143]蔡晓鸿.设集中排水的水工压力隧洞含水围岩弹塑性应力分析[J].岩土工程学报,1991(11):52-63.
    [144]徐芝纶.弹性力学(上册,第三版)[M].北京:高等教育出版社,1990(5):85-90.
    [145]马慧,王刚.COMSOL Multiphysics基本操作指南和常见问题解答[M].北京:人民交通出版社,2009:14-18.
    [146]陈占清,李顺才,浦海,等.采动岩体蠕变与渗流耦合动力学[M].北京:科学出版社,2010:263-264.
    [147]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005:18-21.
    [148] Itasca Consulting Group Inc. FLAC2D(Version 4.0)users manual[R].Minnesota:Itasca Consulting Group Inc.,2000.
    [149] Itasca Consulting Group Inc. FLAC3D(Version 3.0)users manual[R].Minnesota:Itasca Consulting Group Inc.,2005.
    [150]陈安敏,顾金才,沈俊.预应力锚索的长度与预应力值对其加固效果的影响[J].岩石力学与工程学报,2002,21(6):848-852.
    [151]谭峰屹.钙质砂岩声发射试验研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [152]赵洪宝.含瓦斯煤失稳破坏及声发射特性的理论与实验研究[D].重庆:重庆大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700