光纤Bragg光栅传感技术用于工程结构安全监测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型结构的安全监测,能够及时了解结构性状,防患未然,获得巨大的社会和经济效益。工程结构安全监测的高新技术中,光纤传感具有独特的优势。其中光纤Bragg光栅传感技术灵敏度高,抗干扰能力强,测量稳定可靠,代表着新一代光传感器的发展方向。
    本文运用光纤Bragg光栅传感技术的特点和优点,解决高土石坝工程集中渗流监测和组合结构损伤检测两项难题,为发展该两领域内光纤光栅监测技术的传感系统和分析方法提供了理论基础和关键技术。本文主要工作和成果如下:
    (1)首次提出高土石坝集中渗流大范围、定量化监测的光纤Bragg光栅传感技术的科学理念、理论方法和分析手段。首次采用光纤Bragg光栅传感系统,突破了国内外近年来采用DTS分布式光纤测温的局限,实现了光纤传感的选型优化,成为实现高土石坝心墙集中渗流的定位、定渗流量监测的可行途径和新理念。
    发展了渗流-温度耦合场的有限元分析方法,完成了高土石坝心墙集中渗流的模拟仿真,获得温度分布与渗流通道几何位置和渗流速度及渗流量的关系,用数值手段论证了这一高端技术的可行性。首次为大范围、定量化监测土石坝心墙随机出现的渗流通道位置和渗流量提供了技术途径。
    (2)提出了地基集中渗漏的光纤Bragg光栅检测方法,发展了流场-温度耦合场的有限元分析方法,得出地基监测孔内流体、温度多场分布,从而确定地基中集中渗流通道位置和渗流量。据此论证了应用该技术监测地基集中渗流的可行性。
Health monitoring of large engineering structures is helpful for knowing the behavior of the structures and can then take preventive measurements if some damages occur. Among all the high technologies of health monitoring, optic fiber sensing has its unique advantages. The Fiber Bragg Grating (FBG) sensing, has high sensitivity and stability, strong capacity against disturbance, representing the development direction of new light sensors.
    This paper uses the advantages of FBG sensing technology to solve two important and difficult problems: detection of seepage flow of high earth-rock dams and damages of composite structures, and the theoretical bases and key technologies for the development of FBG sensing technology in these two fields are provided. There are some creative results in this paper:
    Firstly,Scientific conception and theoretical, analytical methods of the FBG seepage sensing system for quantification and localization of seepage flow in high earth-rock dams is put forward. Using the FBG sensing system, the limitation of Distribute Temperature System (DTS) used in recent years can be broken free from the optimization of fiber sensor type carried out for the quantification and localization of seepage flow in high earth-rock dams.
    Finite element method analysis of seepage-temperature coupling fields is presented to solve the numerical analysis problem of the seepage flow in a high earth-rock dam. The distribution of temperature field, seepage field and the
    relationship between water velocity and FBG temperature are obtained. Secondly, the photo-electric multi-function seepage measurement system is presented. The electrical measurement subsystem and heating subsystem are studied to provide technologies for the seepage flow monitoring in high earth-rock dams and the dam foundations. The heating subsystem is made up mainly of PTC thermistors. It is safe and longstanding. The electrical measurement subsystem is made up of DS18B20 temperature sensors and microprocessor. Tests of a prototype of the system show very good characterization. Thirdly, a new kind method based on FBG sensing technology to measure the interface damages of steel-concrete composite slab of a bridge deck is presented. The FBG sensors suitable for measuring slippages and disengages are presented too. Model tests show that interface damages can be detected by using these FBG sensors and show the rule of damage development. So the mechanism of damages and development process can be discovered. During the composite structure model tests, FBG sensing system experiences three stages:dead loading test, fatigue test (up to 3×106 cycles) and destructive test. The FBG system works properly during the three stages. Abundant data are acquired which are helpful for the discovering of damage rule. Testing results are compared with those detected by strain gauges. The results show that FBG system is very reliable. Lastly, the FBG system management software is developed independently. FBG data can be saved, transfered, printed, processed, displayed using this software. In a word, the FBG sensing high-tech. is develop and combined with the traditional engineering fields. It is quite helpful to develop the technology of safety monitoring of engineering structures, and so has important scientific and practical significance.
引文
[1]王继成,许锡兵等,水工砼结构损伤诊断技术研究综述,重庆交通学院学报,Vol.23(4),2004,19~29。
    [2]信思金,FBG 传感器在大坝安全监测中的应用研究,武汉理工大学学报,Vol.26(8),2004,35~37
    [3]梁磊,姜德生等,光纤 Bragg 光栅传感器在土木工程中的应用,河南科技大学学报,Vol.24(2),2003,86~89
    [4]陈伟恩,钢-混凝土组合结构节点抗震性能研究,硕士学位论文,2002
    [5]杨勇,型钢混凝土粘结滑移基本理论及应用研究”,西安建筑科技大学博士学位论文,2003.10。
    [6] Dong X. Y, Qin Z X, Ding L, et al, SPIE Proceeding, 2000, Vol.4225, 151~159
    [7]尹福炎,电阻应变计的由来、发展及展望,传感器世界,1998.8, 27~32
    [8]高小丁,胥光申,王锦,电阻应变片粘贴方位偏差对测量结果的影响,西安石油学院学报,Vol 16,No.6,2001,41~43
    [9]刘仁,叶树亮等,转矩传感器发展现状,东北林业大学学报,vol 25,No.6,1997,56~59
    [10]杨勇,赵鸿铁,薛建阳,“型钢混凝土粘结滑移性能实验分析”西安建筑科技大学学报,2002.9,vol34(3),205~209
    [11]毛昶熙,渗流计算分析与控制,中国水利水电出版社,2003
    [12]杜雷功,全国病险水库除险加固专项规划综述,水利水电工程设计,2003,Vol.22(3),1~5
    [13]姜德生,何伟,“光纤光栅传感器的应用概况”, 光电子·激光 vol.13(4),2002
    [14]舒学文,张新亮,施伟,黄德修,“基于光纤光栅的分布式传感器”, 光纤与电缆及其应用技术,1997 年 5
    [15] Federal Highway Administration. 1996 Research and Technology Program Highlights.,Publication No. FH-WA-RD-96-168, Washington D.C., 1996, 41.
    [16]Internet reference:dot.gov/onedot/library/tech-sh-are/flagbg.cfm.
    [17]Friebele P., etal, Fiber Bragg grating strain sensors:present and future applications in smart structures ,[J].Optics and Photonics News,1998,9:33-37.
    [18] Slowi k.V.,etal. Fiber Bragg Grating Sensors in Concrete Technology,[J]. LACER,1998,3:109 ~119.
    [19]Vohra S.T.,etal. Quasi-Static Strain Monitoring During the ’Push’ Phase of a Box Girder Bridge Using Fiber Bragg Grating Sensors [A]. European Workshop on Optical Fibre Sensors [C]. Scotland,UK,1998.
    [20]Nellen P. M.,etal.,“Application of fiber optical and resistance strain gauges for long term surveillance of civil engineering structures”[A]. Proc. SPIE [C]. 1997,3043:77-86.
    [21]Friebele P., etal, Fibre Bragg grating strain sensors:present and future applications in smart structures ,[J].Optics and Photonics News,1998,9:33-37.
    [22]Kersey. A. D.,etal. Progress towards the development of practical fibre Bragg grating instrumentation systems,[A]. Proc. SPIE [C].1996,2839:40-63.
    [23]Dewynter Marty V. , etal. Concrete strain measurements and crack detection with surface-mounted and embedded Bragg grating extensometer,[A]. Proc。Of the Optical Fiber Sensors Conf.(OFS-12) [C]. Williamsburg,VA,USA,1997,600-603.
    [24]Denarie E,etal. “Concrete fracture process zone characterization with fiber optics”,[J].J.of Engineering Mechanics, 2001,5,494-502.
    [25]Federal Highway Administration, 1996 Research and Technology Program Highlights. Publication No. FH-WA-RD-96-168, Washington D.C., 1996, 41.
    [26]Internet reference:dot.gov/onedot/library/tech-sh-are/flagbg.cfm.
    [27]Chang C.C.,etal. Development of Fiber Bragg Grating Sensor Based Load Transducers,[A]. Proc of the Optical Fiber Sensors Conf. (OFS-12) [C]. Williams-bure, VA, USA, 1997, 174-177.
    [28]Internet reference:gfz-potsdam.de/pb5/pb51/html/conny3-en.htm.
    [29]Ferdinand P,etal. Applications of Bragg gating sensors in Europe [A]. Proc. Of the Optical Fiber Sensors Conf. (OFS-12) [C]. Williamsburg,VA,USA,1997,14-19.
    [30]Bronnimann R, etal. Packaging of Fiber Optics Sensors for Civil Engineering Appliations [A]. Symposium DD, Reliability of Photonics Materials and Structures [C]. SanFrancisco, USA, 1998.
    [31]Schulz, W.L., etal. Internet reference: bluerr.com/images/advFOS.pdf.
    [32]Internet reference: inventivefiber.com.sg.
    [33]Foote P.D. Fiber Bragg grating strain sensors for aerospace smart structure [A]. Proc. SPIE [C]. 1994, 2361:162-166.
    [34]Internetreference:nasatech.com/Briefs/Jun98/0698PTB1.html.
    [35]EckeW., etal. Optical Fibre Grating Strain Sensor Network for X38 Space craft Health Monitoring [A]. Proc. Of the SPIE [C] .2000,4185: 888-891.
    [36]Internet reference: techreports.larc.nasa.gov/ltrs/PDF/1998/tp/NASA-98-tp207643.pdf.
    [37]Internet reference: nesb.larc.nasa.gov/NNWG/vol8.2/TASKS/MSFC/msfc82-6.html.
    [38]Internet reference: ic.are.nasa.gov/ic/projects/pho-tonics/OS/HealthSensors/health.html.
    [39]Internet reference: bluerr.com/images/adhesive.pdf.
    [40]ZhangL,etal.Spatialandwavelengthmultiplexingarchitecturesforextremestrainmonitoringsystem·824·光电子·激光,2002 年,第 13 卷
    [41]Hjelme D.R.,etal. Application of Bragg grating sensors in the characterization of scaled marine vehicle models [J]. Applied Optics,1997,36:328-336.
    [42]Vohra S.T., etal. Sixteen channel WDM fiber Bragg grating dynamic strain sensing system for compsite panels lamming tests [A]. Proc. Of the Optical Fiber Sensors Conf. (OFS12) [C].Williamsburg,VA,USA,1997,662-665.
    [43]Internetreference:techtransfer.nrl.navy.mil/sel-te-ch/DistFOsensor.html.
    [44]Internetreference:dodsbir.net/awardlist/absnavy.html.
    [45]Internetreference:photonics.com/spectra/tech/Oct99/techShipshape.html.
    [46]Internetreference:gcrmtcweb.engr.uno.edu/gcrm-tc/projectpage.asp?id=145.
    [47]Wang G,, etal. ,Digital demodulation and signal processing applied to fibre Bragg grating strain sensor arrays in monitoring transient loading effects on ship hulls, Pro. Of the Optical Fiber Sensors Conf.(OFS-12),Williamsburg,VA,USA,1997,612-615.
    [48]Internet reference: inventivefiber.com.sg.
    [49]Rao Y.J., etal. Wavelength division multiplexed in fibre Bragg grating Fabry Perot sensor system for quasi-distributed current measurement [A].proc. of the Ann. Conf. on Applied Optics and Optoelectronics C]. Brighton,1998,99-104.
    [50]Henderson P.J., Current metering using fibre grating based interrogation of a conventional current transformer [A]. Proc. Of the Optical Fiber Sensors Conf. (OFS-12)[C].Williamsburg,VA,USA,1997,186-189.
    [51]Hammon T.E., etal., Optical fibre Bragg grating temperature sensor measurements in an electrical power transformer using a temperature compensated fibre Bragg grating as a reference [A]. Proc. Of the 1th International Conf. on Optical Fibre Sensors [C]. Sap-poro, Japan, 1996, 566-569.
    [52]Theune N.M, etal. Applications of Fiber Optical Sensors in Power Generators: Current and Temperature Sensors [A]. Proc.OPTO2000 Conf. 2000,22-25.
    [53]Ogawa Y, etal. A multiplexing load monitoring system for power transmission line using fiber Bragg grating [A]. Proc. of the Optical Fiber Sensors Conf. (OFS-12) [C]. Williamsburg, VA, USA, 1997, 468-471.
    [54]Internetreference:omega.com/literature/transactio-ns/volume3/lad2.html.
    [55]Kersey A.D. Down hole monitoring in oil reservoirs, IEICE Trans. Electron. 2000, E83-C: 400-404.
    [56]Internet reference:oil-offshore.com/companies/op-toplan.html.
    [57]Internetreference:cidra.com/opticalsensingsystems/technology/bragg-grating.html.
    [58]Spirin V.V.,etal., Fiber Bragg grating sensor for petroleum hydrocarbon leak detection [J]. Optics and Laser in Engineering, 2000, 32:497-503
    [59]Berthold J.W., Measurement of Axial and Bending Strain in Pipe lines Using Bragg Grating Sensors [A]. SPIE Environmental and Industrial Sensing Conference, Boston, Massachusetts, 2000.
    [60]Meltz G, etal. Fibre grating evanescent-wave sensors [A]. Proc. SPIE [C], 1996, 2836: 342-350.
    [61]Ecke W, etal. Chemical Bragg grating sensor network basing on side polished optical fibre [A]. Proc. SPIE [C],1998, 3555:457-466.
    [62]Internetreference:optics.kth.se/fysik2/RIO97/PDF/RIO97B.PDF.
    [63]Peng Y.T., etal. , The characterization of hydrogen sensor based on palladium electroplated fiber Bragg grating (FBG)[A]. Proc. SPIE [C].1999,3670:42-53.
    [64]Internetreference:enme.umd.edu/smsrc/research.html.
    [65]Bhatia V, etal., Optical fiber long-period gratign sensors [J]. OpticsLetters, 1996,21:692-694.
    [66]Zhang Z, Sirkis J.S. Temperature-compensated long period grating chemical sensor [A]. Proc. of the Optical Fiber Sensors Conf. (OFS-12)[C].Williamsburg,VA,USA,1997,294-297.
    [67]Falciai R.,etal., Optical fiber long period gratings for the refractometry of a queous solution [A]. Proc. SPIE[C].1998, 3555:447-450.
    [68] Internetreference:lunainnovations.com/research/bi-ochemical.htm.
    [69] Rao Y.J., etal., In-fibre Bragg grating temperature sensor system for medical application [J]. J. Light
    [70]方福波“基于单片机的光纤Bragg光栅传感器的解调系统”, 光学精密工程 第 10卷,2002
    [71]谢芳,张书练,李岩,张爱华,李相培,“光纤光栅传感器的波长检测系统及其理论分析”, 第22 卷, 第 6 期 2002 年,光学学报
    [72]鲍吉龙,章献民,陈抗生,周文“光纤光栅传感器及其应用”, 激光技术,Vol.24,No.3,2000
    [73]SWEE CHUAN T., A pressure Sensor Using Fiber Bragg Grating, Fiber and Intergrated Optics,20:59-69,2001
    [74]V. M. Murukeshan, P. Y. Chan, Itracore Fiber Bragg Grating for Strain Measurement in Embedded Composite Structure, Applied Optics, Vol 40,No1,1.Jan.2001,145-149
    [75]Highly-Multiplexed Grating-Sensors for Temperature-Referenced Quasi-Static Measurements of Strain in Concrete Bridges, OFS-13,320-323
    [76]David J. F. Cooper, Time-Division Multiplexing of Large Serial Fiber-Optic Bragg grating Sensor Arrays , Applied Optics, Vol 49,No.16,1.Jan.2001,2643-2654
    [77]Optic Fiber Sensors for Downwell Monitoring Applications in the Oil&Gas Industry, OFS-13, 326-331
    [78]Time Domain Multiplexing for a Bragg Grating Strain Measurement Sensor Network,OFS-13,308-311
    [79]侯尚林,胡春莲等,光纤 Bragg 光栅及其应用研究进展,兰州理工大学学报,Vol(30),No.1,2004,94~96
    [80]杨玲等,掺锗光纤的紫外光敏特性,光通信技术,vol 20,1996(3),232~236
    [81]黄建辉,赵 洋,”光纤布拉格光栅传感器实现应力测量的最新进展”, 光电子·激光 第11 卷 第 2 期 2000 年 4 月
    [82]舒学文,张新亮,施伟,黄德修,“基于光纤光栅的分布式传感器”, 光纤与电缆及其应用技术 1997 年 No.5
    [83]靳伟,廖延彪,张志鹏等.导波光学传感器原理与技术.北京:科学出版社,1998.288.
    [84]刘云启,刘志国,郭转运,董孝义“利用调谐滤波技术的光纤光栅复用传感器”,光学学报,20 卷
    [85]黄国君,殷钧虢等,光纤布拉格光栅的灵敏性及疲劳可靠性研究,激光杂志,2003.6,Vol.24,45~47
    [86] http://www.c114.net/technic/ZZHtml_20056/T20056995399756-1.shtml
    [87] http://www.sensorworld.com.cn/zzzt/2004/02/jsyy-2.htm
    [88]黄建辉,赵 洋,”光纤布拉格光栅传感器实现应力测量的最新进展”, 光电子·激光 第11 卷 第 2 期 2000 年 4 月
    [89]张佩生。曹立国,钢-混凝土组合结构住宅建筑体系,建筑钢结构进展,第 5 卷,增刊,2003,75~78
    [90]钢-混凝土组合桥面板(承受负弯矩的组合桥面板试验与结果分析),四川省交通厅公路规划勘察设计研究院联合体,2005 年 5 月
    [91]李丰丽,钟金钢,张永林,双 FBG 位移测量系统,传感器技术,2003(10),60~64
    [92] 王 志 远 , 王 占 锐 , 一 项 渗 流 监 测 新 技 术 — 排 水 孔 测 温 法 [J]. , 大坝观测与土工测试, 1997,Vol.21(4),5~7
    [93]李端有,陈鹏霄等,温度示踪法渗流监测技术在长江堤防渗流监测中的应用初探,长江科学院院报,2000,Vol.17(12),48~50
    [94]Aufleger M., Fiber optic temperature measurements for dam monitoring [A]. Proceedings of International Conference on Health Monitoring of Civil Infrastructure System [C]. 1999.
    [95]孙东亚等,基于光纤温度测量的土石坝渗漏监测技术[J],水利水电科技进展,Vol.20(4),29~31
    [96]梁业国,熊文林,周创兵,有自由面渗流分析的子单元法,水利学报,1997(8),34~38.
    [97]张天有,有自由面渗流分析的初流量法,水利学报,1988(8)
    [98]黄蔚,刘迎曦,周承芳,三维无压渗流场的有限元算法研究,水利学报,2001(6),33~36
    [99]吴梦喜,张学勤,有自由面渗流分析的虚单元法,水利学报,1994(8),67~71
    [100]陈精一,蔡国忠,电脑辅助工程分析 ANSYS 使用指南,中国铁道出版社,2001 年
    [101]李皓月等,Ansys 工程计算应用教程,中国铁道出版社,2003
    [102]Saeed Moaveni,Finite Element Analysis-Theory and Application with ANSYS,电子工业出版社,2003
    [103]祝效华,ANSYS 高级工程有限元分析,电子工业出版社,2004
    [104]小枫工作室,最新经典 ANSYS 及 Workbench 教程,电子工业出版社,2004
    [105]博弈创作室,APDL 参数化有限元分析技术及其应用实例,中国水利水电出版社,2004
    [106]钟秦等,化工原理,国防工业出版社,2001
    [107]A.I.H.马尔卡威等,RCC坝温度应力和结构应力的计算分析[约旦],水利水电快报 Vol.26(2),2005.1,23~28
    [108]秦一涛等,分布式光纤温度监测系统在长调水电站的应用实践,大坝与安全,2004.1,45~48
    [109]魏德荣等,基于光纤温度测量的渗漏监测技术,浙江水利科技,2004.2,19~21
    [110]葛双成,坝体渗漏探测的雷达和电阻率综合法,工程勘察,2005.5,69~72
    [111] Markus Aufleger 等,大坝监测中的光纤温度测量,大坝安全及监测国际研讨会议论文集,1999,646~651
    [112] http://www.ptc-ptc.com/PTCdgzyl.htm
    [113]雷志栋等,土壤水动力学[M],北京:清华大学出版社,1988.
    [114]柴军瑞,岩体渗流-应力-温度三场耦合的连续介质模型,红水河,Vol.22(2),2003
    [115]姚仲鹏等,传热学(M),北京理工大学出版社,1995
    [116] http://www.cws.net.cn/Journal/slxb/200108/05.html
    [117]段祥宝,李祖贻,瀑布沟水电站大坝三维渗流数值模拟研究,水电站设计[J],Vol.13(1),1997, 29~38
    [118]龙有良,水库常见险情 分析及抢险,湖南水利水电[J],2004,第 6 期,68~69
    [119] 刘瑞懿,韩玲,土坝坝基渗漏成因分析及处理实例,水利水电快报 [J] ,Vol.22(9),2001,4~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700