多模式自适应水下无线通信网络关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,随着世界经济和军事发展的需求,海洋资源开发、海洋能源利用等现代海洋高新技术的研究已成为世界新科技革命的主要领域之一,其中水下无线通信网络关键技术与装备已成为各海洋大国不遗余力进行研究的主要对象。水下无线通信网络设备的发展对于建立水下立体通信网络、水下无线预警网络、水下无线导航网络等系统具有重要意义。为满足当前海洋探测、海洋军事等领域对水下通信的要求,该通信网络在感知环境因素,自适应调整通信模式的基础上,既要能够提供远、中、近程中低速实时数据和语音通信,又要能够提供中、近程实时高速图像数据传输及多媒体通信功能。因此,为适应以上需求,本文研究了多模式自适应水下无线通信网所涉及的一些关键技术和内容。具体研究内容包括以下几个方面:
     (1)提出了基于软件无线电技术的多模式自适应水下无线通信网络的概念和相应的框架结构。并对其物理层、链路层和网络传输层所涉及的相关协议进行了简要分析。同时,针对水下无线通信网的安全需求,提出了水下无线通信网的安全体系结构框架,并进行了简要的分析。
     (2)介绍了水下无线光通信信道以及水下无线水声通信信道的特点和建模方法,研究了分别适应于深海信道的LDPC空时编码方案,以及适应于浅海信道的TURBO空时编码方案。为简化接收端解码的复杂度,研究了统一的自适应解码方案。
     (3)根据水下无线通信系统对调制解调方式的需求,通信节点首先根据数据量大小以及对速率和带宽的要求,确定调制模式。同时,结合MAC层协议,研究创建了一种跨层的自适应调制解调系统框架,利用收发双方的握手信息携带当前信道状态,由发射方根据马尔科夫模型预计信道未来状态,从而自适应选择合适的调制制式,并利用握手信号通知接收方。为满足水下通信对功率、频率等资源的特殊要求,发射方根据握手信息,判断双方通信距离,并依据距离与信道信噪比的关系,根据注水原则,确定最优资源分配方案。
     (4)成簇策略是水下通信网拓扑的核心算法,由于我们关注的重点在于如何更大限度的节省能量,提高整个网络的寿命,因此,我们将成员节点的剩余能量与整个簇的剩余能量的加权平均值的比值作为选取簇头的依据,提出了簇头选择算法。针对分簇的水下无线通信网络拓扑结构,为有效降低冲突发生的概率,避免隐藏端问题,我们研究了簇内节点之间的基于时隙分配的EQE-MAC协议,当节点需要与簇头节点进行数据交互时,只有在属于自己的通信时隙内才能进行通信,其余时间处于睡眠状态。由于簇间通信时,难以进行准确的时隙分配,以及时隙同步,因此,我们研究了预约(Reservation)-监听(Monitor)-睡眠(Sleep)方式,即RMS-MAC协议。同时,为保证重要数据的优先发送,我们研究了基于优先级的自适应访问控制工作方式来支持猝发通信模式。由于我们假定簇内为一跳网络,因此针对簇间存在移动节点的场景,我们提出了基于VBF的能量改进路由协议算法。整套网络协议都是从能量均衡和能量节省的角度出发,使得整个网络的节点能量分布更加平均,以便于延长整个网络的生命周期。
     (5)提出了以FPGA、DSP、以及ARM等可编程器件为主的基于软件无线电技术的水下无线通信节点构架。
Since the21st century, with the needs of the development of the military and worldeconomy, the marine high-techs such as exploitation and utilization of marineresources hasbecome one of the major fields of the new science and technologyrevolution. Every maritime power around the world is accelerating the research on keytechnology and equipment of underwater wireless communication. The development ofunderwater wireless communication networkis significant to the establishment ofunderwater wireless early warning system and underwater wireless navigationsystem.According to the requirements of exploitation and utilization of marine, thecommunication system can detectenvironment factors, adaptively adjustcommunication scheme. What is more, the communication system can supply variousways of services: short, middleand long range low-speed real-time communication ofdata and audio, middle range high-speed real-time communication of multimedia andimage data. To meet demands above, this paper research onsome key issues ofmulti-mode adaptive underwater communications network.
     The detailed contents are as follows:
     (1) The concept and composition of Multi-mode Adaptive Underwatercommunications network based on software-defined radio is proposed. The physicallayer, link layer and network layer protocols are briefly analyzed. Meanwhile, to meetthe need of security, a security architecture is proposed and briefly analyzed.
     (2) The characteristic and modeling method of underwater wireless acoustic andoptical channel is proposed. A space-time codes project based on LDPC is proposedfor shallow water and a space-time codes project based on Turbo is proposed for deepwater. To simplify decoding complexity at receiver, a unified adaptive decodingscheme is proposed.
     (3) According to the need of modulation and demodulation, communication nodefirstly choosesthe type of modulation based on the data quantities and the demand ofbandwidth. Meanwhile, a cross-layer adaptive modulation and demodulationarchitecture combined with the MAC layer protocol,is introduced. The future state ofchannel is anticipated by sender using Markov model. And then the sender adaptivelychooses appropriate modulation scheme and notifies the receiverby handshaking signal.To satisfy the special requirement for resources (eg. power, frequency), the sendercalculatesthe communication distance based on handshaking signal. And then thesender determinesthe optimal resource allocation plan based on Water injectionprinciple and the relationship between distance and SNR.
     (4) The cluster formation strategy is the core algorithm of underwatercommunications network topology. In order to save energy of node and prolonglifetime of whole network, the cluster-head election algorithm based on the ratio ofresidual energy of nodes and residual energy weighted average of whole cluster isintroduced. A EQE-MAC protocol which is based on time slot is proposed to guaranteethe minimal opportunity of confliction and solve the hidden-end problem. The nodeis allowed to communicate with cluster-head only in the assigned time slot,andin othertime it is in sleep model. It is difficult to synchronize time slot, so aReservation-Monitor-Sleep MAC (RMS-MAC) protocol is studied in this paper.Inorder to guarantee important data can be transmited on time, we adopt adaptive accesscontrol scheme to offer burst communication. In our assumptions, nodes generate alarge number of one-hop clusters. Aiming at the sceneof mobile nodes between clusters,we propose an improved routing algorithm based on VBF. The aim of the wholeprotocol is to save energy and prolong the lifetime of entire network.
     (5) The platform of underwater wireless communication node which is based onprogrammable logic devices (FPGA,CPLD,ARM) are proposed in this paper.
引文
[1] T.Curtin,J.Bellingham,J.Catipovic,and D.Webb. Autonomous oceanographic samplingnetworks. Oceanography,1993,6(3):86~94
    [2] J.G.Bellingham,H.Schmidt,and C.Chryssostomidis. AOSN MURI:Real-time oceanographywith autonomous ocean sampling networks:A center for excellence. MIT AOSN MURIAnnual Report. URL:http://auvserv.mit.edu/MURI/annual-report98.htm
    [3] Roy M.Turner and Elise H.Turner. A Two-Level,Protocol-Based Approach to ControllingAutonomous Oceanographic Sampling Networks. Oceanic Engineering,2001,26(4):654~666.
    [4] S.R.Ramp,R.E.Davis,N.E.Leonard,I.Shulman,Y.Chao,A.R.Robinson,J.Marsden,P.F.J.Lermusiaux,D.M.Fratantoni,J.D.Paduan,F.P.Chavez,F.L.Bahr,S.Liang,W.Leslie,Z.Li. Preparing to predict:The Second Autonomous Ocean Sampling Network (AOSN-II)experiment in the Monterey Bay. Deep Sea Research Part II:Topical Studies inOceanography,2009,56(3-5):68~86
    [5] URL:http//www.princeton.edu/~dcsl/aosn/documents/AOSN_Charter.doc
    [6] E.Fiorelli,P.Bhatta,N.E.Leonard,and I.Shulman. Adaptive sampling using feedback controlof an autonomous underwater glider fleet. In: Proceedings13th International Symposium onUnmanned Untethered Submersible Technology. Durham NH:International Symposium onUnmanned Untethered Submersible Technology,2003.1~16.
    [7] Thomas N.Roy. Deployable Autonomous Distributed System:Future Naval Capability inUndersea Warfare. Biennial Review2003. San Diego:SSC San Diego,2003.181~185
    [8] Mark D.Hatch,Joan L.Kaina,Mark Owen,Ronald P.Mahler,Robert S.Myre,StanleyJ.Benkoski. Data Fusion Methodologies in the Deployable Autonomous Distributed SystemsProject. In:1998International Conference on Multisoure-Multisensor Data Fusion. LasVegas:International Conference on Multisoure-Multisensor Data Fusion,1998.470~477
    [9] Rice,J.A.,R.K.Creber,C.L.Fletcher,P.A.Baxley,D.C.Davison,and K.E.Rogers. SeawebUndersea Acoustic Nets. Biennial Review2001. San Diego:SSC San Diego,2001.234~250.
    [10] Joseph A.Rice. Enabling Undersea ForceNet with Seaweb Acoustic Networks. BiennialReview2003. San Diego:SSC San Diego,2003.174~180.
    [11] Joe Rice. Underwater Acoustic Communications and Networks for the US Navy's SeawebProgram. In:2008Second International Conference on Sensor Technologies and Applications.Cap Esterel,France:International Conference on Sensor Technologies and Applications,2008.715~722
    [12] Joseph Rice. SeaWeb Acoustic Communication AND Navigation Networks. In:Proceedingsof the International Conference Underwater Acoustic Measurements:Technologies&Results. Heraklion,Crete,Greece:International Conference Underwater AcousticMeasurements,2005.1~7
    [13] Rice J.,Creber B.,Fletcher C.,Baxley P.,Rogers K.,McDonald K.,Rees D.,Wolf M.,Merriam S.,Mehio R.,Proakis J.,Scussel K.,Porta D.,Baker J.,Hardiman J.,Green D..Evolution of SeaWeb Underwater Acoustic Networking. In:Oceans2000Conference.Providence,RI,USA:Oceans,2000.2007~2017
    [14] Joseph A.Rice. Undersea Networked Acoustic Communication and Navigation forAutonomous Mine-Countermeasure Systems. In:5th International Symposium onTechnology and the Mine Problem. Monterry,CA:International Symposium on Technologyand the Mine Problem,2002.1~9
    [15] Vijay Chandrasekhar,Yoo Sang Choo,How Voon Ee. Localization in Underwater SensorNetworks Survey and Challenges. In:WUWNet '06Proceedings of the1st ACMInternational Workshop On Underwater Networks. Los Angeles,California,USA.:the1stACM International Workshop On Underwater Networks,2006.33~40
    [16] URL:http://www.powershow.com/view/fd8fb-ODRjY/US_Navy_Seaweb_program_Undersea_acoustic_sensing_signaling_communications_flash_ppt_presentation
    [17] J.G.Proakis,E.M.Sozer,J.A.Rice,and M.Stojanovic. Shallow Water Acoustic Networks.IEEE Communications Magazine,2001,39(11):114~119
    [18] Joseph A.Rice. Seaweb Network for FRONT Oceanographic Sensors. URL:http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA516211
    [19] URL: http://cordis.europa.eu/mast/
    [20] G.Ac ar and A.E.Adams. ACMENet:an underwater acoustic sensor network protocol forreal-time environmental monitoring in coastal areas. IEE Proc.-Radar Sonar Navig.,2006,153(4):365~380
    [21] URL: http://www.ncl.ac.uk/eece/underwater-acoustics/acme/introduction.htm
    [22] Adams,A.E. Hinton,O.R. Sharif,B.S. Tsimenidis,C.C. Morns,I.P. Neasham,J..Experiments in sub-sea acoustic communication networks. In:OCEANS,2001,MTS/IEEEConference and Exhibition. Honolulu,HI:OCEANS,2001.2059~2064
    [23] Adams,A.E.,Hinton,O.R.,Sharif,B.S.,Salles,G.,Orr,N.and Tsiminedis,C.. Anexperiment in sub-sea networks–The LOTUS sea trials. In:Proc.5th European Conference onUnderwater Acoustics. Lyon,France:European Conference on Underwater Acoustics,2000.
    [24] MAST Project MAS3-CT97-0099. LOTUS:Long Range Telemetry in Ultra-ShallowChannels.2nd Technical Report. March2001.
    [25] MAST Project MAS3-CT97-0107. SWAN:Shallow Water Acoustic Network. FinalTechnical Report. Dec.2000.
    [26] Ian F.Akyildiz,Dario Pompili,Tommaso Melodia. Underwater acoustic sensor networks:research challenges. Ad Hoc Networks,2005,3(3):257~279
    [27] Jim Partan,Jim Kurose,and Brian Neil Levine. A Survey of Practical Issues in UnderwaterNetworks. In:Proceedings of the1st ACM International Workshop On UnderwaterNetworks,WUWNet ‘06. Los Angeles,California,USA:ACM INTERNATIONALWORKSHOP ON UNDERWATER NETWORKS,2006.17~24
    [28]URL:http://www.photonics.com/Article.aspx?AID=41211
    [29] Mark Hewish. Submarines to cast off their shackles,take on new roles. INTERNATIONALDEFENSE REVIEW,2002,MARCH01:1~24
    [30]URL:http://www.adjunct.diodon349.com/submarines/us_to_trial_new_submarine_comms_buoy_NSL_Update_062705.htm
    [31] URL: http://www.lockheedmartin.com/news/press_releases/2010/071210_LM_CSD.html
    [32] URL: http://www.navy.mil/navydata/cno/n87/usw/issue_30/art.html
    [33] R.G. Gallager. Low-density parity-check codes. URL:http://www.rle.mit.edu/rgallager/documents/ldpc.pdf
    [34] Sae-Young Chung,G.David,Jr.Forney,J.Thomas,Richardson,Rudiger Urbanke. On theDesign of Low-density Parity-check Codes within0.00045dB of Shannon Limit. IEEECommunications Letters,February2001,5(2):28~60
    [35] D. J. C. MacKay,R. M. Neal. Near Shannon limit performance of low density parity checkcodes. Electronics Letters,Aug.1996,32(18):1645~1646.
    [36] T.Richardsom,R.Urbanke. Efficient encoding of low-density parity-check codes. IEEETrans Inform Theory,February2001,47(2):638~656.
    [37] D. Burshtein and G. Miller. Asymptotic enumeration methods for analyzing LDPC codes.IEEE Transactions on Information Theory,June.2004,50(6):1115~1131.
    [38] Xiao-Yu Hu,E. Eleftheriou and D. M. Arnold etc. Efficient implementation of thesum-product algorithm for decoding LDPC codes. In:Global TelecommunicationsConference,2001. San Antonio, TX, USA:IEEE Global TelecommunicationsConference,2001.1036~1036E.
    [39] Tao Tian,Jones, C.,Villasenor, J.D.,Wesel, R.D.. Construction of irregular LDPC codeswith low error floors. In:IEEE International Conference on Communications,2003.Anchorage, Alaska:IEEE International Conference on Communications,2003.3105~3129.
    [40] L. Lan,YY Tai,and L. Cben etc.. A trellis-based method for removing cycles from bipartitegraphs and construction of low densiy pariy check codes. IEEE comm.letters,July2004,8(7):443~445.
    [41] A. Ramamoorthy,R. Wesel. Construction of short block length irregular low-densiypariy-check codes. In:IEEE International Conference on Communications,2004. Paris,France:IEEE International Conference on Communications,2004.410~414
    [42] Tao Tian,Christopher R. Jones,John D. Villasenor,and Richard D. Wesel. SelectiveAvoidance of Cycles in Irregular LDPC Code Construction. IEEE Transactions OnCommunications,August2004,52(8):1242~1247
    [43] Y.Kou,S.Lin,and M.Fossorier. Low-Density Parity-Check Codes Based on FiniteGeometries: Arediscovery and New Results. IEEE Transactions On Information Theory,Nov.2001,47(7):2711~2736.
    [44] Yu Kou,Shu Lin,and Fossorier, M.P.C.. Low-Density Parity-Check Codes: ConstructionBased on Finite Geometries. In:IEEE Global Telecommunications Conference,2000. SanFrancisco, CA:IEEE Global Telecommunications Conference,2000.825~829.
    [45] R. M. Tanner. A recursive approach to low-complexity codes. IEEE Transactions OnInformation Theory,Sept.1981,IT–27:533~547
    [46] R.M. Tanner. Spectral graphs for quasi-cyclic LDPC codes. In:IEEE InternationalSymposium on Information Theory,2001. Washington. DC:IEEE International Symposiumon Information Theory,2001.24~29
    [47] R.M. Tanner,D. Sridhara and T. Fuja. A class of group-structured LDPC codes. In:International Conference ISTA'2001. Kharkiv, Ukraine:International Conference ISTA,2001.
    [48] R. M. Tanner. On quasi-cyclic repeat-accumulate codes. In: Proc.37th Allerton Conferenceon Communication.,Control,and Computing. Monticello,IL,USA:Allerton Conference,1999.249~259
    [49] R. M. Tanner,D. Sridhara and A. Sridharan. etc.. LDPC block and Convolutional Codesbased on circulant matrices. IEEE Transactions On Information Theory,Dec.2004,50(12):2966~2984
    [50] T. J. Richardson,R. L. Urbanke. The Capacity of Low-Density Parity-Check Codes UnderMessage-Passing Decoding. IEEE Transactions On Information Theory,Feb.2001,47:599~618
    [51] D. J. C. MacKay. Good Error-Correcting Codes based on Very Sparse Matrices. IEEETransactions On Information Theory,March1999,45(2):399~431
    [52] M. Fossorier,M. Mihaljevic,and H. Imai. Reduced Complexity Iterative Decoding ofLow-Density Parity-Check Codes Based on Belief-Propagation. IEEE Transactions onInformation Theory,May1999,47(5):673~680
    [53]贺玉成.基于图模型的低密度校验码理论及应用研究:[博士学位论文].西安:西安电子科技大学,2002
    [54] Yongyi Mao,A.H.Banihashemi. Decoding Low-Density Parity-Check Codes withProbabilistic Scheduling. IEEE Communication Letter,October2001,5(10):414~416
    [55] Yongyi Mao,A.H.Banihashemi. A New Schedule for Decoding Low-Density Parity-CheckCodes. In:IEEE Global Telecommunication Conference,2011. San Antonio, TX:IEEEGlobal Telecommunication Conference,2001.1007~1010
    [56] I. Sason,S. Shamai. Improved Upper Bounds on the Ensemble Performance of ML DecodedLow-Density Parity-Check Codes. IEEE Communication Letter,March2000,4(3):89~91
    [57] Claude Berrou,Alain Glavieux,Punya Thitimajshima. Near Shannon limit error-correctingcoding and decoding: Turbo codes. In:IEEE International Conference onCommunications,1993. Geneva,Switzerland:IEEE International Conference onCommunications,1993.1064~1070
    [58] Elias P.. Error-free coding. IRE Transactions of the Professional Group on information,September1954,4(4):29~37
    [59] Pyndiah,R.,Glavieux,A.,Picart,A.,Jacq,S.. Near optimum decoding of product codes.In:IEEE Global Telecommunications Conference,1994. San Francisco,CA,USA:IEEEGlobal Telecommunications Conference,1994.339~343
    [60] David J. C. MacKay. Turbo codes are low density parity check codes. URL:http://www.inference.phy.cam.ac.uk/mackay/turbo-ldpc.pdf
    [61] Mansour,M.M.,Shanbhag,N. R. High-throughput LDPC decoders. IEEE Transactions onVery Large Scale Integration (VLSI) Systems,2004,11(6),976~996
    [62] Hocevar,D.E.. A reduced complexity decoder architecture via layered decoding of LDPCcodes. IEEE workshop on signal processing systems,2004:107~112
    [63] Zhang,J.,Fossorier,M.. Shuffled belief propagation decoding. In:Conference Record ofthe Thirty-Sixth Asilomar Conference on Signals,Systems and Computers,2002. PacificGrove:Conference Record of the Thirty-Sixth Asilomar Conference,2002.8~5
    [64] Nimbalker,A. Blankenship,Y. Classon,B.. Turbo like decoding of LDPC codes. In:IEEEInternational Symposium on Information Theory,2006. Seattle,WA:IEEE InternationalSymposium,2006.1708~1712
    [65]D.J.Garrood. Applications of the MFSK acoustical communication system. In:OCEANS’81.Boston,Ma,USA:OCEANS’81,1981.67~71
    [66]S.D.Morgera. Multiple terminal acoustic communications system design. IEEE Journal ofOceanic Engineering,Jul.1980,5(3):199~204.
    [67]A.Baggeroer,D.E.Koelsch,K.vonderHeydt,J.Catipovic.. DATS—A digital acoustic telemetrysystem for underwater communications. In:OCEANS’81. Boston,Ma,USA:OCEANS’81,1981.55~60
    [68]Catipovic, J.,Baggeroer, A.,Von Der Heydt, K.,Koelsch, D.. Design and performanceanalysis of a digital acoustic telemetry system for the short range underwater channel. IEEEJournal of Oceanic Engineering,Oct.1984,9(4):242~252.
    [69]R.F.W.Coates. A deep-ocean penetrator telemetry system. IEEE Journal of OceanicEngineering,Apr.1988,13(2):55~63.
    [70]L.FreitagandJ.S.Merriam. Robust5000bit per second underwater communication system forremote applications. In:Proceedings of Marine Instrumentation '90. San Diego, CA:Marine.Technology Society,1990.201~207
    [71]L.E.Freitag,J.S.Merriam,D.E.Frye,J.A.Catipovic. A long term deep water acoustic telemetryexperiment. In:OCEANS '91. Honolulu,Hawaii,USA:Ocean Technologies andOpportunities Proceedings,1991.254~260
    [72]G.R.Mackelburg. Acoustic data links for UUVs. In:OCEANS '91. Honolulu,Hawaii,USA:Ocean Technologies and Opportunities Proceedings,1991.1400~1406
    [73] Mackelburg, G.,Watson, S.,Gordon, A.. Benthic4800BITS/S Acoustic Telemetry. In:OCEANS’81. Boston,Ma,USA:OCEANS’81,1981.
    [74]L.O.Olson,J.L.Backes,J.B.Miller. Communication,control and data acquisition systems onthe ISHTE lander. IEEE Journal of Oceanic Engineering,Jan.1985,10(1):5~16.
    [75]G.S.Howe,O.R.Hinton,A.E.Adams,A.G.J.Holt. Acoustic burst transmission of high rate datathrough shallow underwater channels. Electronics Letters,Feb.1992,28(5),449~451
    [76]M.Suzuki,T.Sasaki,andT.Tsuchiya. Digital acoustic image transmission system for deep-searesearch submersible. In:Oceans’92. Newport,RI:Oceans’92,1992.567~570
    [77] Sumit Roy,Payman Arabshahi,Dan Rouseff,Warren Fox. Wide Area Ocean Networks:Architecture and System Design Considerations. In:Proceedings of the1st ACMInternational Workshop On Underwater Networks,WUWNet ‘06. Los Angeles,California,USA:ACM INTERNATIONAL WORKSHOP ON UNDERWATER NETWORKS,2006.25~32
    [78] Freitag,L.,Grund,M. Singh, S. Partan, J. P. Koski,Ball,K.. The WHOI micro-modem:an acoustic communications and navigation system for multiple platforms. In:OCEANS,2005,Proceedings of MTS/IEEE. Washington DC:Proceedings of MTS/IEEE,2005.1086~1092
    [79] Ethem Mutlu S zer,Milica Stojanovic. Reconfigurable Acoustic Modem for UnderwaterSensor Networks. In:Proceedings of the1st ACM International Workshop On UnderwaterNetworks,WUWNet ‘06. Los Angeles,California,USA:ACM International Workshop OnUnderwater Networks,2006.101~104
    [80] Ethem M. S zer,Milica Stojanovic. Simulation And Rapid Prototyping Environment ForAUV Networks. URL:http://web.mit.edu/people/millitsa/resources/pdfs/uust.pdf
    [81] I. Vasilescu,C. Detweiler,D. Rus. AquaNodes: An underwater sensor network. In:Proceedings of WUWNet2007. Montreal, Canada:Proceedings of WUWNet,2007.85~88
    [82] D. Torres,J. Friedman,T. Schmid,M.B. Srivastava. Software-defined underwater acousticnetworking platform. In: Proceedings of the Fourth ACM International Workshop OnUnderwater Networks’09. Berkeley, California, USA,:Proceedings of the Fourth ACMInternational Workshop On Underwater Networks,2009.1~8
    [83] Jack Wills,Wei Ye,John Heidemann. LowPower Acoustic Modem for Dense UnderwaterSensor Networks. In:Proceedings of the1st ACM International Workshop On UnderwaterNetworks,WUWNet ‘06. Los Angeles,California,USA:ACM International Workshop OnUnderwater Networks,2006.79~85
    [84]URL:http://www.aquatecgroup.com/aquamodem_s.html
    [85]Develogic subsea systems’s DataSheet. HAM.Node. URL:http://www.develogic.de/wp-content/uploads/2011/04/HAM-NODE-klein.pdf
    [86]URL:http://www.evologics.de/en/products/acoustics/index.html
    [87]evologics’ DataSheet. S2CR8/16LONG RANGE/GREAT DEPTH. URL:http://www.evologics.de/files/DataSheets/EvoLogics%20S2CR8-16%20DataSheet.pdf
    [88]Luiz Filipe M. Vieira,Jiejun Kong,Uichin Lee,Mario Gerla. Analysis of Aloha Protocols forUnderwater Acoustic Sensor Networks. URL:http://wuwnet.engr.uconn.edu/wipposters/luiz_aloha.pdf
    [89] S.Smith,J.C.Park,A.Neel. A Peer-to-Peer Communication Protocol for Underwater AcousticCommunication. In:OCEANS '97. MTS/IEEE Conference Proceedings. Halifax, NS:MTS/IEEE Conference,1997.268~272
    [90] P. Karn. MACA—a new channel access method for packet radio. in: Proceedings of the9thARRL Computer Networking Conference. London,Ontario,Canada:ARRL ComputerNetworking Conference,1990.134~140
    [91]V.Bharghavan,A.Demers,S.Shenker,L.Zhang. MACAW: a media access protocol forwireless LAN’s. In:SIGCOMM’94. London:SIGCOMM,1994.212~225
    [92]张宏滔,陆佶人,童峰.一种用于水声通信网的多址接入协议.电路与系统学报,2004年6月,9(3):46~49
    [93]C.L.Fullmer,J.J.Garcia-Luna-Aceves. Floor acquisition multiple access (FAMA) forpacket-radio networks. In:SIGCOMM’95. Cambridge, Massachusetts, USA:The ACMSpecial Interest Group on Data Communication,1995.262~273
    [94]M.Molins,M.Stojanovic,Slotted FAMA: A MAC Protocol for Underwater Acoustic Networks.In:IEEE Oceans Conference2006. Singapore:IEEE Oceans Conference,2006.1~7
    [95]X. Guo,M. R. Frater,M. J. Ryan. A Propagation-delay-tolerant Collision Avoidance Protocolfor Underwater Acoustic Sensor Networks. In:IEEE Oceans Conference2006. Singapore:IEEE Oceans Conference,2006.1~6
    [96]Ethem M. Sozer,Milica Stojanovic,John G. Proakis,Life Fellow. Underwater AcousticNetworks. IEEE Journal Of Oceanic Engineering,JANUARY2000,25(1):72~83
    [97]S. Coatelan,A. Glavieux. Design and test of a coded OFDM system on the shallow wateracoustic channel. In:OCEANS '95,MTS/IEEE Conference. San Diego,CA:MTS/IEEEConference,1995.2065~2070
    [98]Elie Bejjani and Jean-Claude Belfiore. Multi-carrier Coherent Communications for theUnderwater Acoustic Channel. In:OCEANS’96,MTS/IEEE Conference. Lauderdale, FL:MTS/IEEE Conference,1996.1125~1130.
    [99]W. K. Lam,R. F. Ormondroyd,J. J. Davies. A frequency domain adaptive coded decisionfeedback equalizer for a broadband UWA COFDM system. In:OCEANS '98ConferenceProceedings. Nice,France:OCEANS '98Conference,1998.794~799
    [100]Miyoshi,K.. Preliminary design of OFDM and CDMA acoustic communication system. In:OCEANS,2001. MTS/IEEE Conference and Exhibition. Honolulu,HI,USA:MTS/IEEEOCEANS Conference,2001.2216~2219
    [101]黄建国,孙静等. OFDM高速水声通信系统及实验研究.通信理论与信号处理新进展一2005通信理论与信号处理年会.桂林:通信理论与信号处理年会,2005.
    [102]何成兵、黄建国,阎振华等. M元扩频OFDM水声通信新方法.西北工业大学学报,2007年,25(2):190~194
    [103] Zhu Tong,San En-fang. Research on the high speed nderwater acoustic communicationbased on OFDM. Journal of Harbin Engineering University,February2005,26(1):1~74
    [104]Green,M.,Rice,J.A.,Merriam,S.. Underwater acoustic modem configured for use in alocal area network (LAN),In:OCEANS '98Conference Proceedings. Nice,France:OCEANS '98Conference,1998.634~638
    [105]L.Freitag et al. A Shallow Water Acoustic Network for Mine Countermeasures Operationswith Autonomous Underwater Vehicles. URL:http://www.hydroidinc.com/pdfs/Acoustic_Network_for_MCM.pdf
    [106]Goffrey G. Xie,John Gibson. A networking protocol for underwater acoustic networks.URL:http://faculty.nps.edu/xie/papers/uan-proposal-00.pdf
    [107]M.Stojanovic,L.Freitag. Multichannel Detection for Wideband Underwater Acoustic CDMACommunications. Accepted,IEEE Journal of Oceanic Engineering,July.2006,31(3):685~695
    [108]D. Pompili,T. Melodia,I. F. Akyildiz. A Distributed CDMA Medium Access Control forUnderwater Acoustic Sensor Networks. In:The Sixth Annual Mediterranean Ad HocNetworking WorkShop. Corfu, Greece:Annual Mediterranean Ad Hoc NetworkingWorkShop,2007.63~70
    [109]I.P.Morns,O.Hilton,A.Adams,B.Sharif. Protocols for sub-sea communications networks.In:OCEANS,2001. MTS/IEEE Conference and Exhibition. Honolulu, HI, USA:MTS/IEEE Conference,2001.2076~2082
    [110]F. Salva-Garau,M. Stojanovic. Multi-cluster Protocol for Ad Hoc Mobile UnderwaterAcoustic Networks. In: OCEANS2003. Proceedings. San Diego, CA, USA:IEEEConference,2003.91~98
    [111]A.Kebkal,K.Kebkal,M.Komar. Data-link protocol for underwater acoustic networks. In:Oceans2005-Europe. Brest, France:Oceans2005Conference,2005.1174~1180
    [112] K.Foo,P.Atkins,T.Collins,C.Morley,J.Davies. A routing and channel-access approach foran ad hoc underwater acoustic network. In:OCEANS '04. MTTS/IEEE TECHNO-OCEAN'04. Kobe, Japan:IEEE Oceans Conference,2004.789~795
    [113]V. Rodoplu,M. K. Park. An Energy-Efficient MAC Protocol for Underwater WirelessAcoustic Networks. In:OCEANS,2005. Proceedings of MTS/IEEE. Washington, DC:Proceedings MTS/IEEE OCEANS,2005.1198~1203
    [114]M.K.Park,V.Rodoplu. UWAN-MAC: An Energy-Efficient MAC Protocol for UnderwaterAcoustic Wireless Sensor Networks. IEEE Journal of Oceanic Engineering,Mar.2007,32(3):710~720
    [115]Borja Peleato,Milica Stojanovic. A MAC Protocol for AdHoc Underwater Acoustic SensorNetworks. In:Proceedings of the1st ACM International Workshop On UnderwaterNetworks,WUWNet’06. Los Angeles,California,USA.:the1st ACM InternationalWorkshop On Underwater Networks,2006.113~115
    [116]M. Stojanovic,L. Freitag. Hypothesis-feedback equalization for direct-sequencespread-spectrum underwater communications. In:OCEANS2000MTS/IEEE Conferenceand Exhibition. Providence, RI, USA:IEEE Oceans2000Conference,2000.123~129
    [117] Affan A. Syed,Wei Ye,John Heidemann. Medium Access for Underwater Acoustic SensorNetworks. URL:http://wuwnet.engr.uconn.edu/wipposters/Asyed_underwaterMac.pdf
    [118]Affan A. Syed,Wei Ye,John Heidemann,T-Lohi: A New Class of MAC Protocols forUnderwater Acoustic Sensor Networks. In:The27th Conference on ComputerCommunications. Phoenix, AZ: IEEE The27th Conference on ComputerCommunications,2008.231~235
    [119] P. Xie,JH Cui,L Lao. VBF: vector-based forwarding protocol for Underwater SensorNetworks. URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.4529&rep=rep1&type=pdf
    [120]Nicolaou,N.,See, A.,Peng Xie,Jun-Hong Cui,Maggiorini,D.. Improving the robustnessof location-based routing for Underwater Sensor networks. In:OCEANS2007-Europe. Aberdeen: IEEE OCEANS Conference,2007.1~6.
    [121]M. Jornet,M. Stojanovic,M. Zorzi. Focused beam routing protocol for underwater acousticnetworks. URL:http://web.mit.edu/~millitsa/www/resources/pdfs/wuw08-josep.pdf
    [122]Hai Yan,Zhijie Shi,Jun-Hong Cui. DBR: Depthbased Routing for Underwater SensorNetworks. URL:http://www.engr.uconn.edu/~jcui/UWSN_papers/Networking08_DBR.pdf
    [123]Ayaz M,Azween Abdullah. Hop-by-Hop Hop Dynamic Addressing Based (H2-DAB)Routing Protocol for Underwater Wireless Sensor Networks. In:IEEE internationalconference on Information and Multimedia Technology’09. Jeju Island:IEEE internationalconference on Information and Multimedia Technology,2009.436~441.
    [124]Daeyoup Hwang,Dongkyun Kim. DFR: Directional flooding-based routing protocol forunderwater sensor networks. In:IEEE OCEANS2008. Quebec City, QC:IEEE OCEANSConference,2008.1~7
    [125] Chirdchoo,N.,Wee-Seng Soh,Kee Chaing Chua. Sector-Based Routing with DestinationLocation Prediction for Underwater Mobile Networks. In:Advanced InformationNetworking and Applications Workshops,2009. Bradford: Advanced InformationNetworking and Applications Workshops,2009.1148~1153
    [126]Winston K.G. Seah,Hwee-Xian Tan. Multipath Virtual Sink Architecture for UnderwaterSensor Networks. URL:http://uwsn.engr.uconn.edu/presentations/uwsn-multipath-virtual-sink.pdf
    [127]D. Pompili,T. Melodia,I.F. Akyildiz. A resilient routing algorithm for long-term applicationsin underwater sensor networks. URL:http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=06E2E0C9F1F4DC9E07516CB5DFBF1E8C?doi=10.1.1.162.3152&rep=rep1&type=pdf
    [128]Zhong Zhou,Jun-Hong Cui. Energy Efficient Multi-Path Communication for Time-CriticalApplications in Underwater Sensor Networks. In:Proceedings of the9th ACM internationalsymposium on Mobile ad hoc networking and computing. Hong Kong:ACM MobiHoc’08,2008.221~230.
    [129]Pu Wang,Cheng Li,Jun Zheng. Distributed Minimum-Cost Clustering Protocol forUnderWater Sensor Networks (UWSN). In:IEEE International Conference onCommunications2007. Glasgow:IEEE International Conference on Communications,2007.3510~3515.
    [130]Domingo M.C,Prior,R.. Design and Analysis of a GPS-free Routing Protocol forUnderwater Wireless Sensor Networks in Deep Water. In:2007International Conference onSensor Technologies and Applications. Valencia, Spain:International Conference on SensorTechnologies and Applications,2007.215~220
    [131]Uichin Lee,Paul Wang,Youngtae Noh,Luiz F.M. Vieira,Mario Gerla,Jun-Hong Cui.Pressure Routing for Underwater Sensor Networks. In:IEEE INFOCOM,2010. San Diego,CA:IEEE INFOCOM,2010.1~9
    [132]I. Vasilescu et al.. Data Collection,Storage,and Retrieval with an Underwater SensorNetwork. URL:http://groups.csail.mit.edu/drl/wiki/images/e/ef/paper-pub-0826.pdf
    [133]Zhen Guo,Gioele Colombi,Bing Wang,Jun-Hong Cui,Dario Maggiorini,Gian Paolo Rossi.Adaptive Routing in Underwater Delay/Disruption Tolerant Sensor Networks. In:FifthAnnual Conference on Wireless on Demand Network Systems. Garmisch-Partenkirchen:IEEE Annual Conference,2008.31~39
    [134]D. Pompili,T. Melodia,I. F. Akyildiz. Routing Algorithms for Delay-Insensitive andDelay-Sensitive Applications in Underwater Sensor Networks. In:Proceedings of the12thannual international conference on Mobile computing and networking. Los Angeles,California, USA:ACM Conference on Mobile computing and networking,2006.298~309
    [135]Wei Liang,Haibin Yu,Lin Liu,Bangxiang Li,Chang Che. Information-Carrying baedRouting Protocol for Underwater Acoustic Sensor Network. In:International Conference onMechatronics and Automation2007. Harbin:International Conference on Mechatronics andAutomation,2007.729~734
    [136]A.Gilerson, J.Zhou,S. Hlaing,I.Ioannou, etal.,Fluorescence component in the reflectancespectra from coastal waters dependence on water composition. Optical Express,2007,15(24):15702~15721
    [137]V. I. Haltrin. Chlorophyll-based model of seawater optical properties. Applied Optics,1999,vol.38(33):6826~6832
    [138]R. C. Smith and K. S. Baker, Optical properties of the clearest natural waters, Applied Optics,1981,vol.20:177~184
    [139] C. D. Mobley, Light and Water-Radiative Transfer in Natural Waters. California: AcademicPress Inc.,1994,60~144
    [140]O. V. Kopelevich, Small–parametric model of the optical properties of seawater, OceanOptics,1983,208~234,.
    [141]隋美红.水下光学无线通信系统的关键技术研究.[硕士论文]:中国海洋大学,2009
    [142]D.B.Kilfoyle,A.B.Baggeroe. The state of the art in underwater acoustic telemetry. IEEEJournal of Oceanic Engineering,Jan.2000,25(l):4~27
    [143]许俊.水声语音通信研究.厦门:厦门大学,2001.
    [144]Dario Pompili, Tommaso Melodia, and Ian F. Akyildiz c, Three-dimensional andtwo-dimensional deployment analysis for underwater acoustic sensor networks. Ad HocNetworks, July.2009:778~790..
    [145]Xiang Min, Shi Wei-ren, Jiang Chang-jiang, Zhang Ying, Energy efficient clusteringalgorithm for maximizing lifetime of wireless sensor networks. International Journal ofElectronics and Communications,2010,64(4):289~298
    [146]崔绪生,杨莉等译.水声建模(鱼雷技术专辑第二辑).陕西省:《鱼雷技术》编辑部,78~79
    [147]Essam S. Altubaishi. Average Switching Thresholds and Average Throughput for AdaptiveModulation using Markov Model. URL:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.8103
    [148] Milica Stojanovic. On the Relationship Between Capacity and Distance in an UnderwaterAcoustic Communication Channel. URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.1489&rep=rep1&type=pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700