无线多跳网络中若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线多跳网络中,源结点到目的结点之间由多跳的无线链路组成,任意结点既可充当端结点产生或接收数据分组,又可充当中间结点(路由器)对来自其他结点的数据分组进行转发。无线Ad Hoc网络、无线传感器网络以及无线Mesh网络均属于无线多跳网络。无线多跳网络是自组织、自生成和自管理的,容许结点发生故障以及结点随意的加入或离去。无线多跳网络的这些优势引起了人们越来越多的关注。本文从无线多跳网络的各种研究热点出发,分别研究了无线多跳网络的广播机制和无线多跳网络的网络容量提升问题,本文的主要工作与贡献如下:为无线Ad Hoc网络提出了有效延长网络寿命的分布式广播机制(MLDB)。
     该广播机制中结点不需为有效广播维持过多的拓扑信息,网络中每个结点仅需获取本地一跳邻结点信息就可以完成广播任务。在确定转播结点时,MLDB让那些拥有较多未覆盖邻结点和较大新增覆盖面积的结点进行转播,选取尽可能少的邻结点为转播结点,以减小广播分组在网络中的重复。MLDB的优化设计解决了其他节能广播算法中存在的开销太大的问题,使其更加适用于无线Ad Hoc网络的特殊环境。与其他算法相比,MLDB能够大幅降低转播冗余、有效增加网络寿命。
     针对无线传感器网络结点体积小、内存与计算能力小、靠电池供电、结点密度高等特点,提出了有效广播协议(EBP)。通过对广播过程中一个结点转播之后引发新转播的讨论,对最佳引发新转播次数和最佳引发新转播位置进行分析。EBP广播协议基于上述分析的结论选择转播结点,它不需要任何邻结点信息就可以高效完成广播,因此算法的控制开销和存储开销大大降低。EBP广播协议简单有效,在无线传感器网络中具有良好的扩展性。
     提出了适用于大规模高密度无线多跳网络的最少冗余广播算法LRBA。该算法采用一种行之有效的将顶点转播策略与结点的度相结合的机制,最大程度地减小转播冗余。通过对广播算法转播率进行理论分析,得出了理论的最大转播率和最小转播率。基于不同的自延时计算方法,分别给出了LRBA广播算法的两种实现方式LRBA1和LRBA2,通过仿真分析比较研究了这两种广播机制的广播覆盖率、转播率、时延以及能耗等性能,并指出其中综合性能较好的方法。仿真结果表明LRBA广播算法对于网络结点密度和网络规模有很好的扩展性。尽管LRBA广播算法的存储和计算开销要稍大于EBP算法,但它能获得比EBP及其他算法更低的转播率,特别适用于大规模、高密度且结点具有较好处理能力的无线多跳网络,例如无线mesh网。
     最后,研究并分析了基于扫描的定向邻居发现算法,提出了一种非辅助定向邻居发现算法(UADND),该算法能够充分利用智能天线给无线多跳网络带来的各种优势。UADND可以在不依赖GPS、时间同步等措施的条件下为无线多跳网络发现那些只有通过定向收发才能到达的邻结点,使通过采用智能天线提升网络容量成为可能。UADND利用跨层设计思想,将邻居发现与无线多跳网络路由机制结合起来。仿真表明,与其他定向邻居发现算法相比,UADND能够以较小的控制开销和较低的能耗完成无线多跳网络的定向邻居发现。
Wireless multi-hop networks (WMHN) consist of nodes that freely and dynamically self-organize into arbitrary and temporary network topology, where source nodes and destination nodes are connected by multiple wireless links. Each node in WMHN is both a host that is the source or sink of packets and a router that relays packets for other nodes. Wireless ad hoc network, wireless sensor network and wireless mesh network are three typical wireless multi-hop networks. Wireless multi-hop networks are self-forming, self-managing and self-healing networks, allowing the random entrance and exit of nodes, and automatically rerouting communications around points of failure. These features and benefits of WMHN have been attracting attentions of many researchers in last several years. Starting from the intense active areas of research in wireless multi-hop networks, network wide broadcasting mechanisms and the improvement of network capacity for wireless multi-hop networks are studied in this paper. The main research works and results are listed as follows:
     An efficient broadcast mechanism——maximum life-time distributed broadcast (MLDB) method is proposed in this paper. To complete a broadcast across the network, all nodes need only maintain relevant information of their one-hop neighbors in MLDB. With the aim of selecting as less rebroadcast nodes as possible, MLDB chooses nodes with more uncovered neighbors and with larger new coverage area to do rebroadcast, thus reducing the redundant rebroadcasted packets in the network. The optimized design determines the little overhead of MLDB, which is applicable in the special wireless environment of wireless ad hoc networks. Compared with other algorithms, MLDB is capable of saving more rebroadcasts and obtaining longer useful network life-time under all circumstances.
     Wireless sensor network is featured by small node size and memory, low computing capability, battery supplied constrained energy and high node density. In view of the above features of wireless sensor network, an effective broadcast protocol (EBP) is presented in this paper. Through the discussion on the induced rebroadcast of a node’s rebroadcast, the times and locations of the optimized induced rebroadcast are analyzed. In EBP, optimized rebroadcast nodes are selected based on the above analysis results and each node needs not any neighbor information to complete a broadcast efficiently. Thus, the control and memory overheads are decreased greatly. The simple and effective EBP algorithm performs well in wireless sensor network.
     A new broadcast algorithm called least redundancy broadcast algorithm (LRBA) is presented for large scale wireless multi-hop networks with dense nodes deployment. To decrease redundant rebroadcast, the vertex rebroadcast mechanism and node degree are combined by LRBA. The theoretical analysis on the rebroadcast ratio is completed, and the theoretical maximum and minimum rebroadcast ratio of LRBA is obtained. Based on different self-delay mechanisms, two implementing methods of LRBA are proposed. They are LRBA1 and LRBA2. Though simulations and comparisons of the reachability, rebroadcast ratio, delay and energy consumption performances of the two methods, the better one in overall performance is pointed out. Simulation results show that LRBA is scalable in large scale wireless multi-hop networks with dense nodes deployment. Though it has more memory and computation overheads than EBP, LRBA obtains lower rebroadcast ratio than other algorithms. LRBA is especially applicable to dense, large scale wireless multi-hop networks with a certain node processing power, such as wireless mesh network.
     The sweeping based directional neighbor discovery algorithm is studied and analyzed. To obtain the potentials offered by smart antennas, an unaided directional neighbor discovery (UADND) algorithm is proposed for wireless multi-hop networks. With UADND, network nodes could independently discover neighbors that can be reached only when both of transmission and reception are directional, thus the capacity of the networks could be expanded. Additional information provided by GPS or other methods, such as node position or synchronization information utilized by other neighbor discovery algorithms is not necessitated in UADND. Cross layer design is used in UADND to integrate directional neighbor discovery with routing. Simulation results show that compared with other algorithms UADND completes directional neighbor discovery with less control overhead and energy consumption.
引文
[1] B. Stefano, C. Marco, G. Silvia, et al.. Mobile Ad Hoc Netwoking. USA: IEEE Press. 2004. pp. 9-17.
    [2] IETF. RFC 2501: Mobile Ad hoc Networking (MANET)
    [3] J. Zheng, P. Lorenz, P. Dini. Wireless Sensor Networking. IEEE Network. May/June 2006. pp 4-5.
    [4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, et al. A Survey on Sensor Networks. IEEE Communications Magazine. August 2002. pp 102-114.
    [5] R. Bruno, M. Conti, et al.. Mesh Networks: Commodity Multihop Ad Hoc networks. IEEE Communications Magazine, March 2005, pp.123-131
    [6]方旭明等,下一代无线因特网技术“无线Mesh网络”,北京:人民邮电出版社,2006.5. pp. 6-17.
    [7] T. Fowler. Mesh networks for broadband access. IEE Review, 2001, 47(1). pp.17-22.
    [8] Ian F. Akyildiz, Xudong Wang, et al.. Wireless mesh networks: a survey. Computer Networks. March 2005, 47(4). pp. 445-487.
    [9] P. Whitehead. Mesh networks: a new architecture for broadband wireless access systems. In Proceedings of IEEE RAWCON. 2000. pp.43-46.
    [10] K. Rayner. Mesh wireless networking. IEEE Communications Engineer. 2003. 1(5). pp.44-47.
    [11] D. Beyer. Wireless Mesh Networks for Residential BroadBand. In Proceedings of Nokia National wireless Engineering Conference, San Degio. November 2000.
    [12]方旭明,马忠建.无线Mesh网络的跨层设计理论与关键技术,西南交通大学学报,2005, 40(6). pp.1-9
    [13] I. Chlamtac, M. Conti, et al.. Mobile ad hoc networking: imperatives and challenges. Ad hoc Networks. July 2003, pp.13-64.
    [14] M Abolhasan, T Wysocki, E Dutkiewicz. A review of routing protocols for mobile ad hoc networks. Ad Hoc Networks. January 2004, 2(1). pp. 1-22.
    [15] J. Garcia-Luna-Aceves, S. Roy. On-demand loop-free routing with link vectors. IEEE Journal on Selected Areas in Communications, 2005, 23(3). pp.533-546
    [16] Xiaoxin Wu; Bhargava, B. AO2P: ad hoc on-demand position-based private routing protocol. IEEE Transactions on Mobile Computing, 2005, 4(4). pp. 335-348 .
    [17] A. Grilo, M. Macedo, P. Sebastiao, et al.. Stealth optimized fisheye state routing in mobile ad-hoc networks using directional antennas. In Proceedings of IEEE 61st Vehicular Technology Conference, 2005, Vol. 4. pp.2590-2596.
    [18] D. Bein, A. Datta, V. Villain. Self-stabilizing optimal local routing in ad hoc networks. In Proceedings of 25th IEEE International Conference on Distributed Computing Systems Workshops. 2005. pp. 564-570.
    [19] M. Joa-Ng, I-T. Lu. A Peer-to-Peer Zone-Based Two-Level Link State Routing for Mobile Ad Hoc Networks. IEEE Journal on Selected Areas in Communications. August 1999, 17(8). pp. 1415-1425.
    [20] Y. Liu, X. Hu, M. J. Lee, et al.. A Region-Based Routing Protocol for Wireless Mobile Ad Hoc Networks. IEEE Network. July/August 2004. pp. 12-17.
    [21] L. Barolli, Y. Honma, A. Koyama, et al.. A Selective Border-casting Zone Routing Protocol for Ad-hoc Networks. In Proceedings of 15th International Workshop on Database and Expert Systems Applications. August 2004. pp. 326-330.
    [22] G. Pei, M. Gerla, T-W Chen. Fisheye State Routing: A Routing Scheme for Ad Hoc Wireless Networks. In Proceedings of ICC 2000, New Orleans, LA, June 2000. pp. 70-74.
    [23] G. Pei, M. Gerla, T.-W. Chen, "Fisheye State Routing in Mobile Ad Hoc Networks", In Proceedings of Workshop on Wireless Networks and Mobile Computing, Taipei, Taiwan, Apr. 2000.
    [24] L. Kleinrock, K. Stevens. Fisheye: A Lenslike Computer Display Transformation. Technical report, UCLA, Computer Science Department, 1971.
    [25] T.-W. Chen, M. Gerla. Global State Routing: A New Routing Scheme for Ad-hoc Wireless Networks. In Proceedings of IEEE ICC'98, Atlanta, GA, June 1998, pp. 171-175.
    [26] IETF. RFC3626: Optimized Link State Routing Protocol (OLSR).
    [27] C.E. Perkins, P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers. In Proceedings of ACM SIGCOMM'94, London, UK, September 1994. pp. 234-244.
    [28] A. Schumacher, S. Painilainen, T. Luh. Research Study of MANET Routing Protocols, Department of Computer Science University of Helsinki, Finland.
    [29] J. Broch, D. A. Maltz, D. Johnson, et al.. A performance comparison of multi-hop wireless ad hoc network routing protocols. In Proceedings of MOBICOM. 1998. pp. 85-97.
    [30] Y. Ni, Y.C. Tseng, Y.S. Chen, et al.. The broadcast storm problem in a mobile ad hoc network. In Proceedings of the 5th ACM/IEEE Int. Conf. Mobile Computing and Networking, 1999, pp. 151–162.
    [31]李建东.信息网络理论基础.第一版.西安:西安电子科技大学出版社,2001. pp. 154-159.
    [32] D. Bertsekas, R. Gallager. Data network. USA: Prentice-Hall, 1992. pp. 368-370.
    [33] H. Lim, C. Kim. Flooding in wireless ad hoc networks. Computer Communications. 2001, 24(3-4). pp. 353–363.
    [34] B. Williams, T. Camp. Comparison of broadcasting techniques for mobile ad hoc networks. In Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC '02). Lausanne, Switzerland. June 2002. pp. 194–205.
    [35] C.-C. Chiang, M. Gerla. Routing and multicast in multihop, mobile wireless networks. In Proceedings of the IEEE 6th International Conference on Universal Personal Communications (ICUPC '97), San Diego, USA. October 1997, vol. 2. pp. 546–551.
    [36] IETF. RFC3561: Ad hoc On-Demand Distance Vector (AODV) Routing.
    [37] IETF. Internet-Drafts: The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR).
    [38] E. Pagani, G. P. Rossi. Providing reliable and fault tolerant broadcast delivery in mobile ad-hoc networks. Mobile Networks and Applications. 1999, 4(3). pp. 175–192.
    [39] W. Peng, X.C. Lu. On the reduction of broadcast redundancy in mobile ad hoc networks, In Proceedings of the First Annual Workshop on Mobile and Ad Hoc Networking and Computing. Boston, USA, August 2000, pp. 129-130.
    [40] W. Peng and X. Lu, Efficient broadcast in mobile ad hoc networks usingconnected dominating sets, In Proceedings of ICPADS, Iwate, Japan, July 2000.
    [41] M.T. Sun and T.H. Lai. Location aided broadcast in wireless ad hoc network systems. In Proceedings of IEEE WCNC. 2002. pp. 597- 602.
    [42] J. Wu, F. Dai. A generic distributed broadcast scheme in ad hoc wireless networks. IEEE Transactions on Computers. October 2004, 53(10). pp. 1343-1354.
    [43] A. Qayyum, L. Viennot, A. Laouiti. Multipoint relaying: an efficient technique for flooding in mobile wireless networks. Tech. Rep. 3898, INRIA, March 2000, www.inria.fr/RRRT/RR-3898.html.
    [44] W. Peng, X.-C. Lu. Efficient broadcast in mobile ad hoc networks using connected dominating sets. Journal of Software. 2001, 12(4). pp. 529–536.
    [45] W. Peng and X. Lu. AHBP: an efficient broadcast protocol for mobile ad hoc networks. Journal of Computer Science and Technology. 2001, 16(2). pp. 114-125.
    [46] N. B. Chang, M. Liu. Controlled flooding search in a large network. IEEE/ACM Transactions on Networking. April 2007, 15(2). pp. 436-449.
    [47] C. Livadas, N.A. Lynch. A reliable broadcast scheme for sensor networks. technical report, MIT/CSAIL/TR-915, Computer Science and Artificial Intelligence Lab., MIT, Cambridge, MA, Aug. 2003.
    [48]盛敏,李建东,史琰.应用于Ad Hoc网络中的密度自适应广播策略.电子学报. 2004,32(7). pp. 1191-1194.
    [49] M. Sheng, J. Li, Y. Shi. Relative degree adaptive flooding broadcast algorithm for ad hoc networks. IEEE Transactions on Broadcasting. June 2005, 51(2) pp. 216-222.
    [50] Y.W. Hong, A. Scaglione. Energy-Efficient Broadcasting with Cooperative Transmissions in Wireless Sensor Networks. IEEE Transactions on Wireless Communications. October 2006. 5(10). pp. 2844-2855.
    [51] J.E. Wieselthier, G.D. Nguyen, A. Ephremides. Algorithm for energy-efficient multicasting in static ad hoc wireless networks. Mobile Networks and Applications, 2001, 6(3). pp. 251-263.
    [52] J.E. Wieselthier, G.D. Nguyen, A. Ephremides. On the Construction of Energy-Efficient Broadcast and Multicast Trees in Wireless Networks. In Proceedings of IEEE INFOCOM, New Jersey, 2000. pp. 585-594.
    [53] P.J. Wan, G. Calinescu, X.Y. Li, et al.. Minimum-energy broadcast routing in static ad hoc wireless networks. In Proceedings of IEEE INFOCOM. 2001. pp. 1162-1171.
    [54] O. Egecioglu, T.F. Gonzalez. Minimum-energy broadcast in simple graphs with limited node power. In Proceedings of PDCS. 2001. pp. 334-338.
    [55] M. Cagalj, J.P. Hubaux, C. Enz. Minimum-energy broadcast in all-wireless networks: NP-completeness and distribution issues. In Proceedings of MOBICOM, Atlanta: ACM, 2002. pp. 172-182.
    [56] W. Liang. Constructing minimum-energy broadcast trees in wireless ad hoc networks. In Proceedings of MOBIHOC, Atlanta: ACM, 2002. pp. 112-122.
    [57] D. Li, X. Jia, H. Liu. Energy efficient broadcast routing in ad hoc wireless networks. IEEE Transactions on Mobile Computing, 2004, 3(2). pp. 144-151.
    [58] M. Agarwal, J.H. Cho, L. Gao, et al.. Energy efficient broadcast in wireless ad hoc networks with hitch-hiking. In Proceedings of IEEE INFOCOM, New Jersey: IEEE, 2004. pp. 2096-2107.
    [59] M. Agarwal, J. H. Cho, L. Gao, et al.. Energy efficient broadcast in wireless ad hoc networks with hitch-hiking. Mobile Networks and Applications. December 2005, 10(6). pp. 897-910.
    [60] W.Z. Song, X. Y. Li, W. Z. Wang. Localized topology control for unicast and broadcast in wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems. 2006, 17(4). pp. 321-334.
    [61] F. Ingelrest, D. Simplot-Ryl. Localized Broadcast Incremental Power Protocol for Wireless Ad Hoc Networks. In Proceedings of IEEE ISCC 2005.
    [62] A. Durresi, V. Paruchuri, S. S. Lyengar, et al.. Optimized broadcast protocol for sensor networks. IEEE Transactions on Computers. August 2005, 54(8). pp. 1013-1024.
    [63] J.P. Sheu, C.S. Hsu, Y.J. Chang. Efficient broadcasting protocols for regular wireless sensor networks. Wireless Communications and Mobile Computing. 2006, 6(1). pp. 35–48.
    [64] X. Hui, M. Jeon, S. Lei, et al.. Impact of practical models on power aware broadcast protocols for wireless ad hoc and sensor networks. In Proceedings ofIEEE Workshop on SEUS–CCIA. April 2006.
    [65] J.P. Sheu, S.C. Tu, and C.H. Yu. A distributed query protocol in wireless sensor networks. Wireless Personal Communications. June 2007, 41(4). pp. 449–464.
    [66] C.R. Mann, R.O. Baldwin, J.P. Kharoufeh, et al.. A trajectory-based selective broadcast query protocol for large-scale, high-density wireless sensor networks. Telecommunication System. June 2007, 35(1-2). pp. 67–86.
    [67] F. Ye, G. Zhong, S. Lu, L. Zhang. GRAdient broadcast: a robust data delivery protocol for large scale sensor networks. Wireless Networks. May 2005, 11(3). pp. 285–298.
    [68] Miklós Maróti. Directed flood-routing framework for wireless sensor networks. In Proceedings of IFIP International Federation for Information. 2004, LNCS 3231. pp. 99–114.
    [69] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33th Hawaii Int. Conf. System Sciences. January 2000.
    [70] A. Durresi, V. Paruchuri. Broadcast protocol for energy-constrained networks. IEEE Transactions on Broadcasting. March 2007, 53(1). pp. 112-119.
    [71] M. Lin, K. Marzullo, S. Masini. Gossip versus deterministic flooding: Low message overhead and high reliability for broadcasting on small networks. UCSD Tech. Rep. 0637, 1999.
    [72] P. Gupta, P.R. Kumar. The capacity of wireless networks. IEEE Transactions on Information Theory. March 2000, 46(2). pp. 388-404.
    [73] J. Li, C. Blake, D. D. Couto, etc.. Capacity of Ad Hoc wireless networks. In Proceedings of the 7th annual international conference on Mobile computing and networking (ACM). July 2001. pp. 61-69.
    [74] Ramanathan, Jason Redi, Dviad Wiggins and Stephen Polit, Ad Hoc Networking With Directional Antennas. A Complete System Solution. IEEE Journal On Selected Areas In Communications, vol.23, no.3, 2005. Mar. pp. 496-506.
    [75] J.C. Liberti and T.S. Rappaport,“Smart Antennas for Wireless Communications," Prentice-Hall PTR, 1999.
    [76] R. Ramanathan. On the performance of ad hoc networks with beamforming antennas. In Proceedings of ACM MOBIHOC. October 2001. pp.95-105
    [77] K. Dyberg, L. Farman, F. Eklof, etc.. On the Performance of Antenna Arrays in Spatial Reuse TDMA Ad Hoc Networks. In Proceedings of IEEE MILCOM. October 2002. pp. 270-275.
    [78] J.E. Wieselthier, G.D. Nguyen, A. Ephremides. Energy-aware wireless networking with directional antennas: the case of session-based broadcasting and multicasting. IEEE Transactions on Mobile Computing. Jul-Sep 2002, 1(3). pp. 176- 191.
    [79] M. Chryssomallis. Smart Antennas. IEEE Antennas and Propagation Magazine. June 2000, 42(3). pp. 129-138.
    [80] A. Nasipuri, J. Mandava, H. Manchala, et al.. On-Demand Routing Using Directional Antennas in Mobile Ad Hoc Networks. In Proceedings of the IEEE WCNC. September 2000. pp. 535-541.
    [81] A. Spyropoulo, C.S. Raghavendra. Energy Efficient Communications in Ad Hoc Networks Using Directional Antennas. In Proceedings of IEEE INFOCOM, June 2002. pp. 220–228.
    [82] Y. Wang, J.J. Garcia-Luna-Aceves. Broadcast Traffic in Ad Hoc Networks with Directional Antennas. In Proceedings of IEEE GLOBECOM. 2003. pp. 210–215.
    [83] A.K. Saha, D.B. Johnson. Routing Improvement using Directional Antennas in Mobile Ad Hoc Networks. In Proceedings of IEEE GLOBECOM. 2004. pp. 2902–2908.
    [84] A. Nasipuri, S. Ye, J. You, et al.. A MAC Protocol for Mobile A d Hoc Networks Using Directional Antennas. In Proceedings of WCNC, September 2000. pp. 23-28.
    [85] L. Bao, J.J. Garcia. Transmissions Scheduling in Ad hoc Networks with Directional Antennas. In Proceedings of ACM MOBICOM. September 2002. pp. 48-58.
    [86] C. Zhu, M. S. Corson. A five phase reservation protocol (FPRP) for mobile ad hoc networks, Proceedings of IEEE INFOCOM. March 1998. pp. 322-331.
    [87] C. Zhu and M. S. Corson, An Evolutionary-TDMA Scheduling Protocol (E-TDMA) for Mobile Ad Hoc Networks, Proc. Advanced Telecommunications and Information Distributed Research Program, Univ. Mayland, College Park.Mar, 2000.
    [88] C. Zhu, M. S. Corson. A five phase reservation protocol (FPRP) for mobile ad hoc networks. Wireless Networks, July 2001, 7 (4). pp. 371-384.
    [89] M. Takata, M. Bandai, T. Watanabe. An extended directional MAC for location information staleness in ad hoc networks. In Proceedings of 25th IEEE International Conference on Distributed Computing Systems Workshops. June 2005. pp. 899-905.
    [90] K. Nagashima, M. Takata, T. Watanabe. Evaluations of a Directional MAC Protocol for Ad Hoc Networks. In Proceedings of the 24th International Conference on Distributed Computing Systems Workshops. June 2004. pp. 678-683.
    [91] M. Takata, K. Nagashima, T. Watanabe. A dual access mode MAC protocol for ad hoc networks using smart antennas. In Proceedings of IEEE International Conference on Communications. June 2004. pp. 4182-4186.
    [92] M. Sekido, M. Takata, T. Watanabe. Directional NAV Indicators and Orthogonal Routing for Smart Antenna Based Ad Hoc Networks. In Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops. June 2005. pp. 871-877.
    [93] M. Sekido, M. Takata, M. Bandai, etc.. A Directional Hidden Terminal Problem in Ad hoc Network MAC Protocols with Smart Antennas and its Solutions. In Proceedings of IEEE GLOBECOM 2005. pp. 2579-2583
    [94] A. Nasipuri, S. Ye, J. You, etc.. A MAC Protocol for Mobile Ad Hoc Networks Using Directional Antennas. In Proceedings of IEEE Wireless Communication and Networking Conference. September 2000. pp. 1214-1219.
    [95] H.Zhuochuan, Shen.Chen-Chung. A comparison study of omnidirectional and directional MAC protocols for ad hoc networks. In Proceedings of IEEE Global Telecommunications Conference. 2002. pp. 57-61.
    [96] H. Dai, K-W Nq., M-Y Wu. An overview of MAC protocols with directional antennas in wireless ad hoc networks. In Proceedings of the Second International Conference on Wireless and Mobile Communications, ICWMC 2006.
    [97] R. Roy Choudhury, X.Yang, and R. Ramanathan, Using Directional Antennas for Medium Access Control in Ad Hoc Networks. In Proceedings of ACMMOBICOM. September 2002. pp. 59-70.
    [98] R. Roy Choudhury, N.H. Vaidya. Deafness: A MAC Problem in Ad Hoc Networks when using Directional Antennas. In Proceedings of the 12th ICNP. 2004. pp. 283-292.
    [99] T. Korakis, G.. Jakllari, L. Tassiulas. A MAC protocol for full exploitation of Directional Antennas in Ad-hoc Wireless Networks, In Proceedings of ACM MOBIHOC. 2003. pp. 98-107.
    [100] H. Gosaain, C. Coredeiro, D.P. Agrawal. MDA: An Efficient Directional MAC scheme for Wireless Ad Hoc Networks. In Proceedings of IEEE GLOBECOM. 2005. pp. 3633-3637.
    [101] Y. Ko, V. Shangkarkumar, N.H. Vaidya. Medium access control protocols using directional antennas in ad hoc networks. In Proceedings of IEEE INFOCOM. March 2000. pp. 13-21.
    [102] D. Lal, R. Radhakrishnan, R. Agrawal, et al.. A novel MAC layer protocol for space division multiple access in wireless ad hoc networks, In Proceedings of the 11th International Conference on Computer Communications and Networks, October 2002. pp. 614-619.
    [103] D.Lal, V. Jain, Q.-A Zeng, et al.. Performance evaluation of medium access control for multiple-beam antenna nodes in a wireless LAN. IEEE Transactions on Parallel and Distributed Systems. December 2004, 15(12). pp. 1117- 1129.
    [104] M. Krunz, A. Muqattash, Sung-Ju Lee. Transmission power control in wireless ad hoc networks: challenges, solutions and open issues, IEEE Network, Sept.-Oct. 2004, 18(5). pp. 8- 14.
    [105] S. Doshi, T. X. Brown. Minimum energy routing schemes for a wireless ad hoc network. IEEE INFOCOM. 2002.
    [106]杨军,李建东,李维英.有效支持智能天线在移动ad hoc网络应用的多址接入协议.西安电子科技大学学报. 2003,30(3). pp. 309-314.
    [107] Jakllari G, Luo W, Krishnamurthy S. An integrated neighbor discovery and MAC protocol for ad hoc networks using directional antennas. IEEE WoWMoM’05. 2005. pp. 11-21.
    [108] ANSI/IEEE. Part 11: Wireless LAN medium access control (MAC) and physicallayer (PHY) specifications. std 802.11 1999 Edition (R2003). 2003.
    [109] Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE JSAC. 2000, 18 (3). pp. 535-547.
    [110] T.Y. Guo, Z.J. Liu, X. M. Wang, et al.. Data Transmission. 2nd Edition. Bei Jing: Posts & Telecom Press, 1998. pp. 64–70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700