无线Ad Hoc网络媒体接入控制机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线Ad Hoc网络的抗毁特性使得其被广泛应用于军事和民用领域。无论在军事通信领域还是商业领域,无线Ad Hoc网络的应用都需要能够为各种业务提供一定的服务质量(Quanlity of Service, QoS)保障。但是,由于无线Ad Hoc网络具有移动性、分布多跳性、带宽资源有限等特性,使得无线Ad Hoc网络的QoS技术面临着众多的挑战。QoS的保证需要Ad Hoc网络的各个层协议的支持,其中,媒体接入控制(Medium Access Control, MAC)协议运行在物理层上,是所有数据帧在无线信道上发送和接收的直接控制者,是提供QoS保障的重要一层,也是Ad Hoc网络的研究热点之一。
     本文主要针对Ad Hoc网络的MAC机制进行研究,包括对MAC协议进行建模,以及对MAC协议中的退避算法进行研究,具体体现在以下几个方面:
     1)利用G/G/1排队理论,针对一般场景下的非饱和无线网络,提出了一种MAC协议的非对称分析模型AMUWN(Asymmetry Model for Unsaturated Wireless Networks)。利用AMUWN模型推导了轻负载下的单跳无线网络和多跳Ad Hoc网络的MAC层的延迟及其抖动、吞吐量和丢包率的表达式,并通过NS2仿真软件验证了模型的准确性。
     2)利用AMUWN模型,分别分析了非饱和情况下MAC协议IEEE 802.11 DCF在单跳无线网络和多跳Ad Hoc网络中的平均延迟、抖动和丢包率等性能。分析表明,在多跳Ad Hoc网络中,增加节点的最大重传次数会显著地减小丢包率,同时对平均延迟和抖动的影响却很小。此外,增加某个节点的最小竞争窗口,会增加该节点的延迟及其抖动和丢包率,并且减小其传输范围外的其他节点的丢包率,但对这些节点的延迟及其抖动几乎没有影响。
     3)利用AMUWN模型,分别分析了非饱和情况下支持QoS的MAC协议IEEE 802.11e EDCA在单跳无线网络和多跳Ad Hoc网络中的吞吐量、平均延迟、抖动和丢包率等性能,并通过仿真验证了模型的有效性。该模型为研究无线Ad Hoc网络对QoS的支持提供了数学分析方法。
     4)提出了一种基于冲突概率和发送概率的退避算法CTPB(Collision and Transmission Probabilities based Backoff)。通过AMUWN模型对IEEE 802.11e EDCA在无线Ad Hoc网络中的性能进行分析可知,业务的延迟及其抖动和吞吐量由IEEE 802.11e EDCA的最小竞争窗口和分组到达速率所决定。但是,IEEE 802.11e EDCA的退避算法中的最小竞争窗口是固定不变的,并没有考虑网络的负载和信道的忙碌状况。为此,本文提出了一种基于冲突概率和发送概率的自适应退避算法CTPB,使得节点在网络较为空闲时充分利用信道资源,而在网络较为繁忙时避免拥塞的发生。仿真结果证明,CTPB算法能有效地提高Ad Hoc网络中EDCA的延迟性能,并且没有影响网络的吞吐量。
     5)退避算法的吞吐量性能评估。由AMUWN模型的分析可知,无线Ad Hoc网络中节点的冲突概率影响MAC协议的性能,而节点的冲突通常是由MAC协议中的退避算法解决。针对现有的主要退避算法,本文通过一维马尔科夫链分析了指数退避算法、线性退避算法和多项式退避算法以及各自对应的有最大重传次数限制的退避算法在饱和Ad Hoc网络中的吞吐量性能,为无线Ad Hoc网络的MAC机制的性能优化提供了理论依据。
For its prospect of application in military and civilian fields, wireless Ad Hoc network has been a focus in current network research. Due to the prevalence of multimedia applications, Quality of Service (QoS) issue has been regarded as a hot spot in Ad Hoc networks. But it is a challenge to support QoS in Ad Hoc networks for its mobile characteristics, distributed multihop, limited bandwidth. Ad Hoc networks’support for QoS involves all protocol layers. Medium Access Control (MAC) layer works on the physical layer and directly controls the transmission and receiving of packets, so it is one of the most important layers for QoS and many researchers focus on MAC layer’s support for QoS.
     This thesis focuses on MAC schemes, including the model building and the backoff functions of MAC layer protocol. The main work is as follows:
     1) With G/G/1 queuing theory, aiming at the general circumstance of unsaturated wireless networks, AMUWN (Asymmetry Model for Unsaturated Wireless Networks), which is a MAC layer analytic model, is put forward. With AMUWN, the delay, delay jitter, throughput and packets drop probability in the MAC layer of unsaturated one-hop and multi-hop Ad Hoc networks can be deduced. The model is evaluated by NS2 simulation software.
     2) With AMUWN, the thesis analyzes the delay, delay jitter and packets drop probability in unsaturated one-hop and multi-hop Ad Hoc networks with IEEE 802.11 DCF as their MAC layer protocol. In multi-hop Ad Hoc network, increasing the maximum retry limit can dramatically decrease the packet drop probability, but there are few effects on the delay and jitter. Meanwhile, increasing the minimum contention window of a given node can increase its delay and jitter and the packet drop probability and decrease the packet drop probability of nodes that are out of its transmission range, but their delay and jitter are hardly affected.
     3) With AMUWN, the thesis analyzes the delay, delay jitter, throughput and packets drop probability in unsaturated one-hop and multi-hop Ad Hoc networks with IEEE 802.11e EDCA as their QoS supported MAC layer protocol. The NS2 is used to evaluate the performance of the proposed model. The model provides an analytic method of studying wireless Ad Hoc networks’support for QoS.
     4) An adaptive back-off function CTPB (Collision and Transmission Probabilities based Backoff) is proposed. According to the analysis of AMUWN, the delay and jitter and the throughput depend on the minimum contention windows of IEEE 802.11e EDCA and the packet arrival rates. But the minimum contention window of IEEE 802.11e EDCA is static without the consideration of the network load and the busyness of the channel. So, CTPB is proposed. Simulation results show that this function can improve the delay performance of EDCA without impairing the throughput in Ad hoc networks.
     5) The throughput evaluation of backoff functions. According to the analysis of AMUWN, the collision probabilities of nodes in Ad Hoc network influence the performance of the MAC protocol. For their randomness, the backoff functions are adopted to resolve the collision traditionally. In this thesis, a one-dimensional Markov chain model is used to analyze the saturation throughput in Ad hoc network for generalized exponential, linear and polynomial backoff functions and these backoff functions with maximum retry limit. The analysis provides a basis for the performance optimization of MAC protocol in wireless Ad hoc network.
引文
[1]陈年生.无线移动自组织网络QoS路由协议的研究[D].武汉:武汉理工大学,2007
    [2]郑少仁. Ad Hoc网络技术[M].北京:人民邮电出版社,2005.
    [3]赵志峰,郑少仁,仇佩亮. Ad Hoc网络载波监听双信道接入协议[J].浙江大学学报(工学版), 2005, 39(4): 478-482
    [4]谢海波,崔毅东,徐惠民.一种联合路由层信息设计的多跳Ad Hoc MAC协议[J].电子学报, 2006, 34(12): 2130-2133
    [5] Wang Pingchi; Wang Kuochen; Lee Lungsheng. A hybrid design framework for video streaming in IEEE 802.11e wireless network[A]. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications[C]. 2005: 560-567
    [6] Hsu Yaling; Huang Yukai; Pang Aichun. QoS enhancement for co-existence of IEEE 802.11e and legacy IEEE 802.11[A]. IEEE Global Telecommunications Conference[C]. New Orleans: IEEE, 2008: 1-5
    [7] Putra E.H.; Supriyanto E.; Din J., et al. Cross layer design of IEEE 802.11e Enhanced Distributed Channel Access wireless network for telemedicine application[A]. Innovative Technologies in Intelligent Systems and Industrial Applications[C]. Monash: IEEE, 2009: 129-133
    [8] Safdar G. A.; Scanlon W.G. Improved power-saving medium-access protocol for IEEE 802.11e QoS-enabled wireless networks[J]. Communications, IET, 2007, 1(4):718-725
    [9] Khan K.U.R., Reddy A.V., Zaman R.U., et al. An efficient DSDV routing protocol for MANET and its usefulness for providing Internet access to Ad Hoc Hosts[A]. IEEE Region 10 Conference[C]. 2008: 1-6
    [10] Raju J., Garcia-Luna-Aceves J.J. A comparison of on-demand and table driven routing for ad-hoc wireless networks[A]. IEEE International Conference on Communications[C]. New Orleans: IEEE, 2000, 3: 1702-1706
    [11] Chen Tsuwei, Gerla M. Global state routing: a new routing scheme for ad-hoc wireless networks[A]. IEEE International Conference on Communications[C]. Atlanta, GA: IEEE, 1998: 171-175
    [12] Wu Shaochuan; Tan Xuezhi; Jia Shilou. AOHR: AODV and OLSR Hybrid Routing protocol for mobile Ad Hoc networks[A]. International Conference on Communications, Circuits and Systems Proceedings[C]. Guilin, China: IEEE, 2006: 1487-1491
    [13] Ahmed T.; Nuruzzaman S.; Haque M.N.; et al. Modification of DSR and itsimplementation in Ad Hoc City[A]. 10th international conference on Computer and information technology[C]. Beijing: IEEE, 2007: 1-6
    [14] Hilal A.R.; El Nahas A.; Bashandy A. RT-TORA: A TORA modification for real-time interactive applications[A]. Canadian Conference on Electrical and Computer Engineering[C]. 2008: 001403-001406
    [15]张毅,冯力,陈炜等.基于移动Agent的MANET多约束QoS路由算法[J].西安交通大学学报, 2010, 45(1): 94-98
    [16]李婷,纪红,李娜娜.无线Ad Hoc网络中基于SWAN模型的QoS改进机制[J].吉林大学学报(工学版), 2010, 40(1): 260-265
    [17]吴洲,鲁冬,曹伟. Ad Hoc网络中QoS保障的按需路由算法[J].计算机工程, 2009, 35(8): 134-136
    [18]耿蓉,李喆. AD HOC网络中的一种QoS-AWARE多路由协议[J].系统仿真学报, 2009, 21(5): 1390-1394
    [19] Wei Dali, Chan H. A. Clustering Ad Hoc networks: schemes and classifications[A]. 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks[C]. Reston, AV: IEEE, 2006, 3: 920-926
    [20]林闯,单志广,任丰原.计算机网络的服务质量(QoS)[M].北京:清华大学出版社,2004
    [21] Sarma N., Nandi S. QoS Support in Mobile Ad Hoc Networks[A]. International Conference on Wireless and Optical Communications Networks[C]. Bangalore: IEEE, 2006: 1-5
    [22] Chakrabarti S.,Mishra A. QoS issues in Ad Hoc wireless networks[J]. IEEE Communication Magazine, 2001, 39(2): 142-148
    [23] Sobrinho J.L., Krishnakumar A.S. Quality-of-service in ad hoc carrier sense multiple access wireless networks[J]. IEEE Journal on Selected Areas in Communications, 1999: 1353-1368
    [24] Brahma M., Kim K. W., Abouaissa A., et al. A new approach for supporting QoS in MAC layer over MANETs[A]. Proceedings on Systems Communications[C]. 2005: 7-12
    [25] Zhang Baoxian, Mouftah H.T. QoS routing for wireless ad hoc networks: problems, algorithms, and protocols[J]. IEEE Communications Magazine, 2005, 43(10): 110-117
    [26] Hanzo-II L., Tafazolli R. A survey of QoS routing solutions for mobile Ad Hoc networks[J]. IEEE Communications Surveys & Tutorials, 2007, 9(2): 50-70
    [27]陈超,郑宝玉,赵贤敬.一种利用跨层优化策略选择中继的协作路由算法[J].电子与信息学报, 2007, 29(12): 2981-2985
    [28]陈庆华,徐子平,沈越泓.基于链路状态感知的跨层协议设计与仿真[J].系统仿真学报, 2009, 21(11): 3416-3419
    [29] Kawadia V., Kumar P.R. Principles and protocols for power control in wireless Ad Hoc networks[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(1): 76-88
    [30] Li Pan, Shen Qiang, Fang Yuguang, et al. Power controlled network protocols for Multi-Rate ad hoc networks[J]. IEEE Transactions on Wireless Communications, 2009, 8(4): 2142-2149
    [31] Alotaili M., Soliman H. Efficient controlled routeless routing protocol with fixed channel’s width for mobile Ad Hoc sensor networks[A]. Proceedings of 18th International Conference on Computer Communications and Networks[C]. San Francisco: IEEE, 2009: 1-7
    [32] Uqattash A., Krunz M. POWMAC: a single-channel power-control protocol for throughput enhancement in wireless ad hoc networks[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(5): 1067-1084
    [33]张串绒,张玉清,李发根等.适于ad hoc网络安全通信的新签密算法[J].通信学报, 2010, 31(3): 19-24
    [34] Papadimitratos P. Secure Ad Hoc networking[A]. Consumer Communications and Networking Conference[C]. 2006: 10-14
    [35]张文柱,李建东,翁继伟等.分布式无线网络中依据用户妥善安排的多址接入协议[J].计算机学报, 2003, 26(5): 530-538
    [36] Kleinrock L., Tobagi A. Packet switching in radio channels: part I-Carrier Sense Multiple-Access modes and their throughput-delay characteristics[J]. IEEE Transactions on Communications, 1975, 23(12): 1400-1416
    [37] IEEE/ANSI Standard, Carrier sense multiple access with collision dectection[S]. 1985
    [38] Karn T.P. MACA: a new channel access protocol for packet radio[A]. ARRL/CRRL Amateur 9th Computer Network Conference[C]. 1990: 134-140
    [39] Lundy G.M.; Almquist M.; Oruk T. Specification, verification and simulation of a wireless LAN protocol: MACAW[A]. IEEE Military Communications Conference[C]. Boston: IEEE, 1998, 2: 565-569
    [40] Fullmer C. L., Garcia-Luna-Aceves J. J. Floor Acquisition Multiple Access (FAMA) for Packet-Radio Networks[A]. Conference of Applications, Technology, Architectures and Protocols for Computer Communications (SIGCOMM)[C]. 1995: 262-273
    [41] Talucci F.; Gerla M. MACA-BI (MACA by invitation). A wireless MAC protocol for high speed ad hoc networking[A]. IEEE 6th International Conference on Universal Personal Communications Record[C]. San Diego: IEEE, 1997, 2: 913-917
    [42] Garcia-Luna-Aceves J.J., Tzamaloukas A. Reversing the Collision-Avoidance Handshake in Wireless Networks[J]. ACM/IEEE Mobicom, 1999
    [43] Toh C.K., Vassiliou V.; Guichal G.; et al. MARCH: A medium access control protocol for multihop wireless Ad Hoc networks[A]. MILCOM 21st Century Military Communication Conference[C]. Los Angeles: IEEE, 2000, 1: 512-516.
    [44] Bononi L., Conti M., Donatiello L. A distributed contention control mechanism for power saving in random-access Ad-Hoc wireless Local Area Networks[A]. IEEE International Workshop on Mobile Multimedia Communications[C]. Los Angeles: IEEE, 1999: 114-123
    [45] Tobagi F.A., Kleinrock L. Packet switching in radio channels: part II-the hidden terminal problem in Carrier Sense Multiple-Access and the Busy-Tone Solution[J]. IEEE Transactions on Communications, 1975, 23(12): 1417-1433
    [46] Haas Z.J., Deng Jing. Dual Busy Tone Multiple Access (DBTMA): A multiple access control scheme for Ad Hoc networks[J]. IEEE Transactions on Communications, 2002, 50(6): 975-985
    [47] Singh S., Raghavendra C.S. Power-efficient MAC protocol for multihop radio networks[A]. 9th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications[C]. Boston: IEEE, 1998, 1: 153-157
    [48] Tseng Yuchee, Wu Shihlin, Lin Chihyu, et al. A multi-channel MAC protocol with power control for multi-hop mobile Ad Hoc networks[A]. International Conference on Distributed Computing System Workshop[C]. Mesa: IEEE, 2001: 419-424
    [49] Tseng Yuchee, Chao Chinmin, Wu Shihlin, et al. Dynamic channel allocation with location awareness for multi-hop mobile Ad Hoc networks[J]. Computer Communications, 2002, 25: 676-688
    [50] Zhu Chenxi, Corson M.S. A Five-Phase Reservation Protocol (FPRP) for mobile Ad Hoc networks[A]. 17th Annual Joint Conference of the IEEE Computer and Communication Societies[C]. San Francisco: IEEE, 1998, 1: 322-331
    [51] Tang Z., Garcia-Luna-Aceves J.J. A protocol for topology-dependent transmission scheduling in wireless networks[A]. IEEE Wireless Communications and Networks Cofference[C]. New Orleans: IEEE, 1999: 1333-1337
    [52] Ahn C.W., Kang C.G., Cho Y.Z. Soft Reservation Multiple Access with PriorityAssignment (SRMA/PA): a novel MAC protocol for QoS-guaranteed integrated services in mobile Ad Hoc networks[A]. IEEE 52nd Vehicular Technology Conference[C]. Boston: IEEE, 2000, 2: 942-947
    [53] Agrawal S., Katz R.H., Krithnamurthy S.V., et al. Distributed power control in Ad Hoc wireless networks[A]. 12th IEEE International Symposium on Persornal, Indoor and Mobile Radio Communications[C]. San Diego: IEEE, 2001
    [54] Jin K.T., Cho D.H. Multi-code MAC for multi-hop wireless Ad Hoc networks[A]. IEEE 56th Vehicular Technology Conference[C]. 2002: 1100-1104.
    [55] Lal D., Toshniwal R., Radhakrishnan R., et al. A novel MAC-layer protocol for space division multiple access in wireless Ad Hoc networks[A]. 11th International Conference on Computer Communications and Networks[C]. 2002: 614-619.
    [56] Choudhury R.R., Yang Xue, Ramanathan R., et al., Using directional antennas for medium access control in Ad Hoc networks[A]. Mobicom, 2002.
    [57] Goodman D.J., Valenzuela R.A., Gayliard K.T., et al. Packet reservation multiple access for local wireless communications[A]. IEEE 38th Vehicular Technology Conference[C]. Philadelphia: IEEE, 1988:701-706
    [58] Anastasi G., Lenzini L., Mingozzi E. Stability and performance analysis of HIPERLAN[A]. 17th Annunal Joint Conference of the IEEE Computer and Communications Societies[C]. San Francisco: IEEE, 1998: 134-141
    [59] Tang Zhenyu, Garcia-Luna-Aceves J.J. Hop Reservation Multiple Access (HRMA) for multichannel packet radio networks[A]. 7th International Conference on Computer Communications and Networks[C]. Lafayette: IEEE, 1998: 388-395
    [60] Xiao Yang. Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs[J]. IEEE Transactions on Wireless Communications, 2005, 4(4): 1506-1515
    [61] Calafate C.T., Manzoni P., Malumbres M.R. Assessing the effectiveness of IEEE 802.11e in multi-hop mobile network environments[A]. The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems[C]. 2004: 205-212
    [62] Mowlaei A., Bu Sung Lee, Teck Meng Lim, et al. Service differentiation in wireless networks: adaptive Ad Hoc Qs versus IEEE 802.11e[A]. 15th IEEE International Conference on Networks[C]. Adelaide, SA: IEEE, 2007: 306-311
    [63] Wireless LAN Medium Access Control(MAC) and Physical Layer ( PHY ) Specifications[S]. IEEE standards 802.11, 1999
    [64] Zhu Hua, Li Ming, Chlamtac I. et al. A survey of quality of service in IEEE 802.11 networks[J]. IEEE Wireless Communications, 2004, 11(4): 6-14
    [65] Bianchi G.. Performance analysis of the IEEE 802.11 Distributed Coordination Function[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 535-547
    [66]苏扬.无线局域网介质访问控制层性能建模与分析[D].广州:华南理工大学,2008
    [67] Wang Ying, Yan Nuo, Li Tong. Throughput analysis of IEEE 802.11 in multi-hop Ad Hoc networks[A]. International Conference on Wireless Communications, Networking and Mobile Computing[C]. Wuhan: IEEE, 2006: 1-4
    [68] Dong Linfang, Shu Yantai, Chen Haiming, et al. Estimation and application of end-to-end delay under unsaturation traffic in wireless Ad Hoc networks[A]. 2nd International Conference on Mobile Technology, Applications and Systems[C]. Guangzhou: IEEE, 2005: 15-17
    [69] Alizadeh-Shabdiz F., Subranmaniam S. Analytical models for single-hop and Ad Hoc networks[A]. First International Conference on Broadband Networks[C]. 2004: 449-458
    [70] Tickoo O., Sikdar O. Modeling queuing and channel access delay in unsaturated IEEE 802.11 random access MAC based wireless networks[J]. IEEE/ACM Transactions on Networking, 2008, 16(4): 878-891
    [71] Bisnik N., Abouzeid A. Queuing delay and achievable throughput in random access wireless Ad Hoc networks[A]. 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks[C]. Reston: IEEE, 2006, 3: 874-880
    [72] Chen Jia, Yang Yang. Multi-hop delay performance in wireless mesh networks[A]. IEEE Global Telecommunications Conference[C]. San Franciso: IEEE, 2006: 1-5
    [73]雷磊,许宗泽. IEEE 802.11 DCF差错帧模型的分析与仿真算法改进[J].电子与信息学报, 2008, 3(5): 1234-1238
    [74] IEEE Std. 802.11e-2005. Wireless Lan medium access control (MAC) and physical layer (PHY) specifications, Amendment 8: medium access control (MAC) quality of service enhancements[S]
    [75] Kosek K. Problems with providing QoS in EDCA Ad Hoc networks with hidden and exposed nodes[A]. IEEE INFOCOM Workshops[C]. Rio de Janeiro: IEEE, 2009: 1-2
    [76] Chen X., Zhai H., Tian X., et al. Supporting QoS in IEEE 802.11e Wireless LANs[J]. IEEE Transactions on Wireless Communications, 2006, 5(8): 2217-2227
    [77] Tao Zhifeng, Panwar S. Thoughput and delay analysis for the IEEE 802.11e Enhanced Distributed Channel Access[J]. IEEE Transactions on Communications, 2006, 54(4):596-603
    [78] Inan I., Keceli F., Ayanoglu E. Saturation throughput analysis of the 802.11e Enhanced Distributed Channel Access Function[A]. IEEE International Conference on Communications[C]. Glasgow: IEEE, 2007: 409-414
    [79] Huang Chingling, Liao Wanjiun. Throughput and delay performance of IEEE 802.11e Enhanced Distributed Channel Access (EDCA) under saturation condition[J]. IEEE Transactions on Wireless Communications, 2007, 6(1): 136-145
    [80]陆传赉.排队论[M].北京:北京邮电学院出版社, 1975: 167-168.
    [81] Liu Yanbing, Meng Man. Survey of admission control algorithms in IEEE 802.11e wireless LANs[A]. International Conference on Future Computer and Communication[C]. Wuhan: IEEE, 2009: 230-233
    [82] Nor S., Mohd A., Cheow C. An admission control method for IEEE 802.11e[J]. Network Theory and Applications, 2006
    [83] Andreadis A., Benelli G., Zambon R. An admission control algorithm for QoS provisioning in IEEE 802.11e EDCA[A]. 3rd International Symposium on Wireless Pervasive Computing[C]. Santorini, Greece, 2008: 298-302
    [84] Gao Deyun, Cai Jianfei, King N.N. Admission control in IEEE 802.11e wireless LANs[J]. IEEE Network, 2005, 19(4): 6-13
    [85] Bensaou B., Kong Zhenning, Tsang D.D.K. A measurement-assisted, model-based admission control algorithm for IEEE 802.11e[A]. The International Symposium on Parallel Architectures, Algorithms, and Networks[C]. Sydney, Australia, 2008: 260-265
    [86] Liu Yi, Pawar S.S., Assi C., et al. Dynamic admission and congestion control for real-time traffic in IEEE 802.11e Wireless LANs[A]. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications[C]. Canada, 2006: 419-426
    [87] Lenagala R., Zeng Q.A. Starvation prevention scheme for the IEEE 802.11e EDCF using dynamic MAC layer parameters[A]. Wireless Telecommunications Symposium[C]. Pomana, CA: IEEE, 2006: 1-7
    [88] Wang Pingchi, Wang Kuochen, Lee Lungsheng. A QoS scheme for digital home applications in IEEE 802.11e wireless LANs[A]. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications[C]. Berlin: IEEE, 2005, 3: 1845-1849
    [89] Kim E., Suh Y.J. ATXOP: an adaptive TXOP based on the data rate to guarantee fairness for IEEE 802.11e wireless LANs[A]. IEEE 60th Vehicular Technology Conference[C].2004, 4: 2678-2682
    [90] Pang Kun, Lin Xiaokang, Zheng Lunli, et al. Dynamic WFQ scheduling for real-time traffic in wireless ATM links[A]. International Conference on Communication Technology Proceedings[C]. 2000, 2: 1479-1482
    [91] Bennett J.C.R., Zhang Hui. Hierarchical packet fair queuing algorithms[J]. IEEE/ACM Transactions on Networking, 1997, 5(5): 675-689
    [92] Goyal P., Vin H.M., Cheng Haichen. Start-Time Fair Queuing: a scheduling algorithm for integrated services packet switching networks[J]. IEEE/ACM Transactions on Networking, 1997, 5(5): 690-704
    [93] Kuo W.K. Traffic scheduling for multimedia transmission over IEEE 802.11e wireless LAN[J]. IET Communication, 2008, 2(1): 92-97
    [94] Fallah Y.P., Alnuweiri H. Performance analysis of controlled access phase scheduling for per-session QoS provisioning in IEEE 802.11e WLANs[A]. IEEE Wireless Communications and Networking Conference[C]. 2006: 1414-1420
    [95] Zhu Rongbo, Yang Yuhang. Adaptive scheduler to improve QoS in IEEE 802.11e wireless LANs[A]. First International Conference on Innovative Computing, Information and Control[C]. 2006: 377-380
    [96]张棋飞.无线自组织网络媒体接入控制机制研究[D].武汉:华中科技大学,2007
    [97] Lei Gang, Assi C.M., Benslimane A. Enhancing IEEE 802.11 Random Backoff in selfish Enviroments[J]. IEEE Transactions on Vehicular Technology, 2007, 57(3): 1806-1822
    [98] Haas Z.J., Deng Jing. On optimizing the backoff interval for random access schemes[J]. IEEE Transactions on Communications, 2003, 51(12): 2018-2090
    [99] Zhalehpoor S., Shahhoseini H.S. Performance evaluation of adaptive backoff algorithms in Ad Hoc networks[A]. 2009 International Conference on Computer Technology and Development[C]. Las Vegas NV: IEEE, 2009, 1: 540-544
    [100] Fu Jingqi, Zhang Qiang, Wang Haikuan. A new backoff algorithm based on the dynamic modulating parameters of IEEE 802.11[A]. 5th International Conference on Wireless Communications, Networking and Mobile Computing[C]. Beijing: IEEE, 2009: 1-4
    [101] Zhalehpoor S., Shahhoseini H.S. SBA backoff algorithm to enhance the Quality of Service in MANETs[A] 2009 International Conference on Signal Acquisition and Processing[C]. Kuala Lumpur: IEEE, 2009: 43-47
    [102] Romdhani L., Ni Qiang, Turletti T. Adaptive EDCF: enhanced service differentiation for IEEE 802.11 wireless Ad-Hoc networks[J]. IEEE Wireless Communications andNetworking, 2003: 1373-1378
    [103] Song N.O., Kwak B.J., Song J., et al. Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease backoff algorithm[A]. The 57th IEEE Semiannual Spring Vehicular Technology Conference[C]. 2003, 4: 2775-2778
    [104] Bharatiya M., Prasad S. MILD based sliding contention window mechanism for QoS in Wireless LANs[A]. 4th International Conference on Wireless Communication and Sensor Networks[C]. Allahabad: IEEE, 2008: 105-110
    [105] Gupta R., Walrand J. Impatient backoff algorithm: fairness in a distributed Ad Hoc MAC[A]. IEEE International Conference on Communications[C]. Glasgow: IEEE, 2007: 3562-3569
    [106] Na Chengliang, Zhou Tingxian, Li Lihong, et al. AASC: adaptive avoid second-collision backoff algorithm for multihop wireless sensor networks[A]. IEEE International Conference on Mobile Ad Hoc and sensor Systems Conference[C]. Washington, DC: IEEE, 2005: 1-7
    [107] Xu Dongxia, Sakurai T., Vu H.L. An analysis of different backoff functions for an IEEE 802.11 WLAN[A]. IEEE Vehicular Technology Conference[C]. Calgary, BC: IEEE, 2008: 1-5
    [108] Vukovic I.N., Smavatkul N. Delay analysis of different backoff algorithms in IEEE 802.11[A]. 60th IEEE Vehicular Technology Conference[C]. 2004: 4553-4557
    [109] Kwak B.J., Song N.O., Miller L.E. Analysis of the stability and performance of exponential backoff[J]. IEEE Wireless Communications and Networking, 2003, 3: 1754-1759
    [110] Aldous D. Ultimate instability of exponential back-off protocol for acknowledgment-based transmission control of random access communication channels[J]. IEEE Transactions on Information Theory, 1987, 33(2): 219-223
    [111] Goodman J., Greenberg A. G., Madras N., et al. Stability of binary exponential backoff[J]. Journal of ACM, 1988, 35(3): 579-602
    [112] Shoch J.F., Hupp J.A. Measured performance of an Ethernet local network[J]. Communications of the ACM, 1980, 23(12): 711-721
    [113] Hastad J., Leighton T., Rogoff B. Analysis of backoff protocols for multiple access channels[A]. Proceedings of the nineteenth annual ACM symposium on Theory of computing[C]. 1996, 25(4): 740-744
    [114] Kelly F.P., MacPhee I. M. The number of packets transmitted by collision detectrandom access schemes[J]. The Annals Probability, 1987, 15(4): 1557-1568
    [115] Al-Ammal H., Goldberg L.A., MacKenzie P. Binary exponential backoff is stable for high arrival rates[A]. Proceeding of the 17th Annual Symposium on Theoretical Aspects of Computer Science[C]. Lille, France, 2000.
    [116] Byung-Jae Kwak, Nah-Oak Song, Miller L.E. Performance analysis of exponential backoff[J]. IEEE/ACM Transactions on Networking, 2005, 13(2): 229–244
    [117] Vukovie I.N., Smavatkul N. Saturation throughput analysis of different backoff algrithms in IEEE 802.11[A]. 15th IEEE International Sysposium on Personal, Indoor and Mobile Radio Communications[C]. 2004: 1870-1875
    [118] Li Jian, Zeng Xianwen, Su Qinggang. Performance investigation of backoff algorithms in multihop wireless networks[A]. The 9th International Conference for Young Computer Scientist[C]. Huanan: IEEE, 2008: 564-569

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700