太白红杉种群生态及遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太白红杉(Larix Chinensis Beissn.)为我国特有种,分布区极其有限,仅分布在陕西秦岭山地2600m(太白山为2800m)~3500m海拔范围。已被列为国家二级珍稀濒危保护植物。太白红杉是秦岭山地森林最上线的唯一落叶乔木针叶林树种,是秦岭生态系统的重要组成成分。在自然物种的保存、科学研究、生态效益和经济意义等方面,都具备了被研究和保护的价值。根据现有资料分析,目前,对太白红杉的研究仅仅限于考察性的描述,系统的、尤其是定量分析比较少。本文试图通过太白红杉生物多样性的研究,从宏观生态学和微观分子生态学两个层面分析太白红杉与生境间的相互关系及其种群数量动态规律和群落学过程,预测太白红杉的遗传学命运和生存潜能,揭示太白红杉的变异规律和分化机制,探索太白红杉的致濒原因。具体内容包括:
    1 太白红杉种群多样性的研究
    从太白红杉种群的年龄结构、存活曲线、死亡龄级分布、生命表、生态位破碎环境等方面进行深入的研究,研究结果表明:太白红杉低径级和高径级的个体数量少,中径级个体数量多。幼苗的产生主要依赖于萌生,受限于林窗的形成,其数量的不足直接影响了种群的发展,有可能成为该种群致濒的重要因素。光头山、玉皇山、冰晶顶等较低海拔山地径级结构中,有不同程度的缺失,而太白山比较完整。不同样地的密度(株数·hm2)分析表明,太白山>玉皇山>光头山>冰晶顶。不同样地密度随径级的变化曲线特点是低径级密度高,高密度的径级分布区间为15-25cm。密度在不同样地平均径级上的分布规律表现为明显的负相关规律。静态生命表客观地反映了太白红杉的动态变化。表明太白红杉死亡率和危险率动态趋势基本相似。积累死亡率单调增加,生存率单调下降。生命期望的极大值对应于死亡密度的极小值。4个函数值说明了太白红杉中前期增长,后期稳定的特点。太白红杉的存活曲线表现为25cm直径前随径级增加平稳下降,35cm后在较低水平上保持平稳。曲线走向趋于Deevey的II型和III型曲线之间。死亡曲线表现为20cm前在较高水平上保持平稳,30cm后在较低水平上保持平稳。死亡高峰位于25-30cm之间,和在区间增长曲线直线下滑完全吻合。
    从不同的角度对太白红杉种群结构的研究表明,该种群长期适应秦岭亚高山环境条件,中龄级以后个体间的竞争相对平稳,数量减少趋向于稳定,说明其密度制约有着良好的自我调节能力,这正是太白红杉种群成为稳定型种群的原因所在。
    
    2太白红杉群落多样性的研究
    对太白红杉群落进行:1)群落种类组成的区系分析,确定占优势的区系成分;2)群落外貌分析,建立太白红杉群落的生活型谱。(同时对该群落的季相变化进行分析);3)群落结构分析,从垂直结构和水平结构两个方面分析其生态学规律;4)群落中物种多样性的研究。研究结果表明:太白红杉群落中植物的种类组成成分比较简单,仅出现了85种种子植物。原因在于秦岭亚高山地带寒冷、风大、紫外线强等环境因素限制了许多植物的分布。从区系组成分析来看,北温带分布的种类占优势,并决定了该植物区系的性质。其它旧世界温带分布和世界分布的属也占有一定比例,但大都具有高纬、高寒分布的特性。中国特有分布的属虽然数量不多,但反映了本区的特殊性。从生活型组成的分析来看,高位芽植物占优势,这和暖温带森林气候条件下发育的群落组成非常一致,反应了暖温带季风区夏季炎热多雨,冬季寒冷而漫长的区域特点。而地下芽和一年生植物的比例偏高,则反应了秦岭亚高山地带的特点。从群落的垂直结构来看,该群落平均高度为8.6m,可分为乔木层,灌木层、草本层和地被层。从水平结构来看,整个群落呈现斑块状,分布于亚高山草甸构成的基质上,群落内常有香柏,离柱五加或冷杉等小群落镶嵌。物种多样性4种指数的分析,效果良好。H值在4个取样地段上均为草本层 >灌木层 >乔木层;在4个层次上均为太白山H值最小,太白山< 玉皇山< 光头山< 冰晶顶。J值、D值的变化趋势和H值相近,D值则相反。
    太白红杉是秦岭山地针叶林带最上部落叶林亚带中的优势种。区系成分和生活型组成均具北温带性质,群落结构简单,具有适应亚高山寒冷环境的生态特点。
    3太白红杉自然居群遗传多样性的研究
     研究太白红杉种群内、种群间分子的遗传变异、以及这些分子变异与其生境或生态学之间的联系。研究结果表明:
    对适合太白红杉基因组DNA提取的CTAB方法进行改良,有效的去除了酚类化合物、多糖、萜类化合物和未知化合物的干扰。采用优化的RAPD反应体系(10 ng模板、300μM dNTPs、 2.5 mM Mg2-、 0.1U Taq、 8μl引物,总体积为20μl)节约简便,且扩增出的带型清晰,重复性好。
    本研究运用随机扩增多态DNA(RAPD)方法对太白红杉的6个居群共122个个体进行了遗传多样性检测。29个10-mer的寡核苷酸引物共检测128个位点,其中120个位点为多态位点,占0.93,牛背粱居群多态位点百分率最小(0.75);太白山居群多态位点百分率最大(0.90)。按所检测的多态位点百分率排列各居群的顺序为:太白山居群>冰晶顶居群>玉皇山居群>光头山居群>佛坪居群>牛背粱居群(0.90>0.87>0.84>0.80>0.77>0.75)。以上结果说明太白红杉的遗?
Larix Chinensis Beissn, which is endemice species, only distributes the zone from 2600 to 3500m altitude in Mt. Qinling, Shaanxi Province of China. This thesis mainly deals with Larix Chinensis in two aspects. One is macrocosmic ecology about the diversity of the population, the community and the landscape, and the other is the molecular ecology about the genetic diversity analysis of intrapopulations and interpopulations, with special emphasis on the cause of endangered state and conservation strategy of the species.
    
    1 The diversity of the population
    In Mt. Qinling 4 sampling stands were set up at Mts. Taibai, Guangtou, Yuhuangshan and bingjingding respectively. 280 plots in Larix chinensis population were investigated by the sampling method. The community feature, size-class structure, the regulation of changing density were analyzed, as well as worked out the survivorship curve, the death curve and the life table. The results indicated the populations had one peak of mortality between 25-30cm, and the survivorship curve trended to be the type between DeeveyII and III. The large size-class populations were stability and variable in small size-class population. The restricting factor for the survival and development of the population was a short seedling.
    
    2 The community diversity
     Based on the above plot data, Larix chinensis community characteristics were analyzed about the specific composition; the flora feature; the community physiognomy; the vertical and level structure; and the regulation of environment. The indexes of the frequency and the coverage and the species diversity (Shannon-Wiener index; Simpson index; Pielou index and Probility of Interspecies Encounter index) were measured in L. chinensis community in the sampling stands. The results were followed: (1) the community of L. chinensis apparently distributed to high-altitude montane at 2800-3500M in Qinling ranges; (2) the specific composition of the community is about 84 species, which the genus of the boreal temperate zone is absolute dominance. The species and quantity of hemicryptophyte were both more and larger. There was a striking dominant synusia of L. Chinensis in the L. chinensis community, which was a monodominant community. The H index of tree layer was 0.207-0.420, brush layer and herb layer1.779, 2.122-3.025 respectively. This study aims at scientific sustainable development and conservation of this rare phytobiocenose.
    3 the molecular ecological analysis
     An extraction medium with the combination of antioxidants and chelants was successfully used to obtain total DNA from the leaf tissues of L. chinensis, which can remove phenolic compound, polysaccharide and terpenoid. An economic and effective RAPD reaction system was obtained for adapting to L. chinensis RAPD markers. The optimized system include 10ng temlpate DNA, 300μM dNTPs, 2.5 mM Mg2-, 0.1U Taq DNA polymerase, 8μl Operon random primer(4pM) with 20μl of the total volume. This was the basis of large-scale reseach of many L. chinensis materials' RAPD analysis.
    The genetic diversity of L. chinensis, represented by 122 individuals collected from all 6 populations (niubeiliang , guangtoushan , bingjingding , fuping , taibaishan and yuhuangshan populations), was investigated with random ampified polymorphic DNA (RAPD) markers. Twenty-nine 10-mer primers primed 128 sites, of which 120(0.93) were polymorphic. The percentage of polymorphic sites (PPS) was higher (0.90) in t-pop and lower (0.75) in n-pop. In proper order, the PPS were t->b->y->c->f->n-pop (0.90> 0.87> 0.84> 0.80> 0.77> 0.75). The result reveals higher genetic diversity level of L. Chinensis than most other conifers.
    To reveal the relationship to molecular variation and gene flow and the habitats, it was found that 69.49% of molecular variation existed within the populations while 30.35% of which among populations estimated by Shannon phenotypic diversity index from RAPD data. The genetic different coefficient and genetic distance between populations
引文
1. 班 勇,植物生活史对策的进化,生态学杂志,1995, 14 (3): 33~39
    2. 曹广侠,林璋德,张联敏,甘南地区紫果云杉、岷江冷杉生命表,生态学报,1991,11(3):286-288
    3. 常 青,周开亚,分子进化研究中系统发生树的重建,生物多样性,1998,6(1):55~62
    4. 陈存根,秦岭太白红杉林的群落学特征及类型划分,林业科学,1994,30(6)487-496
    5. 陈灵芝,陈清郎,刘文华,中国森林多样性及其地理分布,科学出版社,1997,13-19
    6. 陈毓亨,白守梅,程克棣,章菽,李吉学,南方红豆杉紫杉烷高含量植株系RAPD初步研究,植物学报,1999, 41 (8): 829~832
    7. 陈小勇,安徽黄山青冈种群遗传的空间自相关分析,植物生态学报,2001,25(1)29~34
    8. 陈小勇,植物的基因流及其在濒危植物保护中的作用,生物多样性,1996,4(2):97- 102
    9. 崔友文,秦岭植物区系成分的研究,西北植物研究,1982,2(1)1-8
    10. 费多罗夫Aн.A.,中国的西南植物区系及其对于认识欧亚植物界的意义,植物学报,1959,8(2):161-176
    11. 傅立国等,中国植物红皮书,北京:科学出版社,1992
    12. 葛颂,黄敏仁,放农,马尾松GOT、LDH和MDH同工酶的遗传方式和连锁关系,遗传学报,1987,14:()428~435
    13. 葛颂,王明庥,陈岳武,用同工酶研究马尾松群体的遗传结构,林业科学 ,1988,24:()399~409
    14. 谷瑞升,刘群录,陈雪梅,蒋湘宁,木本植物蛋白提取和SDS-PAGE分析方法的比较和优化,植物学通报,1999,16(2)
    15. 管中天,四川松杉类植物分布的基本特征,植物分类学报,1981,9(4)393-407
    16. 国家环境保护局,中国科学院植物研究所 中国珍稀濒危保护植物名录,生物学通报,1987,7:23-25
    17. 何东进、洪伟、吴承祯,毛竹林林分平均胸径模拟预测模型的研究,林业科学,2000,36(1):148-153
    18. 贺 锋,陈辉蓉,吴振斌,植物间的相生相克效应,植物学通报,1999,16(1)
    19. 贺善安,中国珍稀植物,上海:上海科学技术出版社,1998,7—20
    20. 何田华,杨继,饶广远,植物居群遗传变异的空间自相关分析,植物学通报, 1999,16(6)
    21. 胡宝忠,刘娣,胡国富等,羊草遗传多样性的研究,植物生态学报,2001,25(1)83~89
    22. 胡新生,Richard A. Ennos,我国兴安、长白及华北落叶松种的天然群体交配系统研究,林业科学,1999,(1)
    23. 胡志昂,王洪新,植物自然群体适应逆境的分子机理,植物学报,2001,43(2)111~118
    24. 胡志昂、王洪新、阎龙飞,裸子植物的生化系统学(一)—松科植物的过氧化物酶,植物分类学报,1983,21(4):421-431
    25. 胡志昂,刘长江,王洪新,裸子植物的生化系统学(二)—松科植物的种子蛋白多肽,植物分类学报,1984,22(5):360-366
    26. 胡志昂,王洪新,刘长江,潜忠兴,裸子植物的生化系统学(三)――从种子蛋白多肽和针叶过氧化物酶探讨红豆杉科的系统位置,植物分类学报,1986,24(4):260~263
    27. 胡志昂,王洪新,北京地区野大豆天然群体遗传结构,植物学报,1985,27(6):599-604
    28. 胡志昂,恽锐,钟敏等,检测植物DNA扩增多态性方法的比较和改进,植物学报,1997,39:138~144
    29. 胡志昂,王洪新,分子生态学研究进展,生态学报,1998,18(6)
    30. 蒋志刚,马克平,韩兴国,保护生物学,杭州:浙江科学技术出版社,1997,11-130
    31. 季维智,宿兵,遗传多样性研究的原理与方法,浙江科学技术出版社,1999,20-29,130-135
    32. 孔令让,董玉琛,贾继增,粗山羊草随机扩增多样性DNA研究,植物学报,1998, 40(3): 223~227
    33. 郎 萍,黄宏文,栗属中国特有种居群的遗传多样性及地域差异,植物学报,1999,41(6):651~657, 669~676
    34. 李 博,陈家宽,A.R.沃金森,植物竞争研究进展,植物学通报,1998,4(4))
    35. 李承森,王宇飞,孙启高,定量分析第三纪以来环境变化的新方法--特有种气候分析法,植物学报,2001,43(2)217~220
    36. 李承森,植物科学进展,第一卷,北京:高等教育出版社,1998,1-16,237-248
    37. 栗德永,王开曦,太白山植物元素背景值的研究,植物生态学与地植物学丛刊,1983, 7 (3)
    38. 李俊清,中国水青冈种内种间遗传多样性的初步研究,生物多样性,1996,4(2)63-68
    39. 李俊清,植物遗传多样性及保护研究进展,植物研究,1998,18(2)
    40. 李 力,王仁卿,王中仁,王少萍,李书 ,青岛耐冬山茶的多样性(2)――居群的遗传多样性分析,生物多样性,1996,4(1):1~6
    41. 李林初,落叶松属的核型及系统位置的研究,植物分类学报,1993,31(5)405-412
    42. 李 楠,论松科植物的地理分布、起源和扩散,植物分类学报,1995, 33 (2):105~130
    43. 路安民,种子植物科属地理,北京:科学出版社,1998,26-27
    44. 卢存福,简令成,匡廷云,高山植物的抗寒抗冻特性,植物学通报,1998,3(3):4-9
    45. 卢孟柱,Alfred E.Szmidt,松属线粒体基因序列变异研究,林业科学,1999, 35(4)
    46. 卢存福,简令成,匡廷云,高山植物的抗寒抗冻特性,植物学通报,1998,3
    47. 刘春林,官春云,植物RAPD标记的可靠性研究,生物技术通报,1999(2)
    48. 刘 峰、陈伟列、贺金生,神农架锐齿槲栎种群结构与更新的研究,植物生态学报,2000,24(4)396-401
    49. 刘公社,赵泓,刘杰,曹鸣庆,分子标记技术及其在芸苔属植物研究中的应用,植物学通报,1998.2
    50. 刘世荣,蒋有绪,史作民,中国暖温带森林生物多样性研究,中国科学技术出版社,1998,1-20
    51. 马常耕 落叶松研究简述,中国农业大学出版社,北京,1-8
    52. 麦克尼利J.A. 0,K.R. 米勒,W.V. 瑞德,保护世界的生物多样性,北京:中国环境科学出版社,19919-30
    53. 毛 锋,程承旗,孙大路等,地理信息系统建库技术及其应用,北京:科学技术出版社,1999,32-46
    54. 梅里尔DJ著,黄瑞复等译,生态遗传学,北京:科学出版社1991
    55. 庞广昌,王琳,王宏,王军厚,周士威,胡杨群体遗传结构及其与自然环境关系的研究,西北植物学报,1992, 12 (4): 295~302
    56. 皮洛著E C,石绍业,陈华豪等译,生态学数据的解释,长春:东北林业大学出版社,1986,15-85,226-233
    57. 祁承强,肖育檀,湖南省八面山银杉林的群落学分析,植物研究,1988,8:169~182
    58. 齐矗华,陕西地区秦岭山地第四纪古冰川作用遗迹的初步研究,陕西地理学会年会论文,1963,
    59. 曲仲湘,吴玉树,王焕校等,植物生态学,北京:高等教育出版社,1984,42-66
    60. 邱 芳,伏建民,金德敏等,遗传多样性的分子检测,生物多样性,1998,6(2):143~150
    61. 邱明光,秦岭太白山落叶松林的类型及组成初报,陕西林业科学技术资料汇编,1964,第四集
    62. 裘树平,刘仲苓,中国保护植物,上海,上海科学出版社,1995,49-57
    63. 任毅等, 秦岭大熊猫栖息地植物:佛坪自然保护区的植被, 西安:陕西科技出版社,1998, 346~415
    64. 尚 华,崔金钟,李承森,松科早期球果研究的历史与现状,植物学通报,1999, 16(1)
    65. 陕西省计划委员会,陕西省测绘局,陕西省资源地图集,西安:西安地图出版社,9-11,30-39
    66. 石福臣、聂江城、赵勃等,中国东北落叶松植物分类学特征的分析I—球果形态的地理变异,植物研究,1998,18(2)173-176
    67. 石福臣、聂江城、王志西,中国东北落叶松植物分类学特征的分析II—种鳞及针叶的地理变异,植物研究,1998,18(4)468-471
    68. 石福臣、木佐贯博光、铃木和夫,中国东北落叶松属植物亲缘关系的研究,植物研究,1998,18(1)55-62
    69. 施季森,叶志宏,杉木遗传多态性与多基因位点遗传结构,南京林业大学学报,1993,17(3)
    70. 舒群芳,赵路,李文彬,张利明,孙勇如,植物蛋白电泳分析的方法学研究及技术改进,植物学通报,1998,15(6)
    71. 宋延龄,杨亲二,黄永青,物种多样性研究与保护,浙江科学技术出版社,1998,48-76
    72. 万海清,梁明山,许介眉,分子生物学手段在植物系统与进化研究中的应用,植物学通报,1998,4(4)
    73. 王伯荪,植物群落学,北京:高等教育出版社,1988,161-180
    74. 王崇云,植物的交配系统与濒危植物的保护繁育策略,生物多样性,1998,6(4):298~303
    75. 王伏雄、钱南芬、张玉龙等,中国植物花粉形态(第二版)科学出版社,1997,20-25
    76. 王伏雄,银杉生物学。北京:科学出版社,1990
    77. 王 刚、徐阿生、蔡星星等,太白红杉和西藏红杉的核型分析,复旦学报(自然科学版),1998,37(4)481~484
    78. 王洪新,胡志昂,钟敏等,毛乌素沙地锦鸡儿)Caragana)种群形态变异,生态学报,1994,14(4):366~371
    79. 王洪新,胡志昂,钟敏等,毛乌素沙地锦鸡儿种群种子蛋白多样性及其生物学意义,生态学报,1994,14(4):372~381
    80. 王洪新,胡志昂,钟敏等, 盐渍条件下野大豆群体的遗传分化和生理适应:同工酶和随机扩增多态DNA研究。植物学报,1997,39:29~34
    81. 王洪新,胡志昂,植物的繁育系统、遗传结构和遗传多样性保护,生物多样性,1996,4(2)92-98
    82. 王梅峒,中国亚热带常缘阔叶林生活型的研究,生态学杂志,1987,6(2):21-23
    83. 王 文,分子系统学在生物保护中的意义,生物多样性,1998, 6 (2): 138~142
    84. 汪小全,韩英,邓峥嵘,洪德元,松科系统发育的分子生物学证据,植物分类学报,1997, 35 (2): 97~ 106
    85. 汪小全,邹喻苹,张大明,张志宪,洪德元,RAPD应用于遗传多样性和系统学研究中的问题,植物学报,1996,38(12):954~962
    86. 汪小全,邹喻苹,张大明,洪德元,银杉遗传多样性的RAPD分析, 中国科学(C辑),1996,26(5): 436~441
    87. 王孝安,田军善,太白山针叶林的Fuzzy分类研究,西北植物学报,1997,17(1):103~108
    88. 王 战,张颂云,中国落叶松林,中国林业出版社,1992,1-44
    89. W. 沙菲尔,普通植物地理学原理,傅子祯译,高等教育出版社,北京,1958,179-180
    90. 吴承祯、洪伟、谢金寿,珍稀濒危植物长苞铁杉种群生命表分析,应用生态学报,2000,11(3):333-336
    91. 吴敏生,戴景瑞,扩增片段长度多态性(AFLP)—一种新的分子标记技术,植物学通报,1998,4(4)
    92. 吴征镒,论中国植物区系问题,云南植物研究,1979,2
    93. 吴征镒,中国种子植物属的分布区类型,云南植物研究,1991,增刊IV
    94. 吴征镒,中国植被,北京:科学出版社,1980,176~179
    95. 吴中伦,中国松属的分类与分布,植物分类学报,1956,5(3):131-163
    96. 夏 铭,栾非时,李景鹏,RAPD影响因素的研究及实验条件的优化进,植物研究,1999, 19(2):195~199
    97. 谢宗强,陈伟烈,中国特有植物银杉的濒危原因及保护对策,植物生态学报,1999,23(1):1~7
    98. 谢宗强,陈伟烈,中国特有植物银杉林的现状和未来,生物多样性,1994, 2 (1): 11~ 15
    99. 谢宗强, 中国特有植物银杉及其研究,生物多样性,1995,3:99~103
    100. 谢宗强,陈伟烈,江明喜等,八面山银杉林种群的初步研究,植物学报,1995,37:58~65
    101. 谢宗强,陈伟烈,濒危植物银杉的群落特征及其演替趋势,植物生态学报,1999,23(1):48~55
    102. 解新明,RAPD技术在系统与进化植物学中的应用,生物学通报,2000,35(4)
    103. 徐炳声,从微观进化的观点纵览宏观进化,云南植物研究,1991,13(1):101~112
    104. 徐 仁,中国新生代植物群,中国植物化石第三册新生代植物,科学出版社,北京,1978,186-205
    105. 闫桂琴、毕润成,山西霍山森林群落物种多样性和生态优势度,西南师大学报,1993,18(2):173-177
    106. 尹佟明,黄敏仁,王明庥,朱立煌,翟文学,利用RAPD标记和单株树大配子体构建马尾松的分子标记连锁图谱,植物学报,1997,39(7):607~612
    107. 应俊生,中国裸子植物分布区的研究(1)―松科植物的地理分布,植物分类学报,1989,27(1):27~38
    108. 喻诚鸿,裸子植物次生木质部得进化趋势,植物分类学报,1981,19(2):179-185
    109. 岳 明,周虹霞, 太白山北坡落叶阔叶林物种多样性特征, 云南植物研究,1997,19(2):171-176
    110. 恽 锐,钟敏,王洪新,等。北京东灵山辽东栎种群DNA多样性的研究。植物学报,1998,40:169~175
    111. 张保升,太白山冰川地形,中国第四纪研究,1958,1(2)
    112. 张大勇,姜新华,遗传多样性与濒危植物保护生物学研究进展,生物多样性,1999,7(1):31~37
    113. 张金屯,植被数量生态学方法,北京:中国科学技术出版社,1995,26-41
    114. 张树义,李明,分子生物学技术在动物行为生态学中德应用,动物学报,1998,44(3):365~371
    115. 张新时, 毛乌素沙地的生态背景及其草地建设的原则与优化模式。植物生态学报,1994,18(1):1~16
    116. 张仰渠,陕西森林 北京:中国林业出版社,1990,153-156
    117. 张英培,分子分类德若干问题,动物学研究,1994,15(1):1~10
    118. 赵桂仿,Francois Felber , Philippe Kuepfer,应用RAPD技术研究阿尔卑斯山黄花茅居群内的遗传分化,植物分类学报,2000,38(1):64~ 70
    119. 郑万钧、傅立国等,中国植物志,科学出版社,1978,第七卷,168-179
    120. 郑万钧、傅立国等,中国树木志,第一卷,中国林业出版社,1983,237-253
    121. 郑万钧、傅立国、诚静容,中国裸子植物,植物分类学报,1975,13(4)56-67
    122. 中国科学院西北植物研究所,秦岭植物志,第一卷,北京:科学出版社,1976
    123. 中国珍稀濒危植物名录,植物杂志,2000,1:1-3
    124. 中国科学院生物多样性委员会,生物多样性研究的原理与方法,中国科学技术出版社,1994,117-141
    125. 仲 新,谢海生, 毛乌素沙地景观生态类型与灌丛生物多样性初步研究。生态学报,194,14(4):345~354
    126. 钟章成,植物生态学研究进展,重庆:西南师范大学出版社,1997,3-27
    127. 周立伟,吴乃虎,分子生物学技术在濒危植物遗传多样性研究中的应用,生物工程进展,1995, 15(4): 22~25
    128. 周世良,张方,王中仁,洪德元,杭州石荠苎和石香薷的遗传多样性研究,遗传学报,1998, 25 (2): 173~180
    129. 周 崟,中国落叶松属木材解剖性质及其归类的初步研究,林业科学,1962,2:97-116
    130. 周 崟 ,姜笑梅,木材构造特征在裸子植物系统中得意义,植物分类学报,1992,30(5):405-414
    131. 朱显谟,陕西太白山岩生植物和原始成土过程,土壤学报,1963,11(1)
    132. 朱志诚,秦岭太白山落叶松—粗叶泥炭薛林的基本特征及发展趋向,陕西林业科学,1979,6
    133. 朱志诚,秦岭太白山高山区冰蚀原生裸地植被演替的初步探讨,科学通报,1979, 24(22): 1041-1043.
    134. 朱志诚, 秦岭太白山顶植被的起源和发展. 西北大学学报, 1979, (1): 156-169.
    135. 朱志诚, 秦岭植被的变迁. 西北大学学报 (自然科学版),1979b,(2):76~85
    136. 朱志诚, 秦岭落叶松林的主要类型及其演变的初步分析. 西北大学学报(自然科学版),1980,(4):57~64
    137. 邹喻萍,汪小全,雷一丁,几种濒危植物及其近缘种类群总-DNA 的提取和鉴定,植物学报,1994,36:528~536
    138. Allendorf F W, Knudsent K L, Blak G M. Frequencies of null alleles at enzyme loci in natural population of ponderosa and redpine .Genetics ,1982.100:497~504
    139. Allard R W, Kahler A L, Clegg M T. Isozymes in plant population genetics. In: Markert C L ed. Isozymes.Ⅳ Genetics and Evolution. New York: Academic Press. 1975. 261~272
    140. Arcade A., Anselin F., P. Fampant, M.C. Lesage. L.E. Pa?ques. D. Prat, Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch, 1999, Theor Appl Genet (2000) 100:299~307
    141. Bachmann K. Tansley review no. 63 Molecular markers in plant ecology. New Phytol, 1994, 126: 403~418
    142. Burke T, Rainy W E and White T J. Molecular variation and ecological problems in Berry RJ et al(ed.)Genes in Ecology, Oxford: Blackwell Scientific Publications,1992.229~254
    143. Bucci G and Menozzi P. Segregtion analysis of random amplified polymorphic DNA (RAPD) markers in Picea abies Karst. Molecular Ecology, 1993, 2: 227~232
    144. Boyca M S., Population viability analysis. Ann. Rev. Ecol. Syst., 1992, 23:481-506
    145. Begon M, Mortimer M. Population ecology unified study of animals and plants. Oxford London: Blackwell Scientific Publication. 1981. 10-28
    146. Beismann H, Barker J H, Karp A et al. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol Ecol, 1997. 6:989~993
    147. Brown A H D, Moran G F. Isozymes and the genetic resources of forest trees. In: Conkle MT ed. Proc. of the Symposium on Isozyme of North American Forest Tress and Insects. Berkeley, California; USDA Forest Service General Technical Report PSW, 1981.1~10
    148. Brown A H D, Clegg M T, Kahler A L et al. Plant population genetics, Breeding and Genetic Resource. Sunderland. Mass: Sinauer, 1990, 43~63
    149. Cano R J, Poinar H N, Pieniazek N J et al. 1993. Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Natrue,363:536~538
    150. Chen X L, S H, Lee Y H et al. 1998. The study of orchid (aranda) hybrid by AFLP. Eighteenth International Congress of Gentetics. Beijing: Sciemce Press.
    151. Clegg M T, Brown A D, and Whitfield P R. Chloroplast DNA diversity in wild and cultivated barley: Implications for genetic conservation. Genet Res Camb, 1984.43:339~343
    152. Crawford F J. Phylogenetic and systematic inferences from electrophoretic studies. In: Tandksley S D, and Orton T J eds. Isozymes in Plant Genetics and Breeding, Part A, Amsterdam: Elsevier Science Publishers B V. 1983. 257~287
    153. Dow B D, Ashley M V. Microsatellit analysis of seed dispersal and parentage of samplings in bur Quercus macrocarpa. Mol Ecol, 1996. 5:615~627
    154. Dawson K,Chalmers K J and Waugh R et al. Detection and analysis of genetic of genetic variation in Hordeum spontaneum population from lsrael using RAPD markers. molecular Ecology, 1993, 2:151~159
    155. David S. Gernandt, Aaron Liston, Internal transcribed spacer region evolution in Larix and Pseudotsuga(Pinaceae), American Journal of Botany, 1999, 86: 711
    156. Doyle JJ &Doyle JL.lsolation of plant DNArfom fresh tissue Focus ,1990,12(1):13~15
    157. E L-Kassaby Y A. Genetic Variation within and among conifer populations:Review and evaluation of methods. In: Fineschi S, Maluoti M E, Cannata F et al eds. Biochermical Markers in the population Genetics of Forest Tress.The Netherlands: Academic Publishing, 1991.61~76
    158. E.L-Kassaby Y A,Szidlai O. Genetic variation of allozyme and quantitative traits in a selected Douglas-fir population. Forest Ecol Management, 1982.4:115~126
    159. Gillies A C M, Cornelius J P, Newton A C et al.1997. Genetic variation in Costa Rican populations of the tropical timber species Cedrela odorata L. Assessed using RAPDs. Mol Ecol. 6:1133~1145
    160. Gilmartin A L. Variation within population and classification. Tsxon, 1974, 23:523~536
    161. Hacker M, Bergmann F, The proportion of hybrids in seed from a seed orchard composed of two larch species (L europaea and L loptolepis), Ann Sci For, 1991, 48:631~640
    162. Hadrys H, Blick M and Schierwater B. Application of random amplified polymorphic DNA (RAPD) in molecular ecology, Molecular Ecology, 1992,1:55~63
    163. Hamrick J L, Linhart Y B, Mitton J B. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annu Rev Ecol Syst, 1979. 10: 173~200
    164. Hamrick J L, Murawski D A. Levels of allozyme diversity in populations of uncommon neotropical tree species. J Trop Ecol, 1991. 7:395~399
    165. Hamrick J L. Gene flow and distribution of genetic variation in plant populations. New York: Academis Press. 1987. 53~67
    166. Hamrick J L, Godt M J W. Allozyme diversity in plant species. IN: Brown A H K, Clegg M T, Kahler A C et al eds Plant Population Genetics, Breeding, and Genetic Resources, Sunderland Mass: Sinauer, 1990. 43~63
    167. Harper J L. Population biology of plants. New York: Academic Press. 1977.
    168. Hizume M., Karyomorphological studies in the family Pinaceae. Mem. Fas. Edduc. Ehime. Univ., Nat Sci. 1988, 8:1-108
    169. Hoey M T, Parks C R. Intercontinentl patterns of genetic divergence in Asian, North American and Turkish species of Liquidambar (Hamamelidaceae). Amer J Bot, 1991. 98: 938~947
    170. Isagi Y, Suhandono S. PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak specise.Mol Ecol, 1997. 6:897~901
    171. J Maier, Genetic variation in European larch, Ann Sci For, 1992, 49, 39~47
    172. J. B. Mitton, Y. B. Linhart, J. L. Hamrick, J. S. Beckman. Observations on the Genetic Structure and Mating System of Ponderosa Pine in the Colorado Front Range, Theor. Appl. Genet, 1977, 51, 5~13
    173. Johnson J B. Stand structures and vegetation dynamics of a subalpine treed fen in Rocky Mountain National Park, Colorado. Veget. Science, 1997. 8:337-342.
    174. Knowles P & Grant M C. Age and size structure analysis of Engelmann spruce, population pine, Loadgepole pine, and Limber pine in cororado. Ecology, 1983. 64:1-9
    175. Kangfu Yu, K. Peter Pauls, The use of RAPD analysis to tag genes and determine relatedness in heterogeneous plant populations using tetraploid alfalfa as an example
    176. Kisanuki H.,Kurahashi A., Kato H.,Terauchi R., Kawano S., Ide Y., and Watanabe S. Interspecific relationship of genus Larix inferred from the RFLPs of chloroplast DNA. Jpn. For. Soc. 77:83-85
    177. Keil M and Griffin AP.Use of random amplified polymorphic DNA(RAPD)markers in the discrimination and verfication of genotypes in Eucalyptus. Ttheor. Appl. Genet. 1994, 89: 442~450
    178. Kongkiatngam P, Waterway M J, Fortin M G, et al. Genetic variation within and between two cultivars of red clover (Trifolium pratense L. ): Comparisons of morphology , isozyme, and RAPD markers. Euphytica , 1995, 84:237~246
    179. Lutz H J. The vegetation of hearts content, a virgin forest in Northwest Pensylvania, Ecology. 1930. XI:1-29
    180. Lerceteau E, Szmidt A E. QTL mapping wood production and wood quality traits in Pinus sylvestris L.Using AFLP markers. In:Eighteenth International Congress of Genetics, Beijing Aced Press. 1998.176~240
    181. Li W H, Luo C C, Wu C I. Evolution of DNA sequences. In: Molecular Evolutionary Genetics. New York: Academic Press. 1985. 1~92
    182. Loveless M D, Hamrick J L. Ecological determinants of genetic structure in plant populations. Annu Rear Ecol Syst, 1984.15:65~95
    183. Lynch M, Milligan B G. Analysis of population genetic structure with RAPD markers. Mol Ecol, 1994.3:91~99
    184. Lewontin R C. The apportionment of human diversity. In Dobzhansky Evolutionary Biology. Appleton Century Crofts, New York, 1972, 6:381~398
    185. Linhart Y A, Mitton J B, Sturgeon K B et al. Genetic variation I: Space and time in a population of ponderosa pine. Heredity, 1981, 46:407~426
    186. Ledig F T, Conkle M T. Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex Carr.). Evolution, 1983. 37:79~86
    187. Mashburn S J, Sharitz R R, Smith M H. Gemetic variation among Typha population of the southeaster United States. Evolution, 1978.32: 681~685
    188. Merrell D. Ecological Genetics. (2nd ed).Cambridge: Mass Press. 1981.
    189. Michael Gottfried, Harald Paull, Karl Reiter, Georg Grabherr, A fine-scaked predictive model for changes in species distribution patterns of high mountain plants induced by climate warming, Diversity and Distributions, 1999, 5: 241~251
    190. Miller J C, Ranksley S D. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet, 1990. 80:437~448
    191. Mosseler A, Egger K N, Hughes G A. Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers. Can J For Res, 1992, 22:1332~1337
    192. Muller-Starck G., Baradat, Ph. Bergmann F., Genetic variation within European tree species, New Forests 1992, 6:23~47
    193. Murphy R W. The phylogenetis analysis of allozyme data: invalidity of coding alleles by presence/absence and recommended procedures. Birchen Syst Ecol, 1993. 21:25~38
    194. Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press. 1987.
    195. Nevo E, Beiles A, Ben-Shlomi R. The evolutionary significance of genetic diversity ecological, demographic and live history correlates. In Mani GS ed. Evolutionary Dynamics of Genetic Diversity Lecture Notes in Biomathematics. 1984. 53:13~213
    196. Nienhuis J, Helentjaris T,Slocum M et al. Restricton fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci, 1987.27:797~803
    197. Nei M. Analysis of gene diversity in subdivided population. Proc. Natl. Acad. Sci. USA, 1973, 70:3321~3323
    198. Nei M. Molecular population genetics and evolution .North Holland Publishing Company, 1975
    199. Nieumann G.J., Some aspects of chemistry of Pinaceae needles. Acta Bot. Neerl., 1979, 28:78-88
    200. Nieumann G.J. et H. H. Van Genderen, Chemical relationships between Pinaceae. Biochem. Syst. Ecol., 1980. 8:237-240
    201. Parker P G, Snow A A, Schug M D et al. What molecules can tell us about populations: choosing and using a molecular marker. Ecol, 1998. 79(2):361~382
    202. Powell J R. Molecular techniques in population genetics: A brief history. In: Schierwater B, Streit B, Wagner GP and DeSalle R eds. Mol Ecol and Evolution: Applications. Berlin: Birharser Verlag Basel. 1994.131~156
    203. Parker A J & Peet R K. Size and age structure of conifer forest. Ecology, 65:1685-1689
    204. Prager E.M.et al, Rate of evolution in conifers (Pinaceae). Evolution 1984. 30: 637-649
    205. Qian T., Ennos R. A., and Helgason T. Genetic relationships among larch species based on analysis of restriction fragment variation for chloroplast DNA. Can. J.For.Res. 1995, 25: 1197-1202
    206. Russell J R, Fuller J D, Macaulay M et al. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs ang RAPSs. Theor Appl Genet, 1997.93:714~722
    207. Rebertus A J & Veblen T T. Strcture and tree-fall gap dynamics of old-growth Nothofagus forests in Tierra del Fuego, Argentina. Journal of Vegetation Science, 4:641-654
    208. S. M. Haig, J. M. Rhymer, D. G. Heckel, Population differentiation in randomly amplified polymorphic DNA of red-cockaded woodpeckers Picoides borealis , Mokecular Ecology, 1994, 3, 581~ 595
    209. Schaal B A, O'Kane S L, Rogstad S H. DNA variation in plant populatons. Tree, 1991. 6:329~333
    210. Schierenbeck K A, Skupshi M, Leiberman D et al. Population structure and genetic diversity in four tropical tree species from Costa Rica. Mol. Ecol. 1997. 6:137~144
    211. Soltis P S, Soltis D E, Wolf, P G. Allozynic divergence in North American Polystichum (Dryopteridaceae). Syst Bot, 1990. 15(2):205~215
    212. Srutek M., Leps J., Variation in Structure of Larix olgensis Stands along the Altitudinal Gradient on Paektu-san, Changbai-shan, North Korea, Arctic and Research, 1994, 26 (2): 166~173
    213. Szmid A E, Wang X R, Lu MZ. Empirical assessment of allozyme and RAPD variation in Pinus sylvestris (L.) using haploid tissue analysis. YHeredity, 1996. 76:412~420
    214. Sax K.and H.J. Sax, Chromosome number and morphology in the conifers. Journ. Arnold Arb. 14:356-375
    215. Simak, M., Karyotype analysis of Larix griffithiana. Hereditas 56:137-141
    216. Stebbins, G.L., Variation and Evolution in Plants. Columbia University Press, New York. 1957, 442-475
    217. Soltis D E, Haufler C H, Darrow D C et al. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Amer Fern J, 1983. 73(1):9~29
    218. V. Loeschcke, J. Tomiuk, S. K. Jain, Introductory remarks: Genetics and conservation biology, Conservation Genetics, 1994
    219. Vos P, Hogers R, Bleeker M, Reijans M et al. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res. 1995. 23:4407~4414
    220. Vid a G., Global issues of genetic diversity, Conservation Genetics, 1994
    221. Wachira F N, Waugh R, Jckett CA, Powell W. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 1995, 38:201~210
    222. Wang B S, Li M G, Wang Z F, Zhang J L. AFLP analysis of Cryptocarya concinna population in lower subtropical forests, China. XVI International Botanical Congress Abstract, St. Louis, New York: Academic Press. 1999, 1389
    223. Weining S, Langridge P. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet, 1991, 82:209~216
    224. Wheeler N C, Guries R P. A quantitative measure of introgression in lodgepole and jack pines. Can J Bot, 1987. 65:1876~1885
    225. Williams J G K, Kubelik A R, Livak K J, Rafakski J L, Tingey S V. DNA polymorphism amplified by arbitrary primers are as genetic markers. Nucl Acids Res, 1990. 18:6531~6535
    226. Williams J G K, Hanafey M K and Rafalski J A, et al. Genetic analysis using random amplified polymorphic DNA markers. Methods in Enzymoloht, 1993, 138:704~740
    227. W. M. Cheliar, J. Wang, J. A. Pitel, Population structure and gene diversity in tamarack, Larix laricina (Du-Roi) K. Koch
    228. Wendel J F, Weeden N F. Visualization and interpretaion of plant isozymes. In: Soltis D E, Soltis P S eds., Isozymes in Plant Biology. Washington DC: Dioscorides Press, 1989,5~45
    229. Xiao-Ru Wang, Yoshihiko Tsumura, Hiroshi Yoshimaru, Kazutoshi Nagasaka, Alfred E. Szmidt, Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, MATK, RPL20-RPS18 spacer, and TRNV intron sequences, American Journal of Botany, 1999, 86: 1742~1753
    230. Yeh F C and Arnott J T. Electrophoretic and morphological differentiation of Picea sitchensis, Picea glauca and their hybrids. Can J For Res, 1986, 16:791~798
    231. Zabeau M, Vos P. Selective restriction fragment amplifivation:a general method for DNA fingerprinting. European Patent, 1993, 0535858Al, 03~31
    232. Zhao Gui-Fang, Francois Felber , Philippe Kuepfer, Gene frequency distributions of Anthoxanthum alpinum along the altitudinal gradients in Swiss Alps, Chinese Biodiversity, 2000, 8 (1): 95~102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700