用户名: 密码: 验证码:
mtlD/gutD双价耐盐基因转化杨树、猕猴桃的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国“三北”及沿海地区有大量盐碱地。随着工业迅速发展、人口猛增和可耕地面积的减少,培育抗盐植物材料,开发利用盐碱地显得日益重要。
     杨树为“三北”地区主要人工造林树种,栽培数量很大;猕猴桃为一新兴果树,经济价值较高。提高这2个树种抗盐性,扩大其栽培区域是开发利用盐碱地的有效途径,具有重要的生产意义。
     本实验计划通过将mtlD/gutD双价耐盐基因导入杨树、猕猴桃,来提高这2个树种的抗盐能力。转化方法以叶盘法为主,辅助使用了基因枪法。所用植物双价双元表达载体为pBIMG,其上含有双价抗盐基因mtlD/gutD、双重增强的35S启动子和TMV“Ω”片段的翻译增强子及NPT-Ⅱ卡那霉素抗性标记基因,农杆菌菌株为LBA4404。杨树选用“三北”地区栽植数量较多的美洲黑杨×青杨杂种,猕猴桃选用经济价值较高的秦美猕猴桃。主要研究内容如下。
     1利用正交等实验设计开展了杨树、猕猴桃叶片外植体高效再生系统建立研究。通过系统实验,筛选出杨树叶片外植体不定芽诱导最佳配方为MS+6-BA0.5mg/L+NAA 0.01mg/L,不定芽生根诱导最适配方为1/2MS+NAA 0.01mg/L;猕猴桃叶片外植体不定芽诱导最佳配方为:MS+6-BA 6mg/L+NAA 0.1mg/L,不定芽生根诱导最适配方为:1/2MS+NAA 0.01mg/L+IBA 0.5mg/L+GA 1mg/L。
     2通过卡那霉素敏感实验,确定了杨树叶片不定芽诱导卡那霉素临界敏感浓度为50mg/L,不定芽生根诱导卡那霉素临界敏感浓度为60mg/L;秦美猕猴桃叶片不定芽诱导卡那霉素临界敏感浓度为50mg/L,不定芽生根诱导卡那霉素临界敏感浓度为40mg/L。
     3利用叶盘法开展了mtlD/gutD双价耐盐基因转化杨树的研究。经叶盘不定芽诱导及不定芽生根诱导阶段卡那霉素连续筛选,获得了38株生根卡那霉素抗性植株。抗性植株经PCR检测,28株呈阳性。对其中7株阳性植株进行southern及Western杂交,有4株二者均呈阳性,确证双价耐盐基因成功整合到杨树基因组中并得到表达;利用叶盘法和基因枪相结合的办法,开展了mtlD/gutD双价耐盐基因转化猕猴桃的研究。获得卡那霉素生根抗性植株20株,其中6株经PCR检测呈阳性,初步证明双价耐盐基因转化获得成功。
     4开展了转基因植株耐盐性测定。结果表明,杨树未转基因植株NaCl最高耐受浓度为0.2%,4株转基因植株抗NaCl能力最低为0.4%,最高达0.6%,比对照有较大幅度提高;猕猴桃未转基因植株NaCl最高耐受浓度为0.1%,6株PCR阳性植株中,2株抗NaCl能力与对照一致(为0.1%),推测为假阳性,另4株NaCl耐受浓度为0.2~0.4%,比对照有不同程度提高。
    
    2 milD/gutD双价耐盐基因转化杨树、猕猴桃的研究
     本实验在建立了杨树、猕猴桃叶片外植体高效再生系统及确定了卡那霉素耐受浓
    度的基础上,利用叶盘法、叶盘法和基因枪相结合的办法分别开展了milD哈utD双价
    耐盐基因转化杨树和猕猴桃的研究。经PCR、Southern及Western杂交检测,确证
    milD哈utD双价耐盐基因成功整合到4株杨树基因组中并得到表达。同时,PCR检测
    也初步证明部分猕猴桃植株转化获得成功。耐盐测定表明转化植株耐盐性比对照均有
    不同程度提高。这在杨树、猕猴桃耐盐基因工程研究中尚属首次。
A large area of the saline-alkali land are mainly sited the northwest, north and northeast parts of China and the east coast region. With development of industry, growth of population and decreasing of arable land, selecting and breading plant material for salt resistance and rationally using saline-alkali land are very significant.
    Poplar is the major species in the northwest, north and northeast parts of China and the number of the species in the area is big. Kiwifruit is a new kind of fruit tree with high economic value. Improving salt resistance of the two species and enlarging their planting region are good ways for using saline-alkali land rationally and have an important meaning in practice.
    In this experiment, mtlD/gutD divalent genes were transformed into poplar and kiwifruit trees. Leaf-disc method and microprojectile bombardment were adopted for gene transformation. Binary plant expression vecter is pBIMG which contains mtlD/gutD divalent genes, double strength 35S promoter, translation enhancer from TMV " & "fragment and NPT- II kanamycin-resistant marker gene. The strain of Agrobacterium tumefaciens is LBA4404. Populus deltoilds X P. cathayana and Qingmei kiwifruit variety, were used in the experiment as plant materials. The main research works are as follows.
    1 ? Leaf explant regeneration systems of the poplar and kiwifruit were established by orthogonal design, the experiment results indicated that the optimum medium compositions of poplar were MS+6-BA 0.5 mg/L+NAA O.Olmg/L for inducing shoot from leaf explant, and 1/2 MS+NAA O.Olmg/L for inducing root from shoot. The optimum medium compositions of kiwifruit were MS+6-BA6mg/L+NAA 0.01 mg/L for inducing shoot, and 1/2MS+NAA O.Olmg/1+IBA 0.5mg/L +GA Img/L for inducing roots.
    2> kanamycin sensitive experiment showed that the critical kanamycin sensitive concentrations for inducing shoots and roots of the poplar were 50 mg/L and 60mg/L.The critical kanamycin sensitive concentrations for inducing shoots and roots of the Qingmei kiwifruit were 50 mg/L and 40 mg/L.
    3 > On the basis of experiments above, a study on transforming mtlD/gutD divalent salt resistance genes into poplar by leaf disc method was carried out. Through kanamycin continuously screening in the shoots and roots induction stage, 38 kanamycin-resistant rooted poplar shoots were obtained. PCR analysis showed that 28 of these kanamycin-resistant rooted plants were positive. 7of these 28 PCR positive plants were
    
    
    
    taken out for Southern blotting and Western blotting , the result indicated that 4 of the 7 plantlets were positive for both. It means that mtlD/gutD divalent genes were successfully integrated into the genome of these 4 plantlets, and the proteins expressed by mtlD/gutD divalent genes were synthesized. Combining leaf disc method and microprojectile bombardment, a study on transforming mtlD/gutD divalent salt tolerance genes into kiwifruit was conducted. Through successive selection in the period of shoot and root induction under high lever kanamycin pressure, 20 kanamycin-resistant rooted plants was obtained, out of which, 6 was positive through PCR analysis.
    4. Results from salt tolerance tests indicated that the NaCl tolerance concentration of 4 transgenic poplar plantlets can reach to 0.4~0.6% while the highest NaCl tolerance concentration for normal poplar (control) was 0.2%. The highest NaCl tolerance concentration for normal kiwifruit (control) was 0.1%. In 6 PCR positive kiwifruit plantlets, the salt resistant ability of 2 plantlets was the same as that of control, but the sodium chloride tolerance concentrations of another 4 kiwifruit plantlets can reach to 0.2%-0.4%, which was higher than that of control plantlets.
    On the basis of establishment of leaf explant regeneration system for poplar and kiwifruit species and the kanamycin tolerance concentration , studies on transforming mtlD/gutD divalent salt tolerance genes into poplar and kiwifruit species by leaf-dish method ,and combination of leaf disc and microprojectile bombardment method were developed. Re
引文
[1]荆家海,高俊凤,王姝清,等.植物生理学[M].西安:陕西科学技术出版社,1994,317~318.
    [2]王遵亲等著中国盐渍土.北京:科学出版社,1993.
    [3]贾大林.盐碱土改良与节水农业.北京:中国农业科技出版社.1994:185~192.
    [4]王宝山.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,1997,1425~30.
    [5]Drew M C, Lauchli A.J.Exp. Bot,1987, 38: 409~418.
    [6]Bohners H J,Nelson D, Jensen R G.Adaptations to environmental stress.Plant Cell,1995,7:1099~1111.
    [7]Bohners H J,Jensen R G. Strategies for engineering water-stress tolerance in plants.Trends biotechnology,1996,14:89~97.
    [8]Yamada Y A.family of transgenic encoding water channel proteins: tissue-specific expression in the common ice plant.Plant Cell,1995,7:
    [9]Allen R D. Dissection of oxidative stress tolerance using transgenic plants.Plant Physiology,1995,107:1049~1054.
    [10]Cushman J C, Mlchalowskl C B, Bohnert H J. Developmental control of Crassulacean acid metabolism inducibility by salt stress in the common ice plant.Plant Physiol.,1990,94:1137~1142.
    [11]McCue K F, Hanson A D.Drought and salt tolerance towards understanding and application.TIBTECH,1990, 8: 358~362.
    [12]Godwin I, et al.Plant Cell Rep,1991, 9:671~675.
    [13]Voisey C R, et al.Plant Cell Rep,1994, 13: 309~314.
    [14]Atkinson R G, Gardner R C.Plant Cell Rep,1993,12: 347~351.
    [15]Tarczynski M C,Jensen R G, Bohnert H J. Stress protection in transgenic tobacco producing a putative osomoprotectant mannitol.Science,1993, 259: 508~509.
    [16]刘俊君,彭学贤,王海云,等,转基因烟草的甘露醇合成和耐盐性[J].生物工程学报,1996,12(2):206~210.
    [17]Liu J J,Huang S X, Peng X X,et al.Abstracts 4th International Congress of Plant Molecular Biology.Amsterdam, June 1994,19~24.
    [18]刘俊君,黄绍兴,彭学贤,等.高度耐盐双价转基因烟草的研究[J].生物工程学报,1995,11(4):381~384.
    [19]Thomas J C.Salt stress perception and plant growth regulators in the halophyte Mesembryanthemum crystallinum.Plant Physiol,1993,103:1299~1304.
    
    
    [20] 刘岩.玉米耐盐性基因工程研究[D].中国农业大学,1997.
    [21] endrich R, Bregnante M, Dreyer I. The voltage-dependent potassium-uptake channel of corn coleoptiles has permenation properties different from other K+ channels . Planta, 1996, 197:193-199.
    [22] Elizabeth A. Improved Performance of Transgenic Fructan-Accumulation Tobacco under Drought Stress. Plant Physiol, 1995, 107 : 125-130.
    [23] Sheikholeslam S N, Weeks D P. Plant Mol Biol, 1987, 8 : 291-298.
    [24] Serrano R. Crit Rev. plant Sic, 1994, 13 : 121-138.
    [25] Ishida M, Nakamura T, Han S R. Expression of the betaine aldehyyde dehydrogenase gene in barley in response to osmotic stress and abscises acid. Plant Mol. Biol., 1995, 27 : 307-315.
    [26] 肖岗,张耘耕,刘风华,等.山菠菜甜菜碱醛脱氢酶基因研究.科学通报,1995,40(8) :641-645.
    [27] Deping Xu, Xiaolan Duan, Bimei H, et al. Expression of a late embryo genesis abundant protein gene HVAI from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110:249-257.
    [28] Smironff N, et al. Hydroxyl-radical scavenging activity of compatible solutes. Phytochemistry, 1989,28: 1057-1060.
    [29] Jiping Liu. Praline Accumulation and Salt-stress-Induced Gene Expression in a Salt-Hypersensitive Mutant of Arabidopsis . Plant Physiol, 1997, 114 : 591-596 .
    [30] Elena D. In creased salt and drought tolerance by D-ononitol production in transgenic Nicotinag tabucum . Plant Physiology, 1 997, 115 : 1211-1219 .
    [31] 董云洲.盐诱导启动子Pv的特异性研究及Imtl和Inpsl基因生理功能的鉴定[D].中国农业 大学,1999.
    [32] Claudine T. Salinity promotes accumulation of 3-Dimethylsuefoniopropionate and its precursor s-methylmethionine in Chloroplasts. Plant Physiology 1998, 116 : 165-171 .
    [33] Palauqui J C, Vaucheret H. Field trial analysis of nitrate reductase co-suppression a comparative study of 38 combination of transgenic loci. Plant Molecular Biology, 1995, 29 : 149-159.
    [34] Bressan P A. Stable NaCl tolerance of tobacco cells is associated with enhanced accumulation of osmotin. Plant physiol, 91 : 855-865.
    [35] 余叔文.植物生理与分子生物学,1998,746.
    [36] Stoop J M H, Williamson J D. Mannitol metabolism in plants a method for coping with stress. Trends Plant Sci, 1996, 139-144.
    [37] Yankee P H, Clark M E, et al. Science, 1982, 217 : 1214-1222.
    [38] Zimmermann M H, et al. Encyclopedia of Plant Physiology, 1975, vol.1 : 480-503 .
    
    
    [39] Chong C, Taper C D. Malus tissue cultures. II. Sorbitol metabolism carbon nutrition. Car.J.Bot, 1971,51 : 519-523.
    [40] Loescher W H. Physiol Plananrum, 1987, 70 : 553-557.
    [41] Hirai M, Purification and characteristics of sorbitol-6-phosphate dehydrogenase from loquat leaves. Plant Physiol., 1981,67:221.
    [42] Yammki S, et al. Property of sorbitol-6-phosphate dehydrogenase and its connection with sorbitol accumulation in apple. Hort Sci., 1980, 49:429-432.
    [43] 周睿.高等植物中的山梨醇及其代谢.植物生理学报,1993,29:384-390.
    [44] Michael J, Novotny F, et al. Purification and properties of D-mannitol-1-phosphate dehydrogenase and D-glucitol-6-phsphate dehydrogenase from Escherichia coli. Journal of Bacteriology, 1984, 12984 : 986-990.
    [45] Rumpho ME. A Pathways for photosynthetic carbon flow to mannitol in celery leaves. Plant phydiolol, 1983, 72 : 869-873.
    [46] Shen B, et al. Roles of sugar alcohols in osmotic stress adaptation, Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiology, 1999, 121 : 45-52.
    [47] Lewis D H. New Phytol, 1967, 66 : 143-184.
    [48] Hellebust J A. Annu Rev. Plant.Physiol, 1976, 27 : 485-505.
    [49] Nascimento K H. The stereo specificity of sequential nicotinamide-adenine dinucleotide-dependent oxidorecuctases in relation to the evolution f metabolic sequences. J.Biochem, 1975, 149:553-559.
    [50] Lee C A, Jacobson G R. Use of cloned mtl genes of Escherichia coli to introduce mtl deletion mutations into the chromosome. J.Bacteriol, 1983, 153 : 685-692.
    [51] Mammoru Y, Milton H S J. The journal of Biological Chemistry, 1987, 262 (12) : 5455-5463.
    [52] Davis T. Molecular Microbiology, 1989, 2 (3) : 405-412.
    [53] anayama Y. Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physiology, 1992, 100 : 1607-1608.
    [54] 刘俊君,彭学贤,王海云等.大肠杆菌mtlD基因和gutD基因的克隆、全系列测定和高效表 达[J].生物工程学报,1995,11(2) :157-161.
    [55] 王晓蜂.甘蓝和油菜耐盐基因工程研究[D].西北农业大学,1999.
    [56] Ambros P F. EMBOJ. 1986,5990:2073-2077.
    [57] Mouras A. Mol. Gen. Genet, 1987, 207 : 204-209.
    [58] Mayerhofer R. EMBO J. 1991, 10 (3) : 697-704.
    [59] Gheysen G. Genes Dev., 1991, 5 (2) : 287-297.
    [60] Martineau B . Devel.Genet., 1994, 11:214-223 .
    
    
    [61] Matzke M A, Matzke A J M. Devel.genet, 1990, 11 : 214-223.
    [62] Potrykus I. Mol.Gen.genrt, 1991, 228 : 104.
    [63] Peerbolte R. Plant Mol.Biol.,1986, 7 :265-284.
    [64] Barton K A, Binns A N, Matzke A J M, et al. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA and transmission of T-DNA to R1 progeny. Cell, 1983,32: 1033-1043.
    [65] Morota H, Uchimiya H. Inheritance and structure of foreign DNA in progenies of transgenic tobacco obtained by direct gene transfer. Theor. Appl. Genet, 1988, 76 : 161-164.
    [66] Uchimiya H, Hirochika H, Hashimoto H, et al. Co-expression and inheritance of foreign genes in transformants obtained by direct DNA transformation of tobacco protoplasts. Mol. Gen. Genet, 1986,205: 1-8.
    [67] Ye G, Pang S, Sanford J C. Tobacco (nicotiana tobaccum) nuclear transgenic with high copy number can expression NPTII driven by the chloroplast PsbA promoter. Plant Cell Reports, 1996, 15:479-483.
    [68] Felmann K A, Marks M D. Agro bacterium-meditated transformation of germination seeds of Arabidopsis thaliana: Anon-tissue culture approach. Mol. Gen. Genet, 1987, 208 : 1-9.
    [69] Derles S C, Gardner R C. Expression and inheritance of kannamycin resistance in a large of transgenic petunias generated by Agro bacterium-mediated transformation. Plant Molecular Biology, 1988, 1 : 355-364.
    [70] Umbeck P, Swain W, Yang N. Inheritance and expression of genes for Kanamycin and Chloramphenicol resistance in transgenic cotton plants. Crops Sic, 1989, 29 : 196-201.
    [71] Christou P, Swain W F. Co-transformation frequencies of foreign genes in soybean cell culture. Thoeor Appl Genet, 1990, 79 : 337-341.
    [72] Guerche P, Jouanin L M, Tepfer D, et al. Genetic transformation of oilseed rape (Brassia napus) by the Ri T-DNA of Agro bacterium rhizogenes and analysis of inheritance of the transformed phenotype. Mol.Gen.Genet, 1987, 206 : 382-386.
    [73] Cheng M, Fry J E, pang S, et al. Expression and inheritance of foreign genes in transgenic peanut plants generated by Agrobacterium tumefaciens. Plant Physiol, 1997, 115: 971-980.
    [74] Goto F, Tooki S, Uchimiya H. Inheritance of a co-transferred foreign gene in the progeny of transgenic rice plants. Transgenic Research, 1993, 2 : 382-386.
    [75] Hiei Y, Komari T. Stable inheritance of transgenes in rice plans transformed by Agrobacterium tumefaciens. Rice Genetics Ⅲ RRI, 1995, 70.
    [76] Peng J, Wen F, Lister R L, et al. Inheritance of gus and neo genes in transgenic rice. Plant
    
    Molecular Biology, 1995, 27 : 91-104.
    [77] Fromm M E, Morrish F, Armstroong C, et al. Inheritance and expression of chimerical genes in the progeny of transgenic maize plants. Bio/technology, 1990, 8 : 833-839.
    [78] Ishida Y, Saito H, Ohta L, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacerium tumefactions. Nature Biotechnology, 1996, 14 : 745-750.
    [79] Spencer T M, O'Brien J V, Start W G, et al. Segregation of transgenes in maize. Plant Molecular Biology, 1992, 18:201-210.
    [80] Walters D A, Vetsch C S, Potts D E, et al. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Molecular Biology, 1992, 18 : 189-200.
    [81] Zhang H M, Warkentin D, Sun B, et al. Bariation in the inheritance If expression among sub-clones of unselected (uidA) and selected (bar) transgenes in maize (zea mys L). Thor. Appl. Genet, 1996, 92:752-761.
    [82] Hagio T, Hirabayashi T, Machhii H, et al. Production of fertile transgenic barley (Hordeum vulgare L.) plant using the hygromycin-resistance marker. Plant Cell Reports, 1995, 14 : 329-334.
    [83] Tomes D T, Weissinger A K, Ross M, et al. Transgenic tobacco plants and their progeny derive by micro projectile bombardment of tobacco leaves. Plant Molecular Biology, 14 : 261-268.
    [84] Bechtold N, Ellis J, Pelletier G. In Planta Agrobacteium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R.Acad. Sci Paris. Sciences de la vie/Life Sciences, 1990, 316:1194-1201.
    [85] Czemilofsky A P. DNA, 1986,5: 101-113.
    [86] Bohnert H J, Nelson D, Jensen RG. Adaptations to environmental stress. Plant Cell, 1995, 7:1099-1111.
    [87] Glenn E P, Brown J J. Salt tolerance and crop potential of Halophytes. Critical Reviews in pant Sciences, 1999, 18 (2) 227-255.
    [88] 张福锁.环境胁迫与植物育种.农业出版社,1993,330-335.
    [89] Spiker D, Thompsn W F. Nuclear matrix attachment regions and transgene expression in plant. Plant Physi, 1996, 110:15-21.
    [90] Tal M. Genetics of salt tolerance in higher plants: theoretical and practical considerations. Plant soil, 1985,89: 199-226.
    [91] Abel G H. Inheritance of the capacity of chloride inclusion and chloride exclusion by soybeans. Crop Sci, 1969, 9 : 697-698.
    [92] Morgan J M. Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol, 1984, 35:299-319.
    
    
    [93]Kavi K. Over expression of △-Pyrroline-5-Caboxylate synthetase increase praline production and Confers Osmotolerance in Transgenic Plant.Plant Physiol,1995, 107:1387~1394.
    [94]田颖川,韩一凡,李玲,等.抗虫转基因欧洲黑杨的培育[J].生物工程学报,1993,9(4):291~297.
    [95]王学骋,韩一凡,戴莲韵,等.抗虫转基因欧美杨的培育[J],林业科学,1997,33(1):69~74.
    [96]陈颖,韩一凡,李玲,等.苏云金杆菌杀虫晶体蛋白基因转化美洲黑扬的研究[J].林业科学,1995,31(2):97~103.
    [97]曹孜义,刘国民,王蒂,等.实用植物组织培养技术教程(修订本)[M].兰州:甘肃科学技术出版社,1999,111~114.
    [98]Atkinson R G, Candy C J, Gardner R C. New Zealand[J]. Crop Hort. Sci.,1990, 18:153-156.
    [99]Bart-Jan J,Richard C G.The use of transient Gus expression to develop an Agrobacterium-mediated gene transfer system for kiwifruit[J].Plant Cell Reports,1993,13:28~31.
    [100]Horsch R B, Fry T E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J].Science,1985,227:1227~1231.
    [101]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis.Nucleic Acids Research, 1991,19 (6):1349.
    [102]陈正华.木本植物组织培养及其应用[M].北京:高等教育出版社,1986,432~443.
    [103]王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998,182.
    [104]莽克强,陈受宜,李季伦,等.农业生物工程[M].北京:化学工业出版社,1998,91~92.
    [105]Bidney D. Plant Mol Biol,1992, 18:301~303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700