斜塔斜拉桥施工与运营过程中的力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜塔斜拉桥因其独特的景观效果和力学效果,在城市桥梁中得到了广泛的应用。其倾斜的索塔和较宽的桥面宽度,给结构受力计算带来了一系列问题,如宽截面主梁的计算方法、桥梁结构的非荷载效应、索力优化理论和斜塔、主梁的施工控制等等。本文以中山板芙二桥这座斜塔斜拉桥为工程背景,对斜塔斜拉桥的空间计算理论和施工、运营过程的力学行为进行分析研究。主要完成了以下的研究工作:
     (1)针对边主肋截面主梁的构造和受力特点,将两侧边主肋视为Timoshenko梁子单元,将桥面板视为板梁子单元,根据子单元间的变形协调关系,组拼成一种能够考虑剪力滞后效应的组合板梁单元。并通过UPFs的二次开发技术,在大型通用有限元软件平台上,实现了用户单元。
     (2)在组合板梁单元的基础上,研究温度效应、收缩效应和徐变效应的计算方法。先将边主肋子单元、桥面板子单元的非荷载效应等效为子单元的节点荷载,再通过转换矩阵,将各子单元的节点荷载转换到组合板梁单元上,最后用等效节点荷载进行结构分析,获得结构的温度、收缩和徐变荷载效应。
     (3)进行板芙二桥的温度场实测试验。根据实测数据,提出适合于结构复杂温度场的分区描述方法。即按主梁和索塔各组成构件的温度分布规律,分别提出各构件的温度场模式,包括一维温度场和二维温度场。根据实测数据,拟合各构件温度场模式中的待定参数,为广东地区同类截面桥梁结构温度效应分析提供温度场参考模式。
     (4)结合弯曲能量最小法和影响矩阵法两种方法对确定板芙二桥的合理成桥状态。针对板芙二桥的结构特点,采用单一的优化方法不能获得令人满意的成桥索力。对此,提出了二次优化的思路,即首先通过弯曲能量最小法初定成桥状态,然后再运用影响矩阵法进行微调。合理成桥状态确定后,再根据成桥状态进行施工倒拆分析,从而得到合理施工张拉力,在计算过程中收缩徐变的影响通过等效节点荷载考虑,这样只需进行一次倒拆分析便可以得到合理的施工张拉力,从而提高了索力优化的效率。
     (5)基于上述研究成果,建立结构空间有限元分析模型,对板芙二桥施工、运营过程中力学行为进行分析研究。研究包括:主梁的剪力滞效应;温度变化对结构变形和内力的影响;主梁和斜塔的长期变形和内力预测。另外,还进行了塔墩梁连接区域局部应力分析。考虑到组合板梁单元在细部应力分析的不足,在分析塔墩梁连接区域局部应力时,连接区域采用实体单元,其他区域采用板梁单元。通过这些研究,为斜塔斜拉桥的设计和施工提供参考。
The type of inclined pylon cable-stayed bridge is widely used in the city. The inclined pylon and wide deck bring a lot of difficulties for structural computation, such as computational method of the girder, non-load effect, cable tension optimization theory, and the construction control of inclined pylon and girder. Based on Banfu No.2 Bridge in Zhongshan city, this thesis studies the spatial computational theory and the mechanical behavior during construction and operation. The main research work in this thesis is as follows:
     (1) Based on the characteristics of structure and mechanics, the two side main ribs are considered to be Timoshenko beam sub-element, and the deck is considered to be plate beam sub-element. According to the compatibility of deformation among elements, one assembled plate beam element is obtained, and this element can take into the shear lag effect. Through the secondary development of UPFs, the user element is realized on the finite element software platform.
     (2) On the basis of assembled plate beam element, the computational method of thermal effect, shrinkage and creep effect is studied. The non-load effect of side main rib and deck is equivalent to be the node load of sub-element. Then the node load of each sub-element is converted into the assembled plate beam through transition matrix. Then structural analysis uses the equivalent nodal load, and the thermal effect, shrinkage and creep effect are obtained.
     (3) The temperature field experiment of Banfu No.2 Bridge is performed. According to the measured data, the regional temperature field is presented. That is: according to the temperature distribution rules of girder and pylon, the temperature field of each member is presented, including one-dimensional and two-dimensional temperature field. Based on the measured data, the parameters of each temperature field are fitted. Then it can provide reference for the thermal effect analysis of the similar section in Guangdong province.
     (4) The reasonable finished state is determined through the minimum bending energy and influence matrix methods. For the Banfu No.2 Bridge, the single method can not obtain reasonable cable tension. Therefore, twice optimum approach is presented. The process is: the initial finished state is determined through the minimum bending energy, and then the influence matrix method is used to adjust some cable tension. After the reasonable finished state is determined, the backward analysis is carried on, and the reasonable construction tension is obtained, the shrinkage and creep are considered through the equivalent node load. As a result, the reasonable construction tension can be obtained through only once analysis, and the cable tension optimization efficiency is increased.
     (5) Based on above analysis approach, the spatial finite element model is built to analyze the mechanical behavior during construction and operation. The contents are the shear lag effect of girder, the structural temperature effect, and the forecast of long-term deformation and internal force. Besides, the local stress among pylon, pier and girder is analyzed. Duo to the assembled plate beam element is weak in analyzing local stress, the analytical area selects solid element, the other area selects assembled plate beam element. Through all the research, it provides reference for the design and construction of inclined pylon cable-stayed bridge.
引文
[1]陈明宪.斜拉桥建造技术[M].北京:人民交通出版社,2004
    [2]林元培.斜拉桥[M].北京:人民交通出版社,1997
    [3]任飞.特大跨径PC斜拉桥主梁设计研究[D].南京:东南大学,2000
    [4]喻梅.多塔斜拉桥结构特性分析[D].成都:西南交通大学,2003
    [5]周念先,杨共树.预应力混凝土斜张桥[M].北京:人民交通出版社,1989
    [6]铁道部大桥工程局桥梁科学研究所.斜拉桥[M].北京:科学技术文献出版社,1992
    [7]刘士林.斜拉桥[M].北京:人民交通出版社,2003
    [8]Walther R. Cable-stayed bridges [M]. 2ed Ed. Thomas Telford Ltd, 1998
    [9]Zellner W. Discussion of cable-stayed bridge: degrees of anchoring [J]. Journal of the Structural Division, 1984, 110(ST5):910-914
    [10]Troitsky MS. Cable-stayed bridge theory and design [M]. London:Granda Publishing Ltd, 1997
    [11]Tassios TP. The interaction between conceptual design and construction [A]. Proceedings on Conceptual Design of Structures [C]. Stuttgart, Germany, 1996
    [12]Aboul-ella F. Analysis of cable-stayed bridges supported by flexible towers [J]. Journal of Structural Engineering, 1998,114(12):2741-2754
    [13]Agerskov H. Fatigue in steel struetures under random loading[J].Journalof Construetional Steel Researeh,2000,53(3):283-305
    [14]Agocs Z. Conceptual design of cable-stayed systems [A]. Proceedings on Conceptual Design of Structures [C]. Stuttgart, Germany, 1996
    [15]施新欣.无背索斜拉桥结构性能研究[D].上海:同济大学,2005
    [16]王伯惠.斜拉桥结构发展和中国经验(上册)[M].北京:人民交通出版社,2003
    [17]王碧波.无背索斜拉桥的结构静力平衡特征探讨[J].桥梁建设,2004,3:23-26
    [18]严国敏.现代斜拉桥[M].北京:人民交通出版社,1997
    [19]刘光栋,邵旭东.竖琴式斜拉桥的设计构思与关键技术研究[J].工程力学(增刊),2002,021-027
    [20]Pollalis S N. What is a bridge? the making of Calatrava’sbridge in Seville[M]. Cambridge, Massachusetts, London, England: The MIT Press, 1999: 2-16
    [21]Kominek M. The marian bridge, czech republic[J]. Structural Engineering International, 1998, 8 (4) : 283- 284
    [22]Shao X D, Zhao H, Li L F. Design and experimental study of a harp shaped single span sable-stayed bridge [J] . ASCE’s Journal of Bridge Engineering, 2005,10 (6): 658- 665
    [23]彭旺虎,邵旭东,李立峰,张阳.无背索斜拉桥的概念、设计与施工[J].土木工程学报,2007,40(5):26-33
    [24]颜东煌,何颖文,许红胜.长沙洪山大桥桥塔倾角对其成桥状态的影响[J].长沙理工大学学报(自然科学版) ,2005,2(3):7-11
    [25]P.H. Wang, T.C. Tseng and C.G. Yang. Initial shape of cable-stayed bridges[J].Computers & Structures, 1993,47(1):111-123
    [26]D W Chen , L G Tham, P K Lee. Determination of Initial Forces in Prestressed Concrete Cable-stayed Bridges for Given Design Deck Profiles Using the Force Equilibrium Method [J].Computers & Structures,2000,74 (1):1– 9
    [27]Kim K S and Lee H S. Analysis of target configurations under dead loads for cable-supported bridges[J].Computers & Structures,2001, 79(29-30): 2681-2692
    [28]D. Janjic, M. Pircher and H. Pircher. Optimization of Cable Tensioning in Cable-Stayed Bridges[J]. Journal of Bridge Engineering, 2003, 8(3): 131-137
    [29]杜蓬娟,张哲,谭素杰.斜拉桥合理成桥状态索力确定的优化方法[J].公路交通科技,2005,22(7):82-85
    [30]张治成,叶贵如,王云峰.大跨度拱桥拱肋线形调整中的扣索索力优化[J].工程力学,2004,21(6):187~192
    [31]辛克贵,冯仲.大跨度斜拉桥的施工非线性倒拆分析[J].工程力学,2004,21(5):31-35
    [32]杜蓬娟,张哲,刘春城,石磊.斜拉桥索力张拉过程的最优控制[J].计算力学学报,2005,22(3):326-329
    [33] Jin Cheng. Determination of cable forces in cable-stayed bridges constructed under parametric uncertainty[J]. Engineering Computations, 2010, 27(3): 301-321
    [34]颜东煌,陈常松.带刚臂空间梁单元及其在斜拉桥计算中的应用[J].湖南大学学报(自然科学版),1999,26(2):72-77
    [35]苏成,韩大建,王乐文.大跨度斜拉桥三维有限元动力模型的建立[J].华南理工大学学报,1999,27(11):51-56
    [36]L.D.Zhu,H.F.Xiang,Y.L.Xu. Triple-girder model for modal analysis of cable-stayed bridges with warping effect [J]. Engineering Structures, 2000, 22: 1313-1323
    [37]汉勃利E C,郭文辉译.桥梁上部构造性能[M].北京:人民交通出版社,1982
    [38]倪元增,钱寅泉.弹性薄壁梁桥分析[M].北京:人民交通出版社,2000
    [39]李传习,夏桂云.大跨度桥梁结构计算理论[M].北京:人民交通出版社,2002
    [40]王荣辉,曾庆元.薄壁箱梁空间计算的板梁单元法[J].铁道学报, 1999, 21(5):94-98
    [41]Bazant Z.P., Kim J..Improved predication model for time-dependent deformations of concrete: Part 1- shrinkage [J].Materials and Structures,1991,24:327-345
    [42]胡狄.预应力混凝土桥梁徐变效应分析[D].长沙:中南大学,2003
    [43]Neville A.M., Dilger W.H., Brook J.J.. Creep of plain and structural concrete[M]. Construction Press, London and New York, 1983:257
    [44]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994:115-179
    [45]惠荣炎,黄国兴,易冰若.混凝土的徐变[M].北京:中国铁道出版社,1988:70-91
    [46]朱伯芳.有限单元法原理及应用[M].北京:水利电力出版社,1979
    [47]张建仁,王文华.混凝土斜拉桥主梁施工期时变抗力分析[J].中外公路, 2004, 24(5): 39-42
    [48]颜东煌,田仲初,李学文,涂光亚.混凝土桥梁收缩徐变计算的有限元方法与应用[J].中国公路学报,2004,17(2):55-58
    [49]陈德华,邱新林.混凝土斜拉桥徐变计算的有限元方法[J].中南公路工程,2002,27(4):36-39
    [50]N.C. Cluley, R. Shepherd. Analysis of Concrete Cable-stayed Bridge for Creep, Shrinkage and Relaxation Effects[J].Computers & Structures,1996,58(2):337-350
    [51]刘扬.混凝土斜拉桥施工期的时变可靠性研究[D].湖南大学博士论文.2005
    [52]ELBADRY M, GHALI A. Temperature variations in concrete bridges[J]. Journal of Structural Engineering, 1983, 109(10): 2355-2374
    [53]CARIN L. Measurements of thermal gradients and their effects in segmental concrete bridge [J]. Journal of Bridge Engineering, ASCE,2002,7(3):116- 174
    [54]方志,汪剑.大跨预应力混凝土连续箱梁桥日照温差效应[J].中国公路学报.2007,20(1):62-67
    [55]郭健,混凝土斜拉桥主梁的非稳态温度场与应力场分析[J].中国公路学报.2005,18(2):65-68
    [56]徐君兰,项海帆.大跨度桥梁施工控制[M].北京:人民交通出版社,2000
    [57]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001
    [58]刘扬,张建仁,李传习.混凝土斜拉桥施工期的时变可靠度计算[J].中国公路学报,2004,17(3):31-35
    [59]汪劲丰,项贻强,徐兴.预应力混凝土斜拉桥悬浇施工过程控制的研究[J].浙江大学学报(工学版),2005,39(9):1368-1373
    [60]赵文武,辛克贵.预应力混凝土斜拉桥自适应施工控制分析[J].工程力学,2006,23(2):78-83
    [61]Hirotaka Nakayama, Kazuyoshi Kaneshige, Shinji Takemoto and Yasuo Watada. An application of a multi-objective programming technique to construction accuracy control of cable-stayed bridges[J]. European Journal of Operational Research, 1995, 87(3):731-738
    [62]M. Schlaich. Erection of Cable-Stayed Bridges Having Composite Decks With Precast Concrete Slabs[J].Journal of Bridge Engineering, 2001,6(5):333-339
    [63]Pao-Hsii Wang, Tzu-Yang Tang, Hou-Nong Zheng. Analysis of cable-stayed bridges during construction by cantilever methods[J].Computers & Structures, 2003,82(4-5):329-346
    [64]Geier, De Roeck, Petz. Cable Force Determination for the Danube Channel Bridge in Vienna[J]. Structural Engineering International, 2005,15(3):181-185
    [65]A. Der Kiureghian, J. L. Sackman.Tangent Geometric Stiffness of Inclined Cables Under Self-Weight[J]. Journal of Structural Engineering,2005,131(6):941-945
    [66]李清泉.自适应控制系统理论、设计与应用[M].北京:科学出版社,1990
    [67]顾安邦,张永水.桥梁施工监测与控制[M].北京:机械工业出版社,2005
    [68]葛耀君.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003
    [69] Walter P J,John B S. Construction and design of cable-stayed bridges(Second Edition) [M].New York:JOHNWIL EY & SONS.1986
    [70]Podoiny WJ, Sealzi JB. Construction and Design of Cable-Stayed Bridges[M]. John Wileyand Sons,1986, New York
    [71]Gimsing NJ. Anchored and Partially Stayed Bridges[C]. Proceeding of the Intematious Symposium Oil Suspension Bridges. Lisbon,1966
    [72]Tang MC. Analysis of cable-stayed bridge[J]. Journal of Structural Engineering, 1971, 97:1481-1496
    [73]Tang MC. Analysis of cable-stayed bridge[J]. Journal of Structural Engineering, 1972,98:1789-1802
    [74]张誊生,粱志广,李建中.斜拉桥施工过程仿真分析[J].桥梁建设,2000,139(2):7-10
    [75]陈德伟,郑信光,项海帆.混凝土斜拉桥的施工控制[J].土木工程学报,1993,26(1):l-11
    [76]曾宪武,王永桁.桥粱建设的回顾和展望[A].中国公路学会桥梁与结构工程学会,编.2001年桥梁学术讨论会[C].北京:人民交通出版社,2001,1-2
    [77]雷俊卿.桥梁悬臂施工与设计[M].北京:人民交通出版社.2000
    [78]喻梅,李乔.结构布置对多塔斜拉桥力学行为的影响[J].桥梁建设,2004,2:1-4
    [79]陈德伟,许俊,周宗泽,李国志.预应力混凝土斜拉桥施工控制新进展[J].同济大学学报,2001,29(1):99-103
    [80]JTJ041-89,公路桥涵施工技术规范[S].北京:人民交通出版社.1989
    [81]JG/T3075-1999,墩粗直螺纹钢筋接头[S].北京:人民交通出版社.1999
    [82]中山市板芙二桥施工图设计.中交第四航务工程勘察设计院[Z].2004
    [83]张士铎,邓小华,王文川.箱形薄壁梁剪力滞效应[M].北京:人民交通出版社,1998
    [84]郭金琼.箱形梁设计理论[M].北京:人民交通出版社,1991
    [85]程翔云,罗旗帜.箱梁在压弯荷载共同作用下的剪力滞[J].土木工程学报,1991,24(1):52-64
    [86]邵爱军.基于能量法的槽型梁剪滞效应分析[J].武汉理工大学学报,2003,(3):52-55
    [87]蔡松柏,程翔云,邵旭东.Π形梁剪力滞效应的解析解[J].工程力学,2003,20(5):82-86
    [88]刘世忠,吴亚平,夏旻,等.簿壁箱梁剪力滞剪切变形双重效应分析的矩阵方法[J].工程力学,2001,18(4):140-144
    [89]万臻.现代斜拉桥各种截面形式的剪力滞效应研究[D].成都:西南交通大学,2002
    [90]颜娟,黄良,张哲.双主梁式斜拉桥主梁有效宽度,长安大学学报(自然科学版)[J].2003,(1):46-48
    [91]张永健,王达,黄平明.斜拉桥π形主梁剪力滞影响因素分析[J].建筑科学与工程学报,2008,25(1):116-121
    [92]程玮.基于ANSYS二次开发的钢筋混凝土结构倒塌仿真分析及其程序设计[D].上海:同济大学,2002
    [93]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004
    [94]李乔,唐亮,黄道全,万臻.斜拉桥П形截面PC主梁剪力滞模型试验研究[J].桥梁建设,2004,5:7-10
    [95]郭棋武,方志,裴炳志等.混凝土斜拉桥的温度效应分析[J].中国公路学报.2002,15(2):48-51
    [96]陈常松,颜东煌,程海潜等.大跨度PC斜拉桥施工控制中温度效应分析[J].公路交通科技.2002,19(6):84-87
    [97]彭友松,强士中.混凝土桥梁结构温度自应力计算方法探讨[J].西南交通大学学报. 2006,41(4):452-455
    [98]颜东煌,陈常松,涂光亚.混凝土斜拉桥施工控制温度影响及现场修正[J].中国公路学报,2006,19(4):71-76
    [99]涂光亚,颜东煌,田仲初,陈常松.温度影响线膨胀系数的识别方法[J].中外公路, 2002,22(6):40-43
    [100]Marco A. Pisani. Non-linear strain distributions due to temperature effects in compact cross-sections[J]. Engineering Structures.2004,26(4):1349-1363
    [101]IMBSEN R A ,VANDERSHAF E E, SCHAMBER RA. Thermal Effect s in Concrete Bridge Super St ructures[ R]. Washington DC:AASHTO ,1985
    [102]Priestley, M J N. Long Term Observation of Concrete Structures: Analysis of Temperature Gradient Effects[ J ]. Master Structure, 1985, 18 (116) : 309 - 316
    [103]WANG PAO-HSII, YANG CHIUNG-GUEI. Parametric studies on cable-stayed bridge [J]. Computers and Structures, 1996,60(2):243-260
    [104]DILGER W H, GHALI A, HAN M, CHEUNG M S, MAES M A.Temperature Stress in Composite Box Girder Bridge [J]. Journal of Structural Engineering, ASCE, 1983, 1109(6): 1460- 1478
    [105]SIVAKUMARAN K S. Analysis of concrete structures subjected to sustained temperature gradients[J]. Can Journal of Civil Engineering, 1984, 1(3): 404- 410
    [106]FROLI M, HARIGA N, NATI G. Longitudinal thermal behavior of aconcrete box girder bridge [J]. Structure Engineering International,1996, 6(4): 237- 242
    [107]J.M. Lucas, M. Virlogeux and C. Louis. Temperature in the Box Girder of the Normandy Bridge[J]. Structural Engineering International, 2005, 15(3):156-165
    [108]P. J. Barr, J. F. Stanton and M. O. Eberhard. Effects of Temperature Variations on Precast, Prestressed Concrete Bridge Girders[J]. JOURNAL OF BRIDGE ENGINEERING, 2005, 10(2): 186-194
    [109]陈永春,马国强.考虑混凝土收缩徐变和钢筋松弛相互影响的预应力损失的计算[J].建筑结构学报,1981,(6):31-46
    [110]石现峰,宣言,王澜.预应力混凝土曲线连续梁桥施工及使用过程时效仿真分析[J].中国铁道科学, 2007, 28(4):61-65
    [111]杜国华,毛昌时,司徒妙龄等.桥梁结构分析[M].上海:同济大学出版社, 1993
    [112]李传习,杨飞跃,张建仁.节段施工桥梁的徐变变形及内力重分布研究[J].中国公路学报,2000,13(4):47-52
    [113]文永奎,陈政清.考虑预应力损失的混凝土梁徐变计算方法[J].中国铁道科学, 2005, 26(3):36-41
    [114]Pietorius PC. Deflection of reinforced concrete members:a simple approach[J].ACI Journal, 1985,8(26):805-812
    [115]Dilger W.H..Creep analysis of prestressed concrete structures using creep-transformed section properties[J].Jounral of the prestressed concrete institure,1982,27(1):98-118
    [116]W M Sebastian, R E McConnel. Nonlinear FE analysis of steel-concrete composite structures[J]. Journal of Structural Engineering, ASCE, 2000, 126(6): 662-674
    [117]Claudio Amadiao and Massimo Fragiacomo. Simplified approach to evaluate creep and shrinkage effects in steel-concrete composite beams [J]. Journal of Structural Engineering, 1997, 123(9):1153-1162
    [118]Bakoss S L, Gilbert R I, Faulkes K A. Long-term deflections of reinforced concrete beams [J]. Magazine of Concrete Research, 1982, 34(121): 203-212
    [119]ACI 318. Building code requirements for reinforced concrete [S]. USA: American Concrete Institute, 1989
    [120]Pietorius P C. Deflection of reinforced concrete members: a simple approach [J]. ACI Journal, 1985, 82(6):805-812
    [121]王银辉,陈山林.强迫应变法在混凝土桥梁徐变分析中的应用[J].桥梁建设,2007 (1): 74-77
    [122]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002:149-157
    [123]卫军,谈颋.三轴应力状态下结构时间效应的计算[J].广州城市职业学院院报,2007, 1(1):76-86
    [124]颜东煌,涂光亚,陈常松等.肋板式主梁温度场的数值计算方法[J].中外公路.2002, 22(2): 45-48
    [125]李鑫.混凝土Π型梁斜拉桥的温度场分析及温度效应研究[D].长沙:长沙理工大学(土木与建筑学院),2009
    [126]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社.1991:16-21
    [127]鲍卫刚,杜国华,范立础.曲线桥梁结构徐变次内力分析[J].中国公路学报,1995,8(2):53-60
    [128]唐崇钊.混凝土的徐变力学与试验技术[M].北京:水利电力出版社,1982
    [129]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002:149-157
    [130]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001:283-293
    [131]肖汝诚,确定大跨径桥梁合理设计状态理论与方法研究[D].上海:同济大学桥梁工程系,1996
    [132]颜东煌.斜拉桥合理成桥状态的确定方法和施工控制理论研究[D].长沙:湖南大学博士学位论文, 2001
    [133]杜国华,姜林.斜拉桥的合理索力极其施工张拉力[J].桥梁建设,1989 (3): 18– 22
    [134]乔建东,陈政清.确定斜拉桥索力的有约束优化方法[J].上海力学,1999,20(1):49-55
    [135]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报,1998,26 (3): 235– 239
    [136]JTG D62—2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S]
    [137]肖汝诚,项海帆.斜拉桥索力优化及其工程应用[J].计算力学学报,1998,15(1): 118-126
    [138]颜东煌,刘光栋.确定斜拉桥合理施工状态的正装迭代法[J].中国公路学报,1999,12(2): 60-64
    [139]钟万勰,刘元芳,纪峥.斜拉桥施工中的张拉控制和索力调整[J].土木工程学报,1992,25(3): 9-15
    [140]秦顺全,林国雄.斜拉桥安装计算——倒拆法与无应力状态控制法评述[A].中国土木工程学会桥梁及结构工程学会第九届年会论文集[C].上海:同济大学出版社, 1992, 569-573
    [141]杜国华,毛昌时,司徒妙龄.桥梁结构分析[M].上海:同济大学出版,1994:137-168
    [142]万臻,李乔.现代斜拉桥不同截面形式的剪力滞效应分析[J].公路交通科技,2007,24(2):61-65
    [143]谭红霞,陈政清.大跨度斜拉桥施工阶段主梁的立模标高研究[J].湖南大学学报,2007,34(8):6-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700