SBA-15(16)介孔分子筛的功能化修饰及其在多相催化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔分子筛具有较大的比表面积、孔径均一且表面易官能团化等一系列特点,这些特性使得其在光学、电磁学和生物医学等领域展现了非常诱人的应用前景。目前,介孔分子筛的发展重点是在催化方面的应用。选择合适的修饰剂和适宜的方法,对介孔分子筛进行功能化修饰是提高其催化性能的有效方法。通过对不同方法制备催化剂的结构分析和催化性能测试,不仅可以对催化剂的制备条件进行优化,还可以进一步获得催化性能与其结构和制备方法相关联的信息,从而为设计和制备高性能催化剂提供新的方法。
     本研究旨在利用改进的后嫁接法对SBA-15与SBA-16介孔分子筛进行功能化修饰,以引入酸性中心和氧化中心。在合成过程中,解决SBA-15与SBA-16在酸性条件下Al不易进入分子筛骨架和TiO_2前驱物在过滤洗涤过程中易流失等问题,制备Al/SBA-15、Al/SBA-16、TiO_2/SBA-16和Bi-TiO_2/SBA-15四种功能化修饰的介孔分子筛,并研究其在催化苯酚叔丁醇烷基化和降解有机染料罗丹明B(RhB)的反应机理。
     以SBA-15为载体,利用改进的直接法和后嫁接法合成了高度有序的Al/SBA-15。对样品的结构分析表明:合成方法对Al/SBA-15的形貌和酸性有较大影响。直接法合成的Al/SBA-15经过水热处理,Al取代Si进入SBA-15的骨架中,使得Al/SBA-15的孔径、孔容增大;而后嫁接法合成的Al/SBA-15,一部分Al负载于SBA-15的内表面使得孔径、孔容减小。Al/SBA-15的酸性测试结果表明:后嫁接法合成的Al/SBA-15具有更多的B酸和L酸性中心。参照Al负载SBA-15的合成方法及催化效果,以SBA-16为载体,采用后嫁接法合成了Al/SBA-16。测试表明:Al/SBA-16仍具有高度有序的三维孔道结构和中等酸强度。在Al/SBA-15(16)中,Al的修饰增强了Si与Al的相互作用,调变了SBA-15(16)的酸量。同时,Al的引入还调控了SBA-15(16)的孔道结构,使得孔径、孔容和比表面积发生变化。
     以苯酚叔丁醇烷基化为反应探针,研究了Al/SBA-15(16)的催化活性和重复利用率。研究表明:当催化剂用量为0.05g,叔丁醇与苯酚的物质的量配比为5时,在190℃下反应7h,苯酚的转化率和2,4-二叔丁基苯酚的选择性均达到最佳。结合苯酚与叔丁醇在Al/SBA-15(16)孔道内的吸附能和苯酚叔丁醇烷基化反应的活化能,探讨了Al/SBA-15与Al/SBA-16催化烷基化反应的机理。
     利用孔道内水解的方法合成了TiO_2/SBA-16。采用XRD、N2吸附-脱附、UV-vis和TEM等手段对样品进行了测试表征。结果表明,TiO_2/SBA-16仍然保持了SBA-16的介孔结构;SBA-16的三维孔道结构对TiO_2纳米粒子的生长起到很好的限制作用,TiO_2的粒径被限制在5nm以下。TiO_2/SBA-16的光催化活性优于传统后嫁接法合成的TiO_2/SBA-16和工业上使用的纯TiO_2纳米颗粒。Laungmuir-Hinshelwood(L-H)动力学模型研究表明,在合成TiO_2/SBA-16中存在最佳Ti/Si配比。当Ti/Si配比过小时,TiO_2颗粒被大量的SBA-16包裹,导致其无法与反应物分子充分接触,失去小尺寸效应;当Ti/Si配比过大时,TiO_2可能会造成某个方向孔道的堵塞,阻碍RhB与TiO_2的接触,导致催化效果减弱。
     以SBA-15为载体,Bi(NO_3)_3·5H_2O和C_(16)H_(36)O_4Ti为无机前驱体,利用二步法设计合成了Bi-TiO_2/SBA-15。通过XRD、XPS和TEM等测试技术对合成的样品进行了表征,结果表明:负载后样品仍保持SBA-15原有介孔结构,且Bi_2O_3和TiO_2均匀地负载于SBA-15的孔道内。通过DFT方法,对TiO_2和Bi-TiO_2的能带结构进行了计算,并以此为依据,分析了Bi-TiO_2/SBA-15光催化性能提高的原因。在SBA-15和Bi-TiO_2的协同作用下,Bi-TiO_2/SBA-15在紫外光和可见光下,都具有极高的光催化活性,其原因是:首先SBA-15较大的比表面积和发达的孔结构,既提供了高浓度反应条件,也增加了光生空穴和自由基与被吸附的RhB分子碰撞概率。另外Bi-TiO_2的带隙宽度(1.85eV)小于TiO_2带隙宽度(3.2eV),这使光生导带电子能够从Bi注入到TiO_2的导带上,产生有效地电荷分离,从而提高光催化效率。
Mesoporous materials have attracted considerable attention in the region of optics, electromagnetic and biomedicine due to high surface area, uniform pore size and easily functionalized surface. The research on mesoporous materials is currently changing to the exploitation of their application in catalysis. By choosing appropriate precursors and preparation methods, the functional modification of mesoporous materials has played significant roles in improving the performance of catalytic ability. Combining compositional analysis, structural characterization and catalytic tests, the correlation between structural characteristics and catalytic performance can be performed and the design and preparation of a highly effective catalyst can be optimized, which can provide new insights into the preparation of catalysts.
     SBA-15 and SBA-16 is a new type of mesoporous silica molecular sieves with uniform hexagonal and 3D channels.The introduction of metal ions in the framework of SBA-15 and SBA-16 is one of the important approaches for its catalytic applications. Nevertheless, it is difficult to directly incorporate metal atom into the framework because SBA-15 and SBA-16 have been generally synthesized under acidic hydrothermal condition that easily induce the dissociation of the M-O-Si bonds. In this paper, SBA-15 and SBA-16 as a matrix, its functional materials (Al/SBA-15、Al/SBA-16、TiO_2/SBA-16、Bi-TiO_2/SBA-15) were synthesized successfully and their catalytic performance in the tert-butylation of phenol and photodegradationRhB are also studied.
     Two different aluminum-containing mesoporous Al/SBA-15 were prepared by post-synthesis method and direct synthesis method. The results show that Al/SBA-15(DS) possessed higher BET surface area and larger pore volume. The acidic properties were investigated by NH3-TPD and Py-IR. The different synthesis method leads to distinct coordination of Al and intensity of acidity. These results indicated that Al/SBA-15(PG) has more activity ability than the corresponding one synthesized by direct method since they contain more Lewis acid sites and Br?nsted acid sites. Al-containing SBA-16 was prepared by post- -grafting synthesis method. The results indicated that the materials possess 3D caged-like mesostructure and Al was successfully incorporated into the SBA-16 framework. Al/SBA-16 has middle activity ability.
     The modification of Al controlled the acidity of Al/SBA-15(16) effectively. The interaction betweenSiandAl enhanced the acid content of Al/SBA-15(16). Meanwhile, the modification of Al has also modified the pore structures of SBA- 15(16).
     In the tert-butylation of phenol, the catalytic activity and reusability of Al/SBA-15(16) were studied. It was found that the highest activity result was obtained under reaction condition: 0.05g Al/SBA-15(16) as catalyst, n(TBA): n(phenol)=5, WHSV=2.5h-1, reaction temperature at 190℃, time for 7h. The catalyst preserved almost their initial catalytic activity after five reuses. The adsorbed energy of phenol and TAB in the channels was calculated by the DFT method. Finally, the alkylation mechanics on Al/SBA-15 and Al/SBA-16 were discussed, respectively.
     TiO_2/SBA-16 was synthesized by internal hydrolysis method. The results indicated that SBA-16 retained the 3D caged-like mesostructure while TiO_2 located almost inside the mesoporous channels in form of small crystals with anatase structure.and the size of TiO_2 was limited under 5nm. The high specific surface area and pore volume for TiO_2/SBA-16 with 3D mesostructure were prone to have high adsorption capability and easier diffusion to the photo-oxidative. TiO_2 dispersed in form of small crystals with anatase structure and its size was limited by the channel of SBA-16, which could provide more photo-oxidative sites due to quantum effect, leading to improvement of its photocatalytic activity. L-H kinetics model was indicated that an optimal amount of TiO_2 loading is crucial for the photocatalyst. When the loading is too high, TiO_2would gather into larger particles and block the mesopores of SBA-16, leading to decrease of photocatalytic activity. On the contrary, if the loading is too small, the photoactive sites are relatively low, which leads to the increase of average distance from the photoactive sites to the adsorption sites.
     Bi-TiO_2/SBA-15 was synthesized by two steps synthesis. The high specific surface area and ordered mesoporous channels of SBA-15 are prone to have high adsorption capability and easier photo-oxidative diffusion sites for RhB.The band structure and total density of states of TiO_2 and Bi-TiO_2 were calculated in order to study their electronic structures by the DFT method. It was found that the Bi-TiO_2 in modified SBA-15 catalysts was active centers and the doping of Bi can enhance the photoinduced degradation very significantly. In this system, the electron-hole pairs induced by light irradiation transfer easier and a smaller band gap was also observed for Bi-TiO_2 (from 3.2eV to 1.85eV). This demonstrated that after integration, the electron and hole was separated efficiently, which has played a key role in enhancing the photoactivity.
引文
[1] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism[J]. Nature, 1992, 359: 710-712.
    [2] Asefa T, Lennox R B. Synthesis of Gold Nanoparticles via Electroless Deposition in SBA-15[J]. Chem. Mater., 2005, 17(10): 2481-2483.
    [3] Ajayan V, Katsuhiko A. Preparation of Novel Mesoporous Carbon Materials with Tunable Pore Diameters using Directly Synthesized AlSBA-15 materials[J]. Chem. Lett., 2005, 34(5): 674-675.
    [4] Xu W, Liao Y T, Akins D L. Formation of CdS Nanoparticles within Modified MCM-41 and SBA-15[J]. J. Phys. Chem. B., 2002, 106(43): 11127-11131.
    [5] Hoffmann F, Cornelius M, Morell J, et al. Silica-Based Mesoporous Organic–Inorganic Hybrid Materials[J]. Angew. Chem. Int. Ed., 2006, 45: 3216-3251.
    [6] Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores[J]. Science, 1998, 279: 548-552.
    [7] Zhao D Y, Sun J Y, Li Q Z, et al. Morphological Control of Highly Ordered Mesoporous silica SBA-15[J]. Chem. Mater., 2000, 12: 275-279.
    [8]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 600~826.
    [9] Zhang Z, Han Y, Zhu L. Strongly Acidic and High-temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure[J]. Angew. Chem. Int. Ed., 2001, 40: 1258-1262.
    [10] Rao P M, Wolfson A, Kababya S, et al. Immobilization of Molecular H3PW12O40 Heteropolyacid Catalyst in Alumina-grafted Silica-gel and Mesostructured SBA-15 Silica Matrices[J]. J. Catal., 2005, 232: 210-225.
    [11] Tsoncheva T, Jarn M, Paneva D, et al. Copper and Chromium Oxide Nanocomposites Supported on SBA-15 Silica as Catalysts for Ethylacetate Combustion Effect of Mesoporous Structure and Metal Oxide Composition[J]. Micropor. Mesopor. Mater., 2011, 137: 56-64.
    [12]袁金芳,李健生,顾娟等.一种合成六方板状Zr-Ce-SBA-15介孔材料的新方法[J].化学学报, 2009, 67(11): 1271-1275.
    [13] Xia Y S, Dai H X, Jiang H Y, et al. Three-dimensional Ordered Mesoporous Cobalt Oxides: Highly Active Catalysts for the Oxidation of Toluene and Methanol[J]. Catal. Commun., 2010, 15(11): 1171-1175.
    [14] Chen C, Yang S T, Ahn W S, et al. Amine-impregnated Silica Monolith with aHierarchical Pore Structure: Enhancement of CO_2 Capture Capacity[J]. Chem. Commun., 2009, 24: 3627-3629.
    [15] Everett D H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry Manual of Symbols and Terminology[J]. J. Pure. Appl. Chem., 1972, 31: 577-638.
    [16] Park J I, Lee J K, Miyawaki J, et al. Hydro-conversion of 1-methyl Naphthalene into (alkyl)benzenes over Alumina-coated USY Zeolite- supported NiMoS Catalysts[J]. Fuel, 2011, 90(1): 182-189.
    [17] Feng D M, Zuo Y Z, Wang D Z, et al. Steam Reforming of Dimethyl Ether over Coupled ZSM-5 and Cu-Zn-Based Catalysts[J]. Chin. J. Catal., 2009, 30(3): 223-229.
    [18]刘树萍,岳明波,王一萌.磷酸盐辅助一步合成介孔Beta分子筛[J].物理化学学报, 2010, 26(8): 2224-2228.
    [19] Busuioc A M, Meynen V, Beyers E, et al. Growth of Anatase Nanoparticles inside the Mesopores of SBA-15 for Photocatalytic Applications[J]. Catal. Commun., 2007, 8: 527-530.
    [20]巩雁军,董梅,孙予罕等.分子筛制备化学进展[J].石油化工, 2000, 29(6): 450-454.
    [21] Kokunesoski M, Gulicovski J, Matovic B, et al. Synthesis and Surface Characterization of Ordered Mesoporous Silica SBA-15[J]. Mater. Chem. Phys., 2010, 124(2-3): 1248-1252.
    [22]王义,李旭光,薛志元等.多孔分子筛材料的合成[J].化学进展, 2010, 22(2-3): 322-330.
    [23]冯芳霞,窦涛,萧墉壮等.分子筛特种合成路线[J].化工进展, 1997, 1: 64-65.
    [24] Chiola V, Ritsko J E, Vanderpool C D. Process for producing Low-bulk Density Silica[P]. US Patent 3556725, 1971.
    [25] Yanagisawa T, Shimizu T, Kuroda K, et al. The Preparation of Alkyltrimethylammonium-kanemite Complexes and their Conversion to Microporous Materials[J]. Bull. Chem. Soc. Jpn., 1990, 63: 988-992.
    [26] Inagaki S, Fukushima Y, Kuroda K. Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate[J]. J. Chem. Soc. Chem. Commun., 1993: 680-682.
    [27] Yanagisawa T, Shimizu T, Kuroda K, et al. Trimethylsilyl Derivatives of Alkyltrimethylammonium-kanemite Complexes and their Conversion to Microporous SiO_2 Materials[J]. Bull. Chem. Soc. Jpn., 1990, 60: 1535-1537.
    [28] Beck J S, Vartuli J C, Roth W J, et al. A New Family of MesoporousMolecular Sieves Prepared with Liquid Crystal Templates[J]. J. Am. Chem. Soc., 1990, 114: 10834-10843.
    [29] F. DiRenzo, H. Cambon, R. Dutarte. A 28-year-old Synthesis of Micelle-templated Mesoporous Silica[J]. Microporous. Mater., 1997, 10: 282-286.
    [30]赵丽,余家国,赵修建等.介孔纳米结构材料的研究与发展[J].稀有金属材料与工程, 2004, 33(1): 5-10.
    [31] Bagshaw S A, Prouzet E, Pinnavaia J. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants[J]. Science, 1995, 269: 1242-1244.
    [32] Firouzi A, Kumar D, Sieger D P, et al. Cooperative Organization of Inorganic-surfactant and Biomimetic Assemblies[J]. Science, 1995, 267: 1138-1143.
    [33] Sun H, Tang Q, Du Y, et al. Mesostructured SBA-16 with Excellent Hydrothermal, Thermal and Mechanical Stabilities: Modified Synthesis and its Catalytic Application[J]. J. Colloid Interface Sci., 2009, 333: 317-323.
    [34] Beck A, Horváth A, Stefler Gy, et al. Formation and Structure of Au/TiO_2 and Au/CeO_2 Nanostructures in Mesoporous SBA-15[J]. Catal. Today., 2008, 139(3): 180-187.
    [35] Zhu K K, Bin Y, Xie S H, et al. Preparation and Characterization of Divanadium Pentoxide Nanowires inside SBA-15 Channels[J]. Chin. J. Chem., 2004, 22: 33-37.
    [36] Yang Y, Zhang Y, Hao S, et al. Heterogenization of Functionalized Cu(II) and VO(IV) Schiff Base Complexes by Direct Immobilization onto Amino-modified SBA-15: Styrene Oxidation Catalysts with Enhanced Reactivity[J]. Appl. Catal. A: Gen., 2010, 381: 274-281.
    [37] Yang X L, Dai W L, Chen H, et al. Novel Efficient and Green Approach to the Synthesis of Glutaraldehyde over Highly Active W-doped SBA-15 Catalyst[J]. J. Catal., 2005, 229(1): 259-263.
    [38] de Juan F, Ruiz-Hitzky E. Selective Functionalization of Mesoporous Silica[J]. Adv. Mater., 2000, 12(6): 430-432.
    [39] Zhu Y G, Li H, Xu J Q, et al. Monodispersed Mesoporous SBA-15 with Novel Morphologies: Controllable Synthesis and Morphology Dependence of Humidity Sensing[J]. Cryst. Eng. Comm., 2011, 13(2): 402-405.
    [40] Shen Y B, Chen Q, Lou L L, et al. Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by SBA-15 Supported Ir(I) Complex Under Mild Conditions[J]. Catal. Lett., 2010, 137: 104-109.
    [41] Khodakov A Y, Constant A G, Bechara R, et al. Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-supported Mesoporous Silicas[J]. J. Catal., 2002, 206: 230-241.
    [42] Wang Y M, Wu Z Y, Wei Y L, et al. In situ Coating Metal Oxide on SBA-15 inOne-pot Synthesis[J]. Micropor. Mesopor. Mater., 2005, 84: 127-136.
    [43] Yang J S, Jung W Y, Lee G D, et al. Effect of Pretreatment Conditions on the Catalytic Activity of Benzene Combustion over SBA-15-supported Copper Oxides[J]. Top. Catal., 2010, 53: 7-10.
    [44] Degirmenci V, Uner D, Cinlar B et al. Sulfated Zirconia Modified SBA-15 Catalysts for Cellobiose Hydrolysis[J]. Catal. Lett., 2011, 141(1): 33-42.
    [45] Doyle A M, Ahmed E, Hodnett B K. The Evolution of Phases during the Synthesis of the Organically Modified Catalyst Support MCM-48[J]. Catal. Today., 2006, 116(1): 50-55.
    [46] Zhang W Z, Pauly T R, Pinnavaia T J. Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral (S degrees I degrees) Assembly Pathway[J]. Chem. Mater., 1997, 9(11): 2491-2498.
    [47] Nava R, Morales J, Alonso G, et al. Influence of the Preparation Method on the Activity of Phosphate-containing CoMo/HMS Catalysts in Deep Hydrodesulphurization[J]. Appl. Catal. A: Gen., 2007, 321(1): 58-70.
    [48] Pauly T R, Pinnavaia T J. Pore Size Modification of Mesoporous HMS Molecular Sieve Silicas with Wormhole Framework Structures[J]. Chem. Mater., 2001, 13(3): 987-993.
    [49] Zepeda T A, Martinez-Hernandez A, Guil-Lopez R, et al. Preferential CO Oxidation in Excess of Hydrogen over Au/HMS Catalysts Modified by Ce, Fe and Ti Oxides[J]. Appl. Catal. B: Environ., 2010, 100(3-4): 450-462.
    [50] Mahdavi V, Mardani M, Malekhosseini M. Oxidation of Alcohols with Tert-butylhydroperoxide Catalyzed by Mn(II) Complexes Immobilized in the Pore Channels of Mesoporous Hexagonal Molecular Sieves(HMS)[J]. Catal. Commun., 2008, 9(13): 2201-2204.
    [51] Triantafyllidis K S, Pinnavaia T J, Iosifidis A, et al. Specific Surface Area and I-point Evidence for Microporosity in nanostructured MSU-S Aluminosilicates Assembled from Zeolite Seeds[J]. J. Mater. Chem., 2007, 17(34): 3630-3638.
    [52] Lee G, Youn H K, Jin M J, et al. Synthesis of Organic-inorganic Hybrid MSU-1 for Separation and Catalytic Applications[J]. Micropor. Mesopor. Mater., 2010, 132(1-2): 232-238.
    [53] Meng C M, Fang Y M, Jin L J, et al. Deep desulfurization of model gasoline by selective adsorption on Ag+/Al-MSU-S[J]. Catal. Today., 2010, 149(1-2): 138-142.
    [54] Liu L C, Li H Q, Zhang Y. Variations of Structure and Active Species in Mesoporous Cr-MSU-x Catalyst during the Dehydrogenation of Ethane with CO_2[J]. Kinet. Catal., 2009, 50(5): 684-690.
    [55] Liu H, Wang Z G, Hu H J, et al. Synthesis and Characterization of Cr-MSU-1 and Its Catalytic Application for Oxidation of Styrene[J]. J. Solid. State. Chem., 2009, 182(7): 1726-1732.
    [56] Yang R T, Pinnavaia T J, Li W B, et al. Fe3+ Exchanged Mesoporous Al-HMS and Al-MCM-41 Molecular Sieves for Selective Catalytic Reduction of NO with NH3[J]. J. Catal., 1997, 172(2): 488-493.
    [57]金长子,李钢,王祥生等. Ti-HMS和TS-1分子筛结构和催化性能的对比研究[J].催化学报, 2007, 28(2): 170-174.
    [58] Ke I S, Liu S T. Synthesis and Catalysis of Tungsten Oxide in Hexagonal Mesoporous Silicas (W-HMS)[J]. Appl. Catal. A: Gen., 2007, 317(1): 91-96.
    [59] Fan J, Yu C Z, Wang L M, et al. Mesotunnels on the Silica Wall of Ordered SBA-15 to Generate Three-dimensional Large-pore Mesoporous Networks[J]. J. Am. Chem. Soc., 2001, 123(48): 12113-12114.
    [60] Chen C Y, Burkett S L, Li H X, et al. Studies on Mesoporous Materials II. Synthesis Mechanism of MCM-41[J]. Microporous Mater., 1993, 2: 27-34.
    [61] Colilla M, Izquierdo-Barba I, Sanchez-Salcedo S et al. Synthesis and Characterization of Zwitterionic SBA-15 Nanostructured Materials[J]. Chem. Mater., 2010, 22(23): 6459-6466.
    [62] Li Y, Zhou G, Li C, et al. Adsorption and Catalytic Activity of Porcine Pancreatic Lipase on Rod-like SBA-15 Mesoporous Material[J]. Colloids. Surf. A., 2009, 341: 79-85.
    [63] Barczak M, Skwarek E, Janusz W, et al. Functionalized SBA-15 Organosilicas as Sorbents of Zinc(II) Ions[J]. Appl. Surf. Sci., 2010, 256: 5370-5375.
    [64] Bendahou K, Cherif L, Siffert S, et al. The Effect of the Use of Llanthanum-doped Mesoporous SBA-15 on the Performance of Pt/SBA-15 and Pd/SBA-15 Catalysts for Total Oxidation of Toluene[J]. Appl. Catal. A: Gen., 2008, 351(1): 82-87.
    [65] Morey M S, O'Brien S, Schwarz S, et al. Hydrothermal and Postsynthesis Surface Modification of Cubic, MCM-48, and Ultralarge Pore SBA-15 Mesoporous Silica with Titanium[J]. Chem. Mater., 2000, 12(4): 898-911.
    [66] Kim T W, Ryoo R, Kruk M, et al. Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time[J]. J. Phys. Chem. B., 2004, 108 (31): 11480-11489.
    [67] Sugiyama S, Kato Y, Wada T, et al. Ethanol Conversion on MCM-41 and FSM-16, and on Ni-Doped MCM-41 and FSM-16 Prepared without Hydrothermal Conditions[J]. Top. Catal., 2010, 53(7-10): 550-554.
    [68] Yue Y H, Sun Y, Gao Z. Disordered Mesoporous KIT-1 as a Support for Hydrodesulfurization Catalysts[J]. Catal. Lett., 1997, 47(2): 167-171.
    [69] Yu T, Zhang H, Yan X W, et al. Pore Structures of Ordered Large Cage-type Mesoporous Silica FDU-12s[J]. J. Phys. Chem. B., 2006, 110(43): 21467-21472.
    [70] Chidambaram M, Venkatesan C, Singh A P. Organosilanesulfonic Acid-functionalized Zr-TMS Catalysts: Synthesis, Characterization and Catalytic Applications in Condensation Reactions[J]. Appl. Catal. A: Gen., 2006, 310: 79-90.
    [71] Kimura T, Huang S J, Fukuoka A, et al. Properties of metal species in square-shape mesopores of KSW-2-based silica[J]. J. Mater. Chem., 2009, 19(23): 3859-3866.
    [72] Szegedi A, Popova M, Mavrodinova V, et al. Synthesis and Characterization of Ni-MCM-41Materials with Spherical Morphology and Their Catalytic Activity in Toluene Hydrogenation[J]. Micropor. Mesopor. Mater., 2007, 99(1-2): 149-158.
    [73] Kozlova S A, Kirik S D. Post-synthetic Activation of Silanol Covering in the Mesostructured Silicate Materials MCM-41 and SBA-15[J]. Micropor. Mesopor. Mater., 2010, 133: 124-133.
    [74]孔爱国.新颖功能介孔金属氧化物的制备及其性能研究[D].上海:华东师范大学, 2008: 2-24.
    [75] Morales A M, Lieber C M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires[J]. Science, 1998, 279: 208-211.
    [76] Han Y J, Stucky G D, Butter A. Mesoporous Silicate Sequestration and Release of Proteins[J]. J. Am. Chem. Soc., 1999, 121: 9897-9898.
    [77] Wan Y, Zhao D Y. On the Controllable Soft-Templating Approach to Mesoporous Silicates[J]. Chem. Rev., 2007, 107(7): 2821-2860.
    [78] Ryoo R, Ko C H. Block-copolymer-templated Ordered Mesoporous Silica: Array of Uniform Mesopores or Mesopore-Micropore network[J]? J. Phys. Chem. B., 2000, 104: 11465-11471.
    [79] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-mediated Structural Transformation[J]. J. Phy. Chem. B., 1999, 103: 7743-7746.
    [80] Escax V, Delahaye E, Imperor-Clerc M, et al. Modifying the Porosity of SBA-15 Silicas by Post-synthesis Basic Treatments[J]. Micropor. Mesopor. Mater., 2007, 102(1-3): 234-241.
    [81] Kruk M, Jaroniec M, Ko C H, et al. Characterization of the Porous Structure of SBA-15[J]. Chem. Mater., 2000, 12(7): 1961-1968.
    [82] Galarneau A, Cambon N, Di Renzo F, et al. Microporosity and Connections between Pores in SBA-15 Mesostructured Silicas as a Function of the Temperature of Synthesis[J]. New. J. Chem., 2003, 27(1): 73-79.
    [83] Davidson A. Modifying the Walls of Mesoporous Silicas Prepared by Supramolecular-templating[J]. Curr. Opin. Colloid. Interface. Sci., 2002, 7: 92-106.
    [84] Zhao D Y, Huo Q S, Feng J L, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [85] Li Y J, Yan B. Photoactive Europium(III) Centered Mesoporous Hybrids with 2-thenoyltrifluoroacetone Functionalized SBA-16 and Organic Polymers[J]. Dalton. Trans., 2010, 39: 2554-2562.
    [86] Shah A T, Li B S, Abdalla Z E A. Direct Synthesis of Cu-SBA-16 by internal pH-modification Method and its Performance for Adsorption of Dibenzothiophene[J]. Micropor. Mesopor. Mater., 2010, 130: 248-254.
    [87] Ballem M A, Córdoba J M, Odén M. Influence of Synthesis Temperature on Morphology of SBA-16 Mesoporous Materials with a Three-dimensional Pore System[J]. Micropor. Mesopor. Mater., 2010, 129: 106-111.
    [88] Sierra L, Valange S, Guth J L. Formation mechanism and Morphology of Mesoporous SBA-16 Type Silica particles Prepared with the Triblock Copolymer Surfactant PEO140PPO39PEO140[J]. Micropor. Mesopor. Mater., 2009, 124: 100-109.
    [89] Cheng C F, Lin Y C, Cheng H H, et al. The Effect and Model of Silica Concentrations on Physical Properties and Particle Sizes of Three-dimensional SBA-16 Nanoporous Materials[J]. Chem. Phys. Lett., 2003, 382(5-6): 496-501.
    [90] Hu Q, Li J J, Hao Z P, et al. Dynamic Adsorption of Volatile Organic Compounds on Organofunctionalized SBA-15 Materials[J]. Chem. Eng. J., 2009, 149: 281-288.
    [91]张微,徐恒泳,毕亚东等.介孔分子筛SBA-15的改性研究进展[J].化工进展, 2007, 26: 152-157.
    [92] Zhang Z, Han Y, Zhu L. Strongly Acidic and High-temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure[J]. Angew. Chem. Int. Ed. 2001, 40: 1258-1262.
    [93] Taguchi A, Schüth F. Ordered Mesoporous Materials in Catalysis[J]. Micropor. Mesopor. Mater., 2005, 77: 1-45.
    [94] Li Y S, Chen Y, Li L, et al. A Simple Co-impregnation Route to Load Highly Dispersed Fe(III) Centers into the Pore Structure of SBA-15 and the Extraordinarily High Catalytic Performance[J]. Appl. Catal. A: Gen., 2009, 366: 57-64.
    [95]沈绍典.多头季铵盐表面活性剂导向下新结构介孔分子筛的合成与表征[D].上海:复旦大学博士论文, 2003: 25-54.
    [96] Haddad E, Espinose J B, Nossov A, et al. Aluminum Incorporation and Interfacial Structures in AlSBA-15 Mesoporous Solids: Double Resonance and Optically Pumped Hyperpolarized 129Xe NMR Studies[J]. Stud. Surf. Sci. Catal., 2002, 142: 1173-1180.
    [97] Zeidan R K, Hwang S J, Davis M E. Multifunctional Heterogeneous Catalysts: SBA-15-containing Primary Amines and Sulfonic Acids[J]. Angew. Chem. Int. Ed., 2006, 45: 6332-6335.
    [98] Wang J C, Liu Q. A Simple Method to Directly Synthesize Al-SBA-15 Mesoporous Materials with Different Al Contents[J]. Solid. State. Commun., 2008, 148(11-12): 529-533.
    [99] Newalkar B L, Olanrewaju J, Komarneni S. Direct Synthesis of Titanium-substituted Mesoporous SBA-15 Molecular Sieve under Microwave-hydrothermal Conditions[J]. Chem. Mater., 2001, 13: 552-557.
    [100] Chen S Y, Jang L Y, Cheng S. Synthesis of Zr-incorporated SBA-15 Mesoporous Materials in a Self-generated Acidic Environment[J]. Chem. Mater., 2004, 16(21): 4174-4180.
    [101] Wu S, Han Y, Zou Y C, et al. Synthesis of Heteroatom Substituted SBA-15 by the "pH-adjusting" Method[J]. Chem. Mater., 2004, 16(3): 486-492.
    [102]史克英,辛柏福,池玉娟等.以SBA-16为模板电沉积生长多孔氧化铁纳米阵列[J].化学学报, 2004, 62(19): 1859-1861.
    [103]史克英,季春阳,辛柏福等. SBA-16薄膜内生长碳纳米管阵列及其Fe的填充[J].化学学报, 2004, 62(22): 2270-2272.
    [104] Choudhary V R, Mantri K. AClx-grafted Si-MCM-41 Prepared by Reacting Anhydrous AlCl3 with Terminal Si-OH groups: an Active Solid Catalyst for Benzylation and Acylation Reactions[J]. Micropor. Mesopor. Mater., 2002, 56: 317-320.
    [105] Nozaki C, Lugmair C G, Bell A T, et al. Synthesis, Characterization, and Catalytic Performance of Single-site Iron(III) Centers on the Surface of SBA-15 Silica[J]. J. Am. Chem. Soc., 2002, 124: 13194-13203.
    [106] Wang Y, Noguchi M, Takahashi Y, et al. Synthesis of SBA-15 with Different Pore Sizes and the Utilization as Supports of High Loading of Cobalt Catalysts[J]. Catal. Today. 2001, 68: 3-9.
    [107]闫继娜,施剑林,华子乐等. CoO-NiO/SBA-15的合成与表征[J].化学学报, 2004, 62(18): 1841-1844.
    [108] Klimova T, Lizama L, Amezcua J C, et al. New NiMo Catalysts Supported on Al-containing SBA-16 for 4,6-DMDBT Hydrode- sulfurization Effect of the Alumination Method[J]. Catal. Today, 2004, 98(1-2): 141-150.
    [109] Li H L, Wang R Z , Hong Q, et al. Ultrasound-assisted Polyol Method for the Preparation of SBA-15-supported Ruthenium Nanoparticles and the Study of their Catalytic Activity on the Partial Oxidation of Methane[J]. Langmuir, 2004, 20(19): 8352-8356.
    [110] de Francisco J, Eduardo R H. Selective Functionalizationof Mesoporous Silica[J]. Adv. Mater., 2000, 12(6): 430-432.
    [111] Zhu H G, Liang C D, Yan W F, et al. Preparation of Highly Active Silica-supported as Catalysts for CO Oxidation by a Solution-based Technique[J]. J. Phys. Chem. B., 2006, 110(22): 10842-10848.
    [112] Bond G C, Thompson D T. Catalysis by Gold[J]. Catal. Rev. Sci. Eng., 1999, 41(3-4): 319-388.
    [113] Song H, Robert R M, James H D, et al. Hydrothermal Growth of Mesoporous SBA-15 Silica in the Presence of PVP-stabilized Pt Nanoparticles: Synthesis, Characterization and Catalytic Properties[J]. J. Am. Chem. Soc., 2006, 128(9): 3027-3037.
    [114] Svatopluk C, Wilhelm G R, Elisabeth V, et al. Platinum Nanoparticles Encapsulation in Mesoporous Silica: Preparation, Characterisation and Catalytic Activity in Toluene Hydrogenation[J]. Micropor. Mesopor. Mater., 2005, 86: 198-206.
    [115] Zhang L, Deng J, Dai H, et al. Binary Cr-Mo Oxide Catalysts Supported on MgO-coated Polyhedral Three-dimensional Mesoporous SBA-16 for The Oxidative Dehydrogenation of Iso-butane[J]. Appl. Catal. A: Gen., 2009, 54: 72-81.
    [116] Shah A T, Li B S, Abdalla Z E A. Direct Synthesis of Cu-SBA-16 by Internal pH-modification Method and its Performance for Adsorption of Dibenzothiophene[J]. Micropor. Mesopor. Mater., 2010, 130: 248-254.
    [117] Perea L E, Nava R, Pawelec B, et al. SBA-15-supported Gold Nanoparticles Decorated by CeO_2: Structural Characteristics and CO Oxidation Activity[J]. Appl. Catal. A: Gen., 2010, 381: 42-53.
    [118] Wang Y M , Wu Z Y, Wei Y L, et al. In situ Coating Metal Oxide on SBA-15 in One-pot Synthesis[J]. Micropor. Mesopor. Mater., 2005, 84: 127-136.
    [119] Zhang L, Zhao Y, Dai H, et al. A Comparative Investigation on the Properties of Cr-SBA-15 and CrOx/SBA-15[J]. Catal. Today., 2008, 131: 42-54.
    [120] E A Prasetyanto, Sujandi, Lee S C, et al. Highly Dispersed CuO Nanoparticles on SBA-16 Type Mesoporous Silica with Cyclam SBA-16 as a Precursor[J]. Bull. Korean Chem. Soc., 2007, 28(12): 2359-2362.
    [121] Zhu Y J, Dong Y L, Zhao L N, et al. Preparation and Characterization of Mesopoous VOx/SBA-16 and their Application for the Direct Catalytic Hydroxylation of Benzene to Phenol[J]. J. Mol. Catal. A: Chem., 2010, 315(2):205-212.
    [122] Huang H Y, Zhao C D, Ji Y S, et al. Preparation, Characterization and Application of p-tert-butyl-calix[4]arene-SBA-15 Mesoporous Silica Molecular Sieves[J]. J. Hazard. Mater., 2010, 178: 680-685.
    [123] Saikia L, Srinivas D, Ratnasamy P. Comparative Catalytic Activity of Mn(Salen) Complexes Grafted on SBA-15 Functionalized with Amine, Thiol and Sulfonic Acid Groups for Selective Aerial Oxidation of Limonene[J]. Micropor. Mesopor. Mater., 2007, 104: 225-235.
    [124]史晶金,刘亚敏,陈杰等.氨基功能化SBA-16对CO_2的动态吸附特性[J].物理化学学报, 2010, 26(11): 3023-3029.
    [125] Bordoloi A, Amrute A P, Halligudi S B. Ru[(salen)(NO)] Complex Encapsulated in Mesoporous SBA-16 as Catalyst for Hydrogenation of Ketones[J]. Catal. Commun., 2008, 10(1): 45-48.
    [126] Yang H Q, Zhang L, Wang P, et al. The Enantioselective Cyanosilylation of Aldehydes on a Chiral VO(Salen) Complex Encapsulated in SBA-16[J]. Green. Chem., 2009, 11(2): 257-264.
    [127] Berrichi Z E, Cherif L, Orsen O, et al. Ga Doped SBA-15 as an Active and Stable Catalyst for Friedel-crafts Liquid-phase Acylation[J]. Appl. Catal. A: Gen., 2006, 298: 194-202.
    [128]于世涛,刘福胜.固体酸与精细化工[M].北京:化学工业出版社, 2006: 27-201.
    [129] Yadav G D, Doshi N S. Alkylation of phenol with methyl-tert-butyl ether and tert-butanol over solid acids: efficacies of clay-based catalysts[J]. Appl. Catal. A: Gen., 2002, 236: 129-147.
    [130] Liu Q, Wu W, Wang J, et al. Characterization of 12-tungstophosphoric Acid Impregnated on Mesoporous Silica SBA-15 and its Catalytic Performance in Isopropylation of Naphthalene with Isopropanol[J]. Micropor. Mesopor. Mater., 2004, 76: 51-60.
    [131] Zhao W, Salame P, Herledan V, et al. Study the Liquid-phase Beckmann Rearrangement on the Surface of SBA-15-SO3H Catalyst[J]. J. Porous Mater. 2010, 17: 335-340.
    [132] Gracia M J, Losada E, Luque R, et al. Activity of Gallium and Aluminum SBA-15 Materials in the Friedel-crafts Alkylation of Toluene with Benzyl Chloride and Benzyl Alcohol[J]. Appl. Catal. A: Gen., 2008, 349: 148-155.
    [133] Du Y, Liu S, Zhang Y, et al. Urea-assisted Synthesis of Hydrothermally Stable Zr-SBA-15 and Catalytic Properties over their Sulfated Samples[J]. Micropor. Mesopor. Mater., 2009, 121: 185-193.
    [134] Shen W, Gu Y, Xu H L, et al. Alkylation of Isobutane/1-Butene on Methyl-Modified Nafion/SBA-16 Materials[J]. Ind. Eng. Chem. Res., 2010, 49(16):7201-7209.
    [135] Jiang N, Koo J B, Han S C, et al. Lewis-type Catalytic Activity of Direct Incorporated Zr- and Sn-SBA-16 Catalysts[J]. Res. Chem. Intermed., 2008, 34(5-7): 507-517.
    [136] Li Y, Feng Z, van Santen A R, et al. Surface Functionalization of SBA-15-ordered Mesoporous Silicas: Oxidation of Benzene to Phenol by Nitrous Oxide[J]. J. Catal., 2008, 255: 190-196.
    [137] Lu Z, Ji S, Liu H, et al. Preparation and Characterization of Pt-Sn/SBA-15 Catalysts and their Catalytic Performances for Long Chain Alkane Dehydrogenation[J]. Chin. J. Chem. Eng., 2008, 16: 740-745.
    [138] Cui H T, Zhang Y, Qiu Z G, et al. Synthesis and Characterization of Cobalt-substituted SBA-15 and its high activity in Epoxidation of Styrene with Molecular Oxygen[J]. Appl. Catal. B: Environ., 2010, 101(1-2): 45-53.
    [139] Hess C, Wild U, Schl?gl R. The Mechanism for the Controlled Synthesis of Highly Dispersed Vanadia Supported on Silica SBA-15[J]. Micropor. Mesopor. Mater., 2006, 95: 339-349.
    [140] Shanbhag G V, Kumbar S M, Halligudi S B. Chemoselective Synthesis of Beta-amino Acid Derivatives by Hydroamination of Activated Olefins using AlSBA-15 Catalyst prepared by Post-synthetic Treatment[J]. J. Mol. Catal. A: Chem., 2008, 284(1-2): 16-23.
    [141] Huang Z D, Bensch W, Lotnyk A, et al. SBA-15 as Support for NiMo HDS Catalysts Derived from Sulfur-containing Molybdenum and Nickel Complexes: Effect of Activation Mode[J]. J. Mol. Catal A: Chem., 2010, 323: 45-51.
    [142] Popova M, Szegediá, Cherkezova-Zheleva Z, et al. Toluene Oxidation on Chromium- and Copper-modified SiO_2 and SBA-15[J]. Appl. Catal. A: Gen., 2010, 381: 26-35.
    [143] Habimana F, Li X, Ji S, et al. Effect of Cu Promoter on Ni-based SBA-15 Catalysts for Partial Oxidation of Methane to Syngas[J]. J. Nat. Gas. Chem., 2009, 18: 392-398.
    [144] Chen Y T, Lim H M, Tang Q H, et al. Solvent-free Aerobic Oxidation of Benzyl Alcohol over Pd Monometallic and Au-Pd Bimetallic Catalysts Supported on SBA-16 Mesoporous Molecular Sieves[J]. Appl. Catal. A: Gen., 2010, 380(1-2): 55-65.
    [145] Yang H Q, Han X J, Ma Z C, et al. Palladium-guanidine Complex Immobilized on SBA-16: a Highly Active and Recyclable Catalyst for Suzuki Coupling and Alcohol Oxidation[J]. Green. Chem., 2010, 12(3): 441-451.
    [146] FuJishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238(5358): 37-38.
    [147] Victof F, Stone J, Davis R J. Synthesis, Characterization, and Photocatalytic Activity of Titania and Niobia Mesoporous Molecular Sieves[J]. Chem. Mater., 1998, 10: 1468-1474.
    [148] Pera-Titus M, Garcia-Molina V, Banos M A, et al. Degradation of Chlorophenols by Means of Advanced Oxidation Processes: a General Review[J]. Appl. Catal. B: Environ., 2004, 47(4): 219-256.
    [149] Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic Activity of Amorphous-anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions[J]. J. Phys. Chem. C. 1997, 101(19): 3746-3752.
    [150] Wang R, Sakai N, Fujishima A, et al. Studies of Surface Wettability Conversion on TiO_2 Single-crystal Surfaces[J]. J. Phys. Chem. C., 1999, 103(12): 2188-2194.
    [151] Bavykin D V, Friedrich J M, Walsh F C. Protonated Titanates and TiO_2 Nanostructured Materials: Synthesis, Properties, and Applications[J]. Adv. Mater., 2006, 18(21): 2807-2824.
    [152] Kamat P V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion[J]. J. Phys. Chem. C., 2007, 111(7): 2834-2860.
    [153] Mor G K, Varghese O K, Paulose M, et al. A review on Highly Ordered, Vertically Oriented TiO_2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications[J]. Sol. Energy. Mater. Sol. Cells., 2006, 90(14): 2011-2075.
    [154] Fox M A, Dulay M T. Heterogeneous Photocatalysis[J]. Chem. Rev., 1993, 93(1): 153-160.
    [155]徐向阳,郑平,俞秀娥.染化废水厌氧生物处理技术的研究[J].环境科学学报, 1998, 18(2): 153-160.
    [156] Cermenati L, Pichat P, Guillard C, et al. Probing the TiO_2 Photocatalytic Mechanisms in Water Purification by Use of Quinoline, Photo-Fenton Generated OH Radicals and Superoxide Dismutase[J]. J. Phys. Chem. B., 1997, 101(14): 2650-2658.
    [157] Watson S, Beydoun D, Scott J, et al. Preparation of Nanosized Crystalline TiO_2 Particles at Low Temperature for Photocatalysis[J]. J. Nanopart. Res., 2004, 6: 193-207.
    [158] Wang W, Song M, Photocatalytic Activity of Titania-containing Mesoporous SBA-15 Silica[J]. Micropor. Mesopor. Mater., 2006, 96: 255-261
    [159] Busuioca A M, Meynen V, Beyers E, et al. Growth of Anatase Nanoparticles inside the Mesopores of SBA-15 for Photocatalytic Applications[J]. Catal. Commun., 2007, 8: 527-532.
    [160] Shah A T, Li B S, Abdalla Z E A. Direct synthesis of Ti-containing SBA-16-type Mesoporous Material by the Evaporation-induced Self-assembly Methodand Its Catalytic Performance for Oxidative Desulfurization[J]. J. Colloid Interface Sci., 2009, 336(2): 707-711.
    [161] Zhang S C, Jiang D, Tang T, et al. TiO_2/SBA-15 Photocatalysts Synthesized through the Surface Acidolysis of Ti((OBu)-Bu-n)(4) on Carboxyl-modified SBA-15[J]. Catal. Today., 2010, 158(3-4): 329-335.
    [162] Eswaramoorthi I, Dalai A K. A Comparative Study on the Performance of Mesoporous SBA-15 Supported Pd-Zn Catalysts in partial Oxidation and Steam Reforming of Methanol for Hydrogen Production[J]. Int. J. Hydrogen Energy., 2009, 34(6): 2580-2590.
    [163] Yang J P, Zhai Y P, Deng Y H, et al. Direct Triblock-copolymer-templating Synthesis of Ordered Nitrogen-containing Mesoporous Polymers[J]. J. Colloid. Interface. Sci., 2010, 342: 579-585.
    [164] Bhagiyalakshmi M, Park S D, Cha W S, et al. Development of TREN Dendrimers over Mesoporous SBA-15 for CO_2 Adsorption[J]. Appl. Surf. Sci., 2010, 256: 6660-6666.
    [165] Van Der Voort P, Benjelloun M, Vansant E F. Rationalization of the Synthesis of SBA-16 Controlling the Micro- and Mesoporosity[J]. J. Phys. Chem. B., 2002, 106(35): 9027-9032.
    [166] Liu G H, Liu M M, Sun Y Q, et al. Mesoporous SBA-15-supported Chiral Catalysts: Preparation, Characterization and Asymmetric Catalysis[J]. Tetrahedron: Asymmetry, 2009, 20(2): 240-246.
    [167] Kim Y S, Guo X F, Kim G J. Highly active new chiral Co(III) Salen Catalysts Immobilized by Electrostatic Interaction with Sulfonic Acid Linkages on Ordered Mesoporous SBA-16 Silica[J]. Chem. Comm., 2009, 28: 4296-4298.
    [168] Devassy B M, Shanbhag G V, Mirajkar S P, et al. Silicotungstate-modified Zirconia as an Efficient Catalyst for Phenol Tert-butylation[J]. J. Mol. Catal. A: Chem., 2005, 233(1-2): 141-146.
    [169] Zhang K, Zhang H B, Xu G H, et al. Alkylation of Phenol with tert-butyl Alcohol Catalyzed by Large Pore Zeolites[J]. Appl. Catal. A: Gen., 2001, 207: 183-190.
    [170] Vinu A, Krithiga T. Murugesan V. Direct Synthesis of Novel FeSBA-1 Cubic Mesoporous Catalyst and Its High Activity in Tert-butylation of phenol[J]. Adv. Mater., 2004, 16(20): 1817-1821.
    [171]林梦海.量子化学简明教程[M].北京:化学工业出版社, 2005: 228-258.
    [172]徐光宪,黎乐民,王德民.量子化学基本原理和从头算法[M].北京:科学出版社, 2001: 376-535.
    [173]丘利,胡玉和. X射线衍射技术及设备[M].北京:冶金工业出版社, 1998: 25-141.
    [174] Baerlocher C, McCusker L B. Practical Aspects Power Diffraction Data-analysis[M]. Advanced Zeolite Science and applications, 1994, 391-428.
    [175] Bish D L, Post J E. Modern Power Diffraction[J]. Review in Mineralogy, 1989, 20: 73-80.
    [176] Floquet N, Coulomb J P, Weber G. Structural Signatures of TypeⅣIsotherm Steps: Sorption of Trichloroethene, Tetrachloroethene, and Benzene in Silicalite-I[J]. J. Phys. Chem. B., 2003, 107: 685-693.
    [177] Gallo J M R, Bisio C, Gatti G, et al. Physicochemical Characterization and Surface Acid Properties of Mesoporous [Al]-SBA-15 Obtained by Direct Synthesis[J]. Langmuir, 2010, 26(8): 5791-5800.
    [178]马利静,郭烈锦.不同原料合成的TiO_2的变温拉曼光谱分析[J].化学学报, 2006, 64(9): 863-867.
    [179] Lachheb H, Puzenat E, Houas A, et al. Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by UV-irradiated Titania[J]. Appl. Catal. B: Environ., 2002, 39(1): 75-90.
    [180] Stakheev A Y, Shpiro E S, Apijok J. XPS and XAES Study of TiO_2-SiO_2 Mixed-oxide System[J]. J. Phys. Chem., 1993, 97(21): 5668-5672.
    [181] Erdem B, Hunsicker R A, Simmons G W, et al. XPS and FTIR Surface Characterization of TiO_2 Particles Used in Polymer Encapsulation[J]. Langmuir, 2001, 17(9): 2664-2669.
    [182] Jansen K. Characterization of Zeolites by SEM, Verified Syntheses of Zeolitic Materials(2nd revised edition)[M]. Netherlands: Elsevier, 2001: 16-154.
    [183] Sakamoto Y H, Kaneda M, Terasaki O, et al. Direct Imaging of the Pores and Cages of Three-dimensional Mesoporous Materials[J]. Nature, 2000, 408: 449-453.
    [184] Hu W, Luo Q, Su Y C, et al. Acid Sites in Mesoporous Al-SBA-15 Material as Revealed by Solid-state NMR Spectroscopy[J]. Micropor. Mesopor. Mater., 2006, 92: 22-30.
    [185] Rodríguez-González L, Hermes F, Bertmer M, et al. The Acid Properties of H-ZSM-5 as Studied by NH3-TPD and 27Al-MAS-NMR Spectroscopy[J]. App. Catal. A: Gen., 2007, 328: 174-182.
    [186] Khalee A A, Klabunde K J. Characterization of Aerogel Prepared High-Surface-Area Alumina: In Situ FTIR Study of Dehydroxylation and Pyridine Adsorption[J]. Chem. Eur. J., 2002, 8: 3991-3998.
    [187] Parris E P. An Infrared Study of Pyridine Adsorbed on Acidic Solids[J]. Characterization of Surface Acidity, 1963, 2(5): 371-379.
    [188]唐庆余.红外光谱测定固体酸催化剂表面酸性[J].炼油与化工, 2004, 4: 28-29.
    [189]吴越.催化化学[M].北京:科技出版社, 1995: 11048-10521.
    [190]李宣文,刘兴云,佘励勒.沸石催化剂开发与红外光谱研究,催化研究中的原位技术[M].北京:北京大学出版社, 1993: 30-33.
    [191] Emeis C A. Determination of Integrated Molar Extinction Coefficients for Infrared-absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts[J]. J. Catal., 1993, 141(2): 347-354.
    [192]朱明华.仪器分析(第三版)[M].北京:高等教育出版社, 2000: 196-266.
    [193] Zheng S, Cai Y, O’Shea K E. TiO_2 Photocatalytic Degradation of Phenylarsonic Acid[J]. J. Photochem. Photobiol. A: Chem., 2010, 210(1): 61-68.
    [194] Kroeze J E, Savenije T J, Vermeulen M J W, et al. Contactless Determination of the Photoconductivity Action Spectrum, Exciton Diffusion Length, and Charge Separation Efficiency in Polythiophene-sensitized TiO_2 Bilayers[J]. J. Phys. Chem. B., 2003, 107(31): 7696-7705.
    [195] Ren W J, Ai, Z H Jia F L, et al. Low Temperature Preparation and Visible Light Photocatalytic Activity of Mesoporous Carbon-doped Crystalline TiO_2[J]. Appl. Catal. B: Environ., 2007, 69(3-4): 138-144.
    [196] Sahu D R, Hong L Y, Wang S C, et al. Synthesis, Analysis and Characterization of Ordered Mesoporous TiO_2/SBA-15 Matrix: Effect of Calcination Temperature[J]. Micropor. Mesopor. Mater., 2009, 117(3): 640-649.
    [197] Yue Y, Cedeon A, Bonardet J L, et al. Direct Synthesisof AlSBA Mesoporous Molecular Sieves: Characterization and Catalytic Activities[J]. Chem. Common., 1999, 1697-1968.
    [198] Li W, Huang S, Liu S, et al. Influence of the A1 Source and Synthesis of Ordered Al-SBA-15 Hexagonal Particles with Nanostairs and Terraces[J]. Langmuir, 2005, 21: 2078-2085.
    [199] Li Q, Wu Z X, Tu B, et al. Highly Hydrothermal Stability of Ordered Mesoporous Aluminosilicates Al-SBA-15 with High Si/Al Ratio[J]. Micropor. Mesopor. Mater., 20109, 135(1-3): 95-104.
    [200] Chen S Y, Tang C Y, Chuang W T, et al. A Facile Route to Synthesizing Functionalized Mesoporous SBA-15 Materials with Platelet Morphology and Short Mesochannels[J]. Chem. Mater., 2008, 20: 3906-3916.
    [201]徐如人,庞文琴,霍启升.无机合成制备化学(下册)[M].北京:高等教育出版社, 2009: 1-51.
    [202] Dragoi B, Dumitriu E, Guimon C, et al. Acidic and Adsorptive Properties of SBA-15 Modified by Aluminum Incorporation[J]. Micropor. Mesopor. Mater., 2009, 121(1-3): 7-17.
    [203] Kumaran G M, Garg S, Soni K, et al. Synthesis and Characterization of Acidic Properties of Al-SBA-15 Materials with Varying Si/Al Ratios[J]. Micropor. Mesopor. Mater., 2008, 114(1-3): 103-109.
    [204] Van Mao R L, Al-Yassir N, Lu L, et al. New Method for the Study of Surface Acidity of Zeolites by NH3-TPD, using a pH-meter Equipped with an Ion Selective Electrode[J]. Catal Lett., 2006, 112(1-2): 13-18.
    [205] Jermy B R, Kim S Y, Bineesh K V, et al. Easy Route for the Synthesis of Fe-SBA-16 at Weak Acidity and Its Catalytic Activity in the Oxidation of Cyclohexene[J]. Micropor. Mesopor. Mater., 2009, 121(1-3):103-113.
    [206] Huirache-Acu?a R, Pawelec B, Rivera-Mu?oz E, et al. Comparison of the Morphology and HDS Activity of Ternary Co-Mo-W Catalysts Supported on P-modified SBA-15 and SBA-16 Substrates[J]. Appl. Catal. B: Environ., 2009, 92: 168-194.
    [207] Gallo J M R, Bisio C, Marchese L, et al. Surface Acidity of Novel Mesostructured Silicas with Framework Aluminum Obtained by SBA-16 Related Synthesis[J]. Micropor. Mesopor. Mater., 2008, 111(1-3): 632-635.
    [208] Boutros M, Onfroy T, Costa P D. Mesostructured or Alumina-mesostructured Silica SBA-16 as Potential Support for NOx Reduction and Ethanol Oxidation[J]. Catal. Lett., 2010, 139(1-2): 50-55.
    [209] Yang P D, Zhao D Y, Margolese D I, et al. Generalized Syntheses of Large-pore Mesoporous Metal Oxides with Semicrystalline Frameworks[J]. Nature, 1998, 152-155.
    [210] Jin Z W, Wang X D, Cui X G. A Two-step Route to Synthesis of Small-pored and Thick-walled SBA-16-type Mesoporous Silica under Mildly Acidic Conditions[J]. J. Colloid. Interface. Sci., 2007, 307(1): 158-165.
    [211] Landau M V, Vradman L, Wang X G, et al. High Loading TiO_2 and ZrO_2 Nanocrystals Ensembles inside the Mesopores of SBA-15: Preparation, Texture and Stability[J]. Micropor. Mesopor. Mater., 2005, 78(2-3): 117-129.
    [212] Yan W F, Mahurin S M, Overbury S H, et al. Nonhydrolytic Layer-by-layer Surface Sol-gel Modification of Powdered Mesoporous Silica Materials with TiO_2[J]. Chem.Mater., 2005, 17(8): 1923-1925.
    [213] Zhang W H, Lu J Q, Han B, et al. Direct Synthesis and Characterization of Titanium-substituted Mesoporous Molecular Sieve SBA-15[J]. Chem. Mater., 2002, 14(8): 3413-3421.
    [214]苏继新,屈文,马丽媛, et al. SBA-15空间限制纳米TiO_2颗粒的制备及其光催化性能研究[J].化学学报, 2008,66(21): 2416 -2422.
    [215] Zukerman R, Vradman L, Titelman L, et al. Effect of Silica Wall Microporosity on the State and Performance of TiO_2 Nanocrystals in SBA-15 Matrix[J]. Micropor. Mesopor. Mater., 2008,112: 237-245.
    [216] Busuioc A M, Meynen V, Beyers E, et al. Structural Features and Photocatalytic Behaviour of Titania Deposited within the Pores of SBA-15[J]. Appl. Catal. A: Gen., 2006, 312: 153-164.
    [217] Hsien Y H, Chang C F, Chen Y H, et al. Photodegradation of Aromatic Pollutants in Water over TiO_2 Supported on Molecular Sieves[J]. Appl. Catal. B:Environ., 2001, 31: 241-249.
    [218] Beyers E, Cool P, Vansant E F. Stabilisation of Mesoporous TiO_2 by Different Bases Influencing the Photocatalytic Activity[J]. Micropor. Mesopor. Mater., 2007, 99: 112-117.
    [219] Gr?tzel M. Review Article Photoelectrochemical Cells[J]. Nature, 2001, 414: 338-344.
    [220] Kisch H, Burgeth G, Macyk W. Visible Light Photocatalysis by a Titania Transition Metal Complex[J]. Adv. Inorg. Chem., 2004, 56: 241-259.
    [221] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides[J]. Science, 2001, 293: 269-271.
    [222] Goodenough J B, Hamnett A, Dare-Edwards M P, et al. Inorganic Materials for Photoelectrolysis[J]. Surf. Sci., 1980, 101: 531-540.
    [223] Blasse G, Dirksen G J, Korte P H M. Materials with Cationic Valence and Conduction Bands for Photoelectrolysis of Water[J]. Mater. Res. Bull., 1981, 16: 991-998.
    [224]邹文,郝维昌,信心等.不同晶型Bi2O3可见光光催化降解罗丹明B的研究[J].无机化学学报, 2009, 25: 1971-1976.
    [225] Bessekhouad Y, Robert D, Weber J V. Photocatalytic Activity of Cu2O/TiO_2, Bi2O3/TiO_2 and ZnMn2O4/TiO_2 Heterojunctions[J]. Catal. Today, 2005, 101(3-4): 315-321.
    [226] Wang C H, Shao C L, Wang L J, et al. Electrospinning Preparation, Characterization and Photocatalytic Properties of Bi2O3 Nanofibers[J]. J. Colloid Interf. Sci., 2009, 333(1): 242-248.
    [227] Bian Z F, Zhu J, Wang S H, et al. Self-Assembly of Active Bi2O3/TiO_2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase[J]. J. Phys. Chem. C., 2008, 112: 6258-6262.
    [228] Shamaila S, Sajjad A K L, Chen F, et al. Study on Highly Visible Light Active Bi2O3 Loaded Ordered Mesoporous Titania[J]. Appl. Catal. B: Environ., 2010, 94: 272-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700