沸石/介孔氧化硅和碳纳米管/介孔碳核—壳复合材料合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔分子筛材料,由于其空旷的骨架,巨大的比表面积以及规整可调的孔结构,在催化、吸附、分离等领域已经得到了非常广泛的应用,同时也为人类创造了巨大的经济效益。从20世纪60年代环球油品(UOP)公司研制的Y沸石到后来Mobil公司发明的ZSM-5,沸石分子筛已经被广泛用于石油催化裂化制汽油,并不断改变人类能源结构和化学品构成。但传统的沸石分子筛材料一般孔道尺寸较小(小于1.2 nm),不能满足包括重油分子在内的有机大分子催化转化要求。1992年美孚(Mobil)公司研究报道了MCM-41系列介孔氧化硅分子筛,这类新的多孔材料具有大比表面积,二维或三维有序排列且尺寸均一可调的孔道,因而引起了人们广泛关注。随后,具有更大孔径和更高稳定性的SBA系列介孔氧化硅分子筛的成功合成为介孔材料在大分子催化、精细化工、生物大分子吸附分离、传感、药物传递等领域的广泛应用奠定了良好基础。但是,目前受到无定型孔壁组成的限制,其水热稳定性、酸性稳定性和强度还较差,未能达到工业应用要求。
     功能性设计是促进材料科学领域不断发展的驱动力。核-壳复合材料是一类将具有不同功能或孔道结构的不同组分在不同空间上均匀、可控分布的功能性材料。本论文针对多孔分子筛材料研究的国际发展趋势,围绕重油中大分子转化、烯烃制备等为导向的功能分子筛基础和前瞻性科学研究,以功能性多孔分子筛的设计和合成调控为主线,分别从微孔/介孔核-壳型分子筛结构的创制、解析和催化应用等方面,系统研究核-壳型功能分子筛的结构构筑、形成生长规律与组装机制,调控其功能和孔径;同时,论文还研究了碳纳米管/介孔碳核-壳复合材料的构筑、结构解析和在电化学储能方面的应用。
     论文第二章旨在探索“多级孔道”沸石/介孔氧化硅核-壳复合分子筛的结构和酸性特征。我们采用阳离子表面活性剂CTAB为模板剂,TEOS为硅源,通过碱性条件下表面活性剂导向组装的溶胶-凝胶包裹过程,制备了一系列由沸石(ZSM-5)单晶为核和MCM-41型有序介孔氧化硅为壳层的核-壳型复合分子筛。采用该方法得到的复合分子筛中介孔氧化硅壳层均匀且紧密地生长在沸石单晶周围,且通过改变合成过程中TEOS/沸石质量比,氧化硅壳层厚度可以在15100 nm范围内可调。所得复合材料中的沸石晶粒和介孔氧化硅壳层通过紧密连接形成一个由2.4-3.0 nm介孔孔道的外壳层和0.51 nm的沸石晶粒内核组成的“多级孔道结构”复合分子筛。沸石分子筛ZSM-5包裹壳层厚度为75 nm的介孔氧化硅壳层前后,苯分子在沸石内的短时动力学扩散系数分别为7.88×10-19和7.25×10-19m2/s,则壳层构筑对苯分子在沸石孔道中的扩散影响较小,表明壳层与沸石核间高度的连通性。包裹后复合材料对大分子1,3,5-三异丙苯的吸附量(~1.35mmol/g)远远高于纯沸石(~0.4mmol/g)。当在包裹过程中引入铝源,所得复合分子筛具有“梯度”酸性分布的特点:介孔壳层中主要是以Lewis酸为主,且酸性较弱;沸石内核则保留了较强的酸性,其中含有丰富的Br(?)nsted酸和部分Lewis酸。核-壳复合分子筛在正十二烷探针分子的催化裂化反应中具有良好的催化效果。“多级孔道”结构和“梯度”酸分布的核-壳复合分子筛在石油催化中具有潜在应用前景。
     论文第三章旨在探索合成具有较大孔径介孔氧化硅壳层的包裹方法。我们报道了一种“超稀溶液相”包裹方法,首次采用三嵌段共聚物Pluronic P123为农面活性剂,在酸性介质中合成具有SBA-15壳层包裹的ZSM-5@SBA-15复合分子筛。结构表征表明,复合分子筛比表面积可调(115-228 m2/g),壳层孔径大(约7 nm),壳层中具有大量隧道小介孔(约3 nm),包裹后沸石仍能保留原来的高结晶度,且沸石微孔和SBA-15介孔的连接处高度开放。SBA-15二维六方的介孔孔道平行地生长在沸石不同晶面上,孔道排列具有“指纹”状花纹。通过调节壳层原料含量可以实现壳层厚度的调节,且壳层厚度由品而决定。此外,本章还系统研究了合成参数,包括无机盐MgSO4添加剂、搅拌速率、酸性、温度和反应时间对核-壳结构ZSM-5@SBA-15微孔/介孔复合分子筛合成的影响。水热处理(100℃)对制备具有有序规则介孔结构的SBA.15壳层具有明显效果。我们提出了包裹过程中“表面诱导胶束化”和“氧化硅壳层孔道重整”形成均匀ZSM-5@SBA-15微孔/介孔核-壳复合分子筛的形成机理。此外,甲醇转化制丙稀(MTP)的催化结果显示其高转化率(~98%)、高丙稀选择性(约39%)及高P/E值(propylene/ethylene ratio,约10.7)。
     论文第四章旨在拓展核-壳复合材料中介孔氧化硅壳层的孔道结构和功能性。我们在第三章研究基础上,首次采用具有更大亲水嵌段的三嵌段共聚物Pluronic F108为模板,TEOS为硅源,沸石分子筛ZSM-5为核材料,在酸性条件下通过“溶液相”组装过程构筑了一种新颖的具有笼型介孔氧化硅壳层的核-壳复合分子筛材料。核-壳复合分子筛中介孔氧化硅壳层具有大小不同的笼型孔,壳层厚度为70 nm左右。复合分子筛具有高比表面积、大孔径(2.9-8.4nm)和高结晶度沸石核,且微孔/介孔间具有开放的连接。核-壳复合分子筛负载的Pt纳米催化剂均匀分散在介孔氧化硅壳层中,催化剂颗粒尺寸约为3.2 nm。甲苯的催化氧化性能研究表明,沸石分子筛的酸性有利于提高催化剂的活性,但是可能会提高积碳的生成从而降低催化剂的活性稳定性。相同Pt负载量的核-壳复合分子筛的活性稳定性明显高于机械混合催化剂。
     论文第五章在前而研究基础上旨在拓展核-壳复合材料功能性和组分多元化。我们从碳电极材料的导电性和高比表面出发,采用溶胶-凝胶包裹法和纳米复制相结合的方法合成具有核-壳结构的多壁碳纳米管@介孔碳复合材料(MWNT@mesoC)。将商业化MWNTs用混酸处理,然后采用CTAB为模板在碳管表面均匀包裹一层介孔氧化硅,获得多壁碳纳米管@介孔氧化硅复合材料。然后,采用该材料为模板,将碳源糠醇和催化剂草酸灌注到介孔氧化硅壳层孔道内,经碳化处理和除去氧化硅后得到MWNT@mesoC核-壳复合材料。复合材料保持了原始MWNTs的一维管状结构和三维缠绕网络骨架。材料微纳结构表征表明每根MWNT表面都均匀包裹了厚度为15 nm的介孔碳壳层,因此材料比表面积增加了300 m2/g,且都来自于孔径为3.9/8.9 nm介孔。电化学电容器性能测试表明包裹介孔碳壳层后的MWNTs与纯MWNTs相比,其在1.0 M (C2H5)4NBF4和6.0 M KOH电解质中测得的比电容大大增加,分别从9.0 F/g增加到48.4 F/g和6.8 F/g增加到60.2 F/g。此外,核-壳复合材料在较高电流密度(20 A/g)下维持了初始比电容的60%,循环1000次后比电容仍能维持94%。
Porous materials have been widely applied in catalysis, adsorption and separation for their opened frameworks, large specific surface areas and ordered pore structures. Moreover, porous materials have brought huge economic benefits for human beings. Since the preparation of Y zeolite by the UOP Company in 1960 and ZSM-5 later by Mobil, zeolite molecular sieves have been used as catalysts in the catalytic cracking of petroleum, which have been changing the energy structure and chemical composition of the present society. However, traditional zeolite molecular sieves are largely restricted by their limited pore size (less than 1.3 nm) in many applications, which can not satisfy in the large-molecule involved applications, such as the catalytic conversion of heavy oil molecules. In 1992, the report of MCM-41 series mesoporous silica materials with large surface areas,2-D or 3-D ordered mesostructures by Mobil aroused widespread concerns. Afterwards, the successful synthesis of SBA series mesoporous silica materials with larger pore size and higher stability built a good foundation for their applications in large-molecule catalysis, fine chemicals, adsorption and separation, sensors and drug delivery etc. Nevertheless, the amorphous properties of these mesoporous materials resulted in the poor hydrothermal and mechanical stability, weak acidity. Therefore, these materials were failed to achieve the requirements of industrial applications.
     Functional design of nanomaterials is a strong driving force to promote the development of nanomaterials science. Core-shell composite materials are a new type of functional materials in terms of distributing different compositions with various functionalities and pore structures spatially on nanoscale. Based on the international trend in porous material synthesis and heavy oil conversion, this thesis presents a systematic study of the core-shell structured composite molecular sieves regarding structure construction and exploration, growth mechanism and application in catalysis etc. MWNT@mesoporous carbon core-shell composite were also constructed and the structure exploration and application in electrochemical energy storage were also taken into account.
     In chapter 2, the structure and acidity properties of hierarchically core-shell structured composite molecular sieves were explored. A series of core-shell structured composite molecule sieves comprising zeolite single-crystal (i.e., representative ZSM-5) as a core and ordered mesoporous silica as a shell were synthesized via a surfactant-directed sol-gel process in basic medium by using cetyltrimethyl-ammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as a silica precursor. Through this coating method, uniform mesoporous silica shells closely grow around the anisotropic zeolite single-crystals, and the shell-thickness of which can easily be tuned in the range of 15-100 nm by changing the mass ratio of TEOS/zeolite. The obtained composite molecular sieves have compact meso-/micro-pore junctions to form a hierarchical pore structure from ordered mesopore channels (2.4-3.0 nm in diameter) to zeolite micropores (~0.51 nm). The short-time kinetic diffusion efficiency of benzene molecules within pristine ZSM-5 (~7.88×10-19 m2/s) is almost retainable after covering with 75-nm-thick mesoporous silica shells (~7.25×10-19 m2/s), reflecting the highly opened junctions between closely connected mesopores (shell) and micropores (core). The core-shell composite shows greatly enhanced adsorption capacity (~1.35 mmol/g) for large molecule 1,3,5-triisopropylbenzene relative to that of pristine ZSM-5 (~0.4 mmol/g) owing to the mesoporous silica shells. When Al species are introduced during the coating process, the core-shell composite molecular sieves demonstrate a graded acidity distribution from weak acidity of mesopores (predominant Lewis acid sites) to accessible strong acidity of zeolite cores (Lewis and Br(?)nsted acid sites). The probe catalytic cracking reaction of n-dodecane shows the superiority of the unique core-shell structure over pristine ZSM-5. Insight into the core-shell composite structure with hierarchical pore and graded acidity distribution show great potentials in petroleum catalytic processes.
     In chapter 3, we report an ultra-dilute liquid-phase coating strategy in an acidic medium for controllable synthesis of uniform micro/mesoporous core-shell composites zeolite@SBA-15 comprising zeolite cores and mesoporous silica SBA-15 shells using triblock compolymer Plunoric P123 as a template. Structural characterizations show that the core-shell composites possess tuneable specific surface areas (115-228 m2/g), large pores (~7.0 nm in diameter) with plenty of mesotunnels (~3.0 nm) from silica shells, original crystalline zeolite frameworks and opened junctions between micropores and mesopores. The silica shells have ordered 2-D hexagonal mesopore channels, most of which are annularly parallel (fingerprint-like arrangement) to the anisotropic zeolite faces. The shell-thickness is crystal face-dependent. Moreover, the synthesis parameters such as MgSO4 additive, stirring rate, acidity, temperature and reaction time show great influences on the formation of uniform core-shell composites. Post-hydrothermal treatment at 100℃has been for the first time adopted to improve mesostructural regularity of the core-shell composites. A scheme regarding surface-induced micellization and hydrothermal rearrangement of mesostructured silica shells in the coating process is proposed to illustrate the formation of core-shell composites. The core-shell composite HZSM-5@SBA-15 (HZ@S15) was employed as a catalyst for methanol to propylene (MTP) conversion, and shows excellent catalytic performance with high methanol conversion (~98%) and propylene to ethylene (P/E) ratio (~10.7) as well as propylene selectivity (~39%).
     In chapter 4, we report a liquid-phase coating strategy in an acidic medium for controllable synthesis of uniform meso-/micro-porous core-shell composites comprising zeolite cores and cage-like mesoporous silica shells using triblock compolymer Plunoric F108 as a template, TEOS as a silica source and ZSM-5 as core materials. The mesoporous silica shells are composed of cage-like pores with different pore sizes and the shell-thickness is~70 nm. The core-shell composites possess high specific surface areas, large pores (2.9-8.4 nm in diameter) from silica shells, original crystalline zeolite frameworks and opened junctions between micropores and mesopores. Pt nanoparticles with particle size of~3.2 nm were well-dispersed in the mesoporous silica shells. Toluene oxidation reaction of Pt supported catalysts shows that the zeolite cores with strong acidity facilitate the oxidation reaction and gives rise to high activity, but it may enhance coke formation and decrease the catalyst stability. Pt supported core-shell composites have a higher catalytic stability than the mixture catalysts.
     In chapter 5, based on the desired electrical conductivity and high specific-surface-area for carbon-based electrodes, we have designed and synthesized uniform multiwall carbon nanotube@mesoporous carbon (MWNT@mesoC) composites with core-shell configuration by combining sol-gel methods and nanocasting. Pristine MWNTs after acid treatment were first coated with uniform mesostructured silica shells to obtain the MWNT@mesoporous silica (MWNT@mesoS) composite using cationic surfactant cetyltrimethyl ammonium bromide (CTAB) as a template. Then, furfural alcohol (carbon source) and oxalic acid (catalyst) were impregnated into the template-free MWNT@mesoS composite and followed by carbonization. The removal of silica led to the replacement of the mesoC shells decorated on the surface of MWNTs. The obtained composite materials retain the one-dimension (1-D) tubular structure and three-dimension (3-D) entangled framework as the original MWNTs. Micro/nanostructure exploration demonstrates that each MWNT is uniformly coated by the mesoC shell with short-pore-length (~15 nm), which contributes above 300 m2/g to specific surface areas purely from bimodal-mesopores (3.9/8.9 nm in diameter). The MWNT@mesoC composite shows greatly increased specific capacitance from 9.0 to 48.4 F/g and 6.8 to 60.2 F/g in 1.0M (C2H5)4NBF4 and 6.0MKOH, good rate performance with~60% maintenance of the initial capacitance at the current density of 20 A/g and high cyclability (94% after 1000 cycles).
引文
1. Davis, M. E. Nature 2002,417,813.
    2. IUPAC manual of symbols and terminology. Pure Appl. Chem.1972,31,578.
    3. Corma, A. Chem. Rev.1997,97,2373.
    4. Wan, Y.; Zhao, D. Y. Chem. Rev.2007,107,2821.
    5. 刘伯元,沸石及其开发应用[J].地质与勘探,1994,30(5):21-25.
    6. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc.1992,114,10834
    7. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992,359,710.
    8. Ma, G. C.; Yan, X. Q.; Li, Y. L.; Xiao, L. P.; Huang, Z. J.; Lu, Y. P.; Fan, J.J. Am. Chem. Soc.2010,132,9596.
    9. Holland, B. T.; Abrams, L.; Stein, A. J. Am. Chem. Soc.1999,121,4308.
    10. Tao, Y.; Kanoh, H.; Kaneko, K. J. Am. Chem. Soc.2003,125,6044.
    11. Xiao, F.-S.; Wang, L.; Yin, C.; Lin, K.; Di, Y.; Li, J.; Xu, R.; Su, D. S.; Schlogl, R.; Yokoi, T.; Tatsumi, T.Angew. Chem., Int. Ed.2006,45,3039.
    12. Wang, H.; Pinnavaia, T. J.Angew. Chem., Int. Ed.2006,45,7603.
    13. Tosheva, L.; Valtchev, V.; Sterte, J. Micropor. Mesopor. Mater.2000,35-36, 621.
    14. Tao, Y.; Kanoh, H.; Hanzawa, Y.; Kaneko, K. Colloids Surf., A 2004,241,75.
    15. Madsen, C.; Jacobsen, C. J. H. Chem. Commun.1999,673.
    16. Schmidt, I.; Boisen, A.; Gustavsson, E.; Stahl, K.; Pehrson, S.; Dahl, S.; Carlsson, A.; Jacobsen, C. J. H. Chem. Mater.2001,13,4416.
    17. Boisen, A.; Schmidt, I.; Carlsson, A.; Dahl, S.; Brorson, M.; Jacobsen, C. J. H. Chem. Commun.2003,958.
    18. Janssen, A. H.; Schmidt, I.; Jacobsen, C. J. H.; Koster, A. J.; de Jong, K. P. Micropor. Mesopor. Mater.2003,65,59.
    19. Yang, Z.; Xia, Y.; Mokya, R. Adv. Mater.2004,16,727.
    20. Sakhtivel, A.; Huang, S.-J.; Chen, W.-H.; Lan, Z.-H.; Chen, K.-H.; Kim, T.-W.; Ryoo, R.; Chiang, A. S. T.; Liu, S.-B. Chem. Mater.2004,16,3168.
    21. Zhang, Y.; Okubo, T.; Ogura, M. Chem. Commun.2005,2719.
    22. Ogura, M.; Zhang, Y.; Elangovan, S. P.; Okubo, T. Micropor. Mesopor. Mater. 2007,101,224.
    23. Hidrobo, A.; Retuert, J.; Araya, P.; Wolf, E. J. Porous Mater.2003,10,231.
    24. Schmidt, I.; Madsen, C.; Jacobsen, C. J. H. Inorg. Chem.2000,39,2279.
    25. Jacobsen, C. J. H.; Madsen, C.; Janssens, T. V. W.; Jakobsen, H. J.; Skibsted, J. Micropor. Mesopor. Mater.2000,39,393.
    26. Tao, Y.; Kanoh, H.; Kaneko, K. J. Phys. Chem. B 2003,107,10974.
    27. Jacobsen, C. J. H.; Houzvicka, J.; Carlsson, A.; Schmidt, A. Stud. Surf. Sci. Catal.2001,135,167.
    28. Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999,103,7743.
    29. Fan, W.; Snyder, M. A.; Kumar, S.; Lee, P. S.; Yoo, W. C.; McCormick, A. V.; Penn, R. L.; Stein, A.; Tsapatsis, M. Nature Mater.2008,9,984.
    30. Chen, H. Y.; Wydra, J.; Zhang, X. Y.; Lee, P. S.; Wang, Z. P.; Fan, W.; Tsapatsis, M.J. Am. Chem. Soc.2011,133,12390.
    31. Lee, P. S.; Zhang, X. Y.; Stoeger, J. A.; Malek, A.; Fan, W.; Kumar, S.; Yoo, W. C.; AI Hashimi, S.; Penn, R. L.; Stein, A.; Tsapatsis, M.J. Am. Chem. Soc.2011, 133,493.
    32. Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. J. Am. Chem. Soc.2000,122,7116.
    33. Wei, X.; Smirniotis, P. G. Micropor. Mesopor. Mater.2006,89,170.
    34. Egeblad, K.; Kustova, M.; Klitgaard, S. K.; Zhu, K.; Christensen, C. H. Micropor. Mesopor. Mater.2007,101,214.
    35. Kustova, M.; Egeblad, K.; Zhu, K.; Christensen, C. H. Chem. Mater.2007,19, 2915.
    36. Tao, Y.; Kanoh, H.; Kaneko, K. Langmuir 2005,21,504.
    37. Zhang, B.; Davis, S. A.; Mendelson, N. H.; Mann, S. Chem. Commun.2000, 781.
    38. Dong, A.; Wang, Y.; Tang, Y.; Ren, N.; Zhang, Y.; Yue, Y.; Gao, Z. Adv. Mater.2002,14,926.
    39. Valtchev, V.; Smaihi, M.; Faust, A.-C.; Vidal, L. Angew. Chem., Int. Ed.2003, 42,2782.
    40. Zhang, B.; Davis, S. A.; Mann, S. Chem. Mater.2002,14,1369.
    41. Beck, J. S.; Vartuli, J. C.; Kennedy, G. J.; Kresge, C. T.; Roth, W. J.; Schramm, S. E. Chem. Mater.1994,6,1816.
    42. Karlsson, A.; Stocker, M.; Schmidt, R. Microporous Mesoporous Mater.1999, 27,181.
    43. Christiansen, S. C.; Zhao, D.; Janicke, M. T.; Landry, C. C.; Stucky, G. D.; Chmelka, B. F. J. Am. Chem. Soc.2001,123,4519.
    44. Hedin, N.; Graf, R.; Christiansen, S. C.; Gervais, C.; Hayward, R. C.; Eckert, J.; Chmelka, B. F. J. Am. Chem. Soc.2004,126,9425.
    45. Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D.; Ryoo, R. Nat. Mater.2006,5,718
    46. Srivastava, R.; Choi, M.; Ryoo, R. Chem. Commun.2006,43,4489.
    47. Choi, M.; Srivastava, R.; Ryoo, R. Chem. Commun.2006,42,4380.
    48. Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009, 461,246.
    49. Na, K.; Choi, M.; Park, W.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. J. Am. Chem. Soc.2010,132,4169
    50. Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, B. F.; Ryoo, R. Science,2011,333,328.
    51. Lobo, R. F.; Zones, S. I.; Davis, M. E.J. Inclusion Phenom.1995,21,47.
    52. Liu, Y.; Zhang, W.; Pinnavaia, T. J. J. Am. Chem. Soc.2000,122,8791.
    53. Liu, Y.; Zhang, W.; Pinnavaia, T. J. Angew. Chem., Int. Ed.2001,40,1255.
    54. Agundez, J.; Diaz, I.; Marquez-Alverez, C.; Perez-Pariente, J.; Sastre, E. Chem. Commun.2003,150.
    55. Prokesova, P.; Mintova, S.; Cejka, J.; Bein, T. Mater. Sci. Eng., C 2003,23, 1001.
    56. Guo, W.; Xiong, C.; Xua, Z.; Huang, L.; Li, Q. J. Mater. Chem.2001,11,1886.
    57. Xia, Y.; Mokaya, R. J. Mater. Chem.2004,14,863.
    58. Xia, Y.; Mokaya, R. J. Mater. Chem.2004,14,3427.
    59. Han, Y.; Xiao, F.-S.; Wu, S.; Sun, Y.; Meng, X.; Li, D.; Lin, S.; Deng, F.; Ai, X. J. Phys. Chem. B 2001,105,7953.
    60. Han, Y.; Wu, S.; Sun, Y.; Li, D.; Xiao, F. S.; Liu, J.; Zhang, X. Chem. Mater. 2002,14,1144.
    61. Xiao, F.-S.; Han, Y.; Xu, Y.; Meng, X.; Yang, M.; Wu, S. J. Am. Chem.Soc. 2002,124,888.
    62. Liu, Y.; Pinnavaia, T. J. Chem. Mater.2002,14,3.
    63. Sakthivel, A.; Huang, S.; Chen, W.; Lan, Z.; Chen, K.; Lin, H.; Mou, C.; Liu, S. Adv. Funct. Mater.2005,15,253.
    64. Liu, Y.; Pinnavaia, T. J.J. Mater. Chem.2004,14,1099.
    65. Kloetstra, K. R.; Zandbergen, H. W.; Jansen, J. C.; van Bekkum, H. V. Micropor. Mesopor. Mater.1996,6,287.
    66. Wang, S.; Dou, T.; Li, Y.; Zhang, Y.; Li, X.; Yan, Z. Catal. Commun.2005,6, 87.
    67. Ooi, Y. S.; Zakaria, R.; Mohamed, A. R.; Bhatia, S. Energy Fuels 2005,19,736.
    68. Corma, A.; Fornes, V.; Pergher, S. B.; Maesen, Th. L.; Buglass; J, G. Nature 1998,396,353.
    69. Corma, A.; Fornes, V.; Rey, F.Adv. Mater.2002,14,71.
    70. Cejka, J. Stud. Surf. Sci. Catal.2005,157,111.
    71. Corma, A.; Fornes, V.; Guil, J. M.; Pergher, S.; Maesen, Th. L.; Buglass, J. G. Microporous Mesoporous Mater.2000,38,301.
    72. Corma, A.; Fornes, V.; Martinez-Triguero, J.; Pergher, S. B. J. Catal.1999,186, 57.
    73. Corma, A.; Diaz, U.; Domine, M. E.; Fornes, V. Chem. Commun.2000,137.
    74. Corma, A.; Diaz, U.; Domine, M. E.; Fornes, V. Angew. Chem., Int. Ed.2000, 39,1499.
    75. Schacht, S.; Huo, Q.; Voigt-Martin,I. G.; Stucky, G. D.; Schuth, F. Science 1996,273,768.
    76. Dutta, P. K.; Jakupca, M.; Narayana, K. S.; Salvati, L. Nature 1995,374,44.
    77. Lee, S.; Shantz, D. F. Chem. Mater.2005,17,409.
    78. Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Chem. ReV.2006,106,896.
    79. van Donk, S.; Janssen, A. H.; Bitter, J. H.; de Jong, K. P. Catal. ReV.2003,45, 297.
    80. Groen, J. C.; Moulijn, J. A.; Perez-Ramirez, J. J. Mater. Chem.2006,16,2121.
    81. Groen, J. C.; Peffer, L. A. A.; Moulijn, J. A.; Perez-Ramirez, J. Chem.sEur. J. 2005,11,4983.
    82. Groen, J. C.; Bach, T.; Ziese, U. J. A.J. Am. Chem. Soc.2005,127,10792.
    83. Groen, J. C.; Zhu, W.; Brouwer, S.; Huynink, S. J.; Kapteijn, F.; Mouljin, J. A. J. Am. Chem. Soc.2007,129,355.
    84. Perez-Ramirez, J.; Kapteijn, F.; Groen, J. C.; Domenech, A.; Mul, G.; Moulijn, J. A.J Catal.2003,214,33.
    85. Loimann, L. D.; Valvocdik, E. W. Eur. Pat. Appl.1981,21675[P].
    86. Janssen, A. H.; Koster, A. J.; de Jong, K. P. J. Phys. Chem. B 2002,106,11905.
    87. Vigil, G.; Xu, Z.; Steinberg, S.; Israelachvili, J. J. Colloid Interface Sci.1994, 165,367.
    88. Kuspert, F. Berichte 1919,35,2815.
    89. Ohmori, M.; Matijevic, E. J. Colloid Interf. Sci.1993,160,288.
    90. Liz-Marzan, L. M.; Philipse, A. P. J. Colloid Interf. Sci.1995,176,459.
    91. Plueddermann, E. P. In:Silane Coupling Agents, Plenum Press, New York, USA 1991.
    92. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Chem. Commun.1996,731.
    93. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir 1996,12,4329.
    94. Holmberg, K. Curr. Opin. Colloid Interf. Sci.2003,8,187.
    95. Li, M.; Schnablegger, H.; Mann, S. Nature 1999,402,393.
    96. Jonsson, B.; Lindman, B.; Holmberg, K.; Kronberg, B.; Surfactants and Polymers in Aqueous Solution, John Wiley & Sons, Chichester, England 1998.
    97. Petit, C.; Lixon, P.; Pileni, M. P. J. Phys. Chem.1993,97,12974.
    98. Han, Y.; Jiang, J.; Lee, S. S.; Ying, J. Y Langmuir 2008,24,5842.
    99. Koole, R.; van Schooneveld, M. M.; Hilhorst, J.; de Mello Donega, C.; Hart, D. C.; van Blaaderen, A.; Vanmaekelbergh, D.; Meijerink, A. Chem. Mater.2008, 20,2503.
    100. Darbandi, M.; Thomann, R.; Nann, T. Chem. Mater.2005,17,5720.
    101. Darbandi, M.; Lu, W.; Fang, J.; Nann, T. Langmuir 2006,22,4271.
    102. Fan, H.; Yang, K.; Boye, D. M.; Sigmon, T.; J.Malloy, K.; Xu, H.; Lopez, G. P.; Brinker, C. J. Science,2004,304,567.
    103. Earhart, C.; Jana, N. R.; Erathodiyil, N.; Ying, J. Y Langmuir,2008,24,6215.
    104. Thakur, R.; Gupta, R. B. Ind. Eng. Chem. Res.2005,44,3086.
    105. Vestal, C. R.; Zhang, Z. J. Nano Lett.2003,3,1739.
    106. Stjerndahl, M.; Andersson, M.; Hall, H. E.; Pajerowski, D. M.; Meisel, M. W.; Duran, R. S. Langmuir 2008,24,3532.
    107. Yee, D. K.; Lee, S. S.; Papaefthymiou, G. C.; Ying, J. Y. Chem. Mater.2006,18, 614.
    108. Yee, D. K.; Lee, S. S.; Papaefthymiou, G. C.; Ying, J. Y. Chem. Mater.2006,18, 2459.
    109. Xu, H.; Cui, L.; Tong, N.; Gu, H. J. Am. Chem. Soc.2006,128,15582.
    110. Piao, Y.; Burns, A.; Kim, J.; Wiesner, U.; Hycon,T. Adv. Funct. Mater.2008,18, 1.
    111. Yang, Y.; Jing, L.; Yu, X.; Yan, D.; Gao, M. Chem. Mater.2007,19,4123.
    112. Yang, Y.; Gao, M.Adv. Mater.2005,17,2354.
    113. Darbandi, M.; Nann, T. Chem. Commun.2006,776.
    114. Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T.ACS Nano 2008,2,120.
    115. Cavaliere-Jaricot, S.; Darbandi, M.; Nann, T. Chem. Commun.2007,2031.
    116. Bae, D. S.; Han, K. S.; Adair, J. H.J. Mater. Chem.2002,12,3117.
    117. Li, T.; Moon, J.; Morrone, A. A.; Mecholsky, J. J.; Talham, D. R.; Adair, J. H. Langmuir 1999,15,4328.
    118. Wang, H.; Schaefer, K.; Moeller, M. J. Phys. Chem. C 2008,112,3175.
    119. Park, J. N.; Forman, A. J.; Tang, W.; Cheng, J.; Hu, Y. S.; Lin, H.; McFarland, E. W. Small 2008,4,1694.
    120. Kishida, M.; Tago, T.; Hatsuta, T.; Wakabayashi, K. Chem. Lett.2000,1108.
    121. Ikeda, M.; Tago, T.; Kishida, M.; Wakabayashi, K. Chem. Commun.2001,2512.
    122. Yan, Q.; Purkayastha, A.; Kim, T.; Coger, R.; Bose, A.; Ramanath, G. Adv. Mater. 2006,18,2569.
    123. Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Herbard, A.; Tan, W. Langmuir 2001,17,2900.
    124. Lee, J.; Lee, Y.; Youn, J. K.; Na, H. B.; Yu, T.; Kim, H.; Lee, S. M.; Yoo, Y. M.; Kwak, J. H.; Park, H. G.; Chang, H. N.; Hwang, M.; Park, J. G.; Kim, J.; Hyeon, T. Small 2008,4,143.
    125. Gao, X.; Yu, K. M. K.; Tam, K. Y.; Tsang, S. C. Chem. Commun.2003,2998.
    126. Chang, S. Y.; Lu, L.; Asher, S. A. J. Am. Chem. Soc.1994,116,6739.
    127. Yang, H.; Holloway, P. H.; Santra, S.J. Phys. Chem. B 2004,121,7421.
    128. Yang, H.; Santra, S.; Walter, G. A.; Holloway, P. H.Adv. Mater.2006,18,2890.
    129. Darbandi, M.; Thomann, R.; Nann, T. Chem. Mater.2007,19,1700.
    130. Almgren, M.; Brown, W.; Hvidt, S. Colloid Polym. Sci.1995,273,2.
    131. Sun, Q.; Kooyman, P. J.; Grossmann, J. G.; Bomans, P. H. H.; Frederik, P. M.; Magusin, P. C. M. M.; Beelen, T. P. M.; van Santen, R. A.; Sommerdijk, N. A. J. M.Adv. Mater.2003,15,1097.
    132. Yeh, Y. Q.; Chen, B. C.; Lin, H. P.; Tang, C. Y. Langmuir 2006,22,6.
    133. Wang, H.; Wang, Y.; Zhou, X.; Zhou, L.; Tang, J.; Lei, J.; Yu, C. Adv. Funct. Mater.2007,17,613.
    134. Tang, J.; Zhou, X.; Zhao, D.; Lu, G. Q.; Zou, J.; Yu, C.J. Am. Chem. Soc.2007, 129,9044.
    135. Huo, Q.; Liu, J.; Wang, L. Q.; Jiang, Y.; Lambert, T. N.; Fang, E. J. Am. Chem. Soc.2006,128,6447.
    136. Yeh, Y. Q.; Chen, B. C.; Lin, H. P.; Tang, C. Y. Langmuir 2006,22,6.
    137. Yuan, J. J.; Mykhaylyk, O. O.; Ryan, A. J.; Armes, S. P. J. Am. Chem. Soc.2007, 129,1717.
    138. Niu, D.; Li, Y.; Quia, X.; Li, L.; Zhao, W.; Chen, H.; Zhao, Q.; Ma, Z.; Shi, J. Chem. Commun.2008,4463.
    139. Jan, J. S.; Lee, S.; Carr, S.; Shantz, D. F. Chem. Mater.2005,17,4310.
    140. van Bommel, K. J. C.; Jung, J. H.; Shinkai, S.Adv. Mater.2001,13,1472.
    141. Zoldesi, C. I.; Imhof, A. Adv. Mater.2005,17,924.
    142. Wang, Y.; Yu, S. H. J. Phys. Chem. C 2008,112,3641.
    143. Chen, H. M.; He, J. H. Chem. Commun.2008,37,4422.
    144. Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Cheng, L. N.; Yan, Z. F.; Lu, G. Q.Adv. Funct. Mater.2008,18,3834.
    145. Tabor, R. F.; Eastoe, J.; Dowding, P. J.; Grillo, I.; Heenan, R. K.; Hollamby, M. Langmuir 2008,24,12793.
    146. Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J. Science 1989,245, 1371.
    147. Hubert, D. H. W.; Jung, M.; Frederik, P. M.; Bomans, P. H. H.; Meuldijk, J.; German, A. L.Adv. Mater.2000,12,1286.
    148. Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaaderen, A. Langmuir 2003,19, 6693.
    149. Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. Chem. Soc. Rev. 2008,37,1783.
    150. Pastoriza-Santos, I.; Liz-Marzan, L. M.Adv. Funct. Mater.2009,19,679.
    151. Shen, R.; Camargo, P. H. C.; Xia, Y.; Yang, H. Langmuir 2008,24,11189.
    152. Zhang, Q.; Zhang, T.; Ge, J.; Yin, Y. Nano Lett.2008,8,2867.
    153. Guerrero-Martinez, A.; Fibikar, S.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; De Cola, L.Angew. Chem. Int. Ed.2009,48,1266.
    154. Chen, M.; Wu, L.; Zhou, X.; You, B.Adv. Mater.2006,18,801.
    155. Schneider, G.; Decher, G. Nano Lett.2004,4,1833.
    156. Rodriguez-Fernandez, J.; Pastoriza-Santos, I.; Perez-Juste, J.; Garcia de Abajo, F. J.; Liz-Marzan, L. M.J. Phys. Chem. C 2007,111,13361.
    157. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. J. Am. Chem. Soc.,2008,130,28.
    158. Schacht, S.; Huo, Q.; Voigt-Martin, I. G.; Stucky, G. D.; Schuth, F. Science 1996, 273,768.
    159. Rana, R. K.; Mastai, Y.; Gedanken, A. Adv. Mater.2002,14,1414.
    160. Yang, S.; Zhou, X.; Yuan, P.; Yu, M.; Xie, S.; Zou, J.; Lu, G. Q.; Yu, C. Angew. Chem. Int. Ed.2007,46,8579.
    161. Zhang, L.; Li, P.; Liu, X.; Du, L.; Wang, E.Adv. Mater.2007,19,4279.
    162. Lootens, D.; Vauntrin, C.; Damme, H. V.; Zemb, T. J. Mater. Chem.2003,13, 2072.
    163. Tan, B.; Lehmer, H. J.; Vyas, S. M.; Knutson, B. L.; Rankin, S. E. Adv. Mater. 17,2368.
    164. Tan, B.; Vyas, S. M.; Lehmer, H. J.; Knutson, B. L.; Rankin, S. E. Adv. Funct. Mater.2007, 17,2500.
    165. Djojoputro, H.; Zhou, X. F.; Qiao, S. Z.; Wang, L. Z.; Yu, C. Z.; Lu, G. Q.J. Am. Chem. Soc.2006,128,6320.
    166. Wang, J.; Xiao, Q.; Zhou, H.; Sun, P.; Yuan, Z.; Li, B.; Ding, D.; Shi, A.-C.; Chen, T. Adv. Mater.2006,18,3284.
    167. Kim, S. S.; Zhang, W.; Pinnavaia, T. J. Science 1998,282,1302.
    168. Sanles-Sobrido, M.; Salgueirino-Maceira, V.; Correa-Duarte, M. A.; Liz-Marzan, L. M. Small 2008,4,583.
    169. Grzelczak, M.; Correa-Duarte, M. A.; Liz-Marzan, L. M. Small 2006,2,1174.
    170. Sun, B.; Mutch, S. A.; Lorenz, R. M.; Chiu, D. T. Langmuir 2005,21,10763.
    171. Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Nat. Mater.2009,8,126.
    172. Caruso, F.; Mohwald, H. Langmuir 1999,15,8276.
    173. Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Chem. Mater. 2001,13,109.
    174. Yuan, J.; Zhou, S.; You, B.; Wu, S. Chem. Mater.2005,17,3587.
    175. Caruso, F.; Spasova, M.; Salgueirino-Maceira, V.; Liz-Marzan, L. M.Adv. Mater. 2001,13,1090.
    176. Spuch-Calvar, M.; Rodriguez-Lorenzo, L.; Puerto Morales, M.; Alvarez-Puebla, T. A.; Liz-Marzan, L. M. J. Phys. Chem. C 2009,113,3373.
    177. Kim, K.; Lee, H. B.; Shin, K. S. Langmuir 2008,24,5893.
    178. Grzelczak, M.; Correa-Duarte, M. A.; Salgueirino-Maceira, B.; Giersig, M.; Diaz, R.; Liz-Marzan, L. M.Adv. Mater.2006,18,415.
    179. Ruoff, R. S.; Lorents, D. C.; Chan, B.; Malhotra, R.; Subramoney, S. Science 1993,259,346.
    180. Saito, Y.; Yoshikawa, T.; Okuda, M.; Fujimoto, N.; Yamamuro, S.; Wakoh, K.; Sumiyama, K.; Suzuki, K.; Kasuya, A.; Nishina, Y. Chem. Phys. Lett.1993,212, 379.
    181. Hosono, E.; Wang, Y. G.; Kida, N.; Enomoto, M.; Kojima, N.; Okubo, M.; Matsuda, H.; Saito, Y.; Kudo, T.; Honma, I.; Zhou, H. S.ACS Appl. Mater. Interf. 2010,2,212.
    182. Miyanaga, S.; Yasuda, H.; Hiwara, A.; Nakamura, A.; Sakai, H. J. Macromolecular Sci. Chem.,1990, A27,1347.
    183. Cui, R. J.; Liu, C.; Shen, J. M.; Gao, D.; Zhu, J. J.; Chen, H. Y. Adv. Funct. Mater.2008,18,2197.
    184. Sun, X. M.; Liu, J. F.; Li, Y. D. Chem. Eur. J.2006,12,2039.
    185. Wu, S. Y.; Ding, Y S.; Zhang, X. M.; Tang, H. O.; Chen, L.; Li, B. X. J. Solid State Chem.2008,181,2171.
    186. Sun, X. M.; Li, Y. D. Langmuir 2005,21,6019.
    187. Sun, S. H.; Jaouen, F.; Dodelet, J.P.Adv. Mater.2008,20,3900.
    188. Zhu, J. X.; Sun, T.; Hng, H. H.; Ma, J.; Boey, F. Y C.; Lou, X. W.; Zhang, H.; Xue, C.; Chen, H. Y.; Yan, Q. Y. Chem. Mater.2009,21,3848.
    189. Herring, A. M.; McKinnon, J. T.; McCloskey, B. D.; Filley, J.; Gneshin, K. W.; Pavelka, R. A.; Kleebe, H. J.; Aldrich, D. J. J. Am. Chem. Soc.2003,125,9916.
    190. Sharma, N.; Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R.; Dong, Z. L.; White, T. J. Chem. Mater.2004,16,504.
    191. Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc.2003,125,5652.
    192. Han, S. J.; Yun, Y. K.; Park, K. W.; Sung, Y. E.; Hyeon,T. Adv. Mater.2003,15, 1922.
    193. Yoon, S. B.; Sohn, K.; Kim, J. Y.; Shin, C. H.; Yu, J. S.; Hyeon, T. Adv. Mater. 2002,14,19.
    194. Jang, J.; Ha, H. Chem. Mater.2003,15,2109.
    195. Pol, S. V.; Pol, V. G.; Gedanken, L. Chem. Eur. J.2004,10,4467.
    196. Dong, X. L.; Zhang, Z. D.; Jin, S. R.; Kim, B. K. J. Appl. Phys.1999,86,6701.
    197. Sun, X. M.; Li, Y. D.Angew. Chem. Int. Ed.2004,43,597.
    198. Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc.2003,125,5652.
    199. Kobayashi, Y.; Correa-Duarte, M. A.; Liz-Marzan, L. M. Langmuir 2001,17, 6375.
    200. Han, B. H.; Polarz, S.; Antonietti, M. Chem. Mater.2001,13,3915.
    201. Malynych, S.; Robuck, H.; Chumanov, G. Nano Lett.2001,1,647.
    202. Selvan, S. T.; Spatz, J. P.; Klok, H. A.; Mollcr, M. Adv. Mater.,1998,10,132.
    203. Marinakos, S. M.; Anderson, M. F.; Ryan, J. A.; Martin, L. D.; Fcldheim, D. L. J. Phys. Chem. B 2001,105,8872.
    204. Kim, M.; Sohn, K.; Bin Na, H.; Hyeon, T. Nano Lett.2002,2,1383.
    205. Guerrero-Martinez, A.; Perez-Juste, J.; Liz-Marzan, L. M.Adv. Mater.2010,22, 1182.
    206. Liu, S. H.; Han, M. Y. Chem.-Asian J.2010,5,36.
    207. Caruso, F.Adv. Mater.2001,13,11.
    208. Yang, J. P.; Deng, Y. H.; Wu, Q. L.; Zhou, J.; Bao, H. F.; Li, Q.; Zhang, F.; Li, F. Y.; Tu, B.; Zhao, D. Y. Langmuir 2010,26,8850.
    209. Guo, X. H.; Deng, Y. H.; Gu, D.; Che, R. C.; Zhao, D. Y. J. Mater. Chem.2009, 19,6706.
    210. Zhang, Q.; Zhang, T.; Ge, J.; Yin, Y. Nano Lett.2008,8,2867.
    211. Ge, J.; Zhang, Q.; Zhang, T.; Yin, Y.Angew. Chem. Int. Ed.2008,47,8924.
    212. Nooney, R.I.; Dhanasekaran, T.; Chen, Y. M.; Josephs, R.; Ostafin, A. E. Adv. Mater.2002,14,529.
    213. Lin, K. J.; Chen, L. J.; Prasad, M. R.; Cheng, C. Y. Adv. Mater.2004,16,1845.
    214. Sadasivan, S.; Dujardin, E.; Li, M.; Johnson, C. J.; Mann, S. Small 2005,1,103.
    215. Botella, P.; Corma, A.; Navarro, M. T. Chem. Mater.,2007,19,1979.
    216. Trewyn, B. G.; Slowing, Ⅱ.; Giri, S.; Chen, H.; Lin, V. S.Acc. Chem. Res.2007, 40,846.
    217. Gorelikov, I.; Matsuura, N. Nano. Lett.2008,8,369.
    218. Liong, M.; France, B.; Bradley, K. A.; Zink, J. I. Adv. Mater.2009,21,1684.
    219. Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Nat. Mater.2009,8,126.
    220. Lee, J.; Park, J. C.; Bang, J. U.; Song, H. Chem. Mater.2008,20,5839.
    221.Kim,S.V.;Kim,M.;Lee,W.Y.AM.Chem.Soc.2002,124,7642.
    222.Deng,Y.H.;Cai,Y.;Sun,Z.K.;Liu,J.;Liu,C.;Wei,J.;Li,V.;Liu,C.;Wang, Y;Zhao,D.Y.AM.Chem.Soc.,2010,132,8466.
    223.Jordan,A.;Scholzs,R.;Maier,H.J Magn Mater 2001,225,118.
    224.Hirsch,L. R.;Stafford,R.J.;Bankson,J.A.;Sershen,S.R.;Rivera,B.;Price,R. E.;Hazle,J.D.;Halas,N.J.;West,J.L.PNAS 2003,100,13549.
    225.Chu,L.Y.;YamagUChi,T.;Nakao,S.Adv. Mater.2002,14,386.
    226.Zhao,W.R.;Gu,J.L.;Zhang,L.X.;Chen,H.R.;Shi,J.L.J.Am.Chem.Soc. 2005,127,8916.
    227.Deng,Y H.;Yang,W.L.;Wang,C.C.;Fu,S.K.Adv Mater.2003,15,1729.
    1. Corma, A. J. Catal.2003,216,298.
    2. Rana, M. S.; Samano, V.; Ancheyta, J.; Diaz, J. A. I. Fuel 2007,86,1216.
    3. Park, D. H.; Kim, S. S.; Wang, H.; Pinnavaia, T. J.; Papapetrou, M. C.; Lappas, A. A.; Triantafyllidis, K. S.Angew. Chem. Int. Ed.2009,48,7645.
    4. Tao, Y. S.; Kanoh, H.; Abrams, L.; Kaneko, K. Chem. Rev.2006,106,896.
    5. Egeblad, K.; Christensen, C. H.; Kustova, M.; Christensen, C. H. Chem. Mater. 2008,20,946.
    6. Al-Sabawi, M.; Atias, J. A.; Lasa, H. de Ind. Eng. Chem. Res.2008,47,7631.
    7. Liu, Z. Y.; Chen, S. L.; Ge, X. J.; Dong, P.; Gao, J. S.; Xu, Z. M. Energy Fuels 2010,24,2825.
    8. Corma, A.; Grande, M. S.; GonzalezAlfaro, V.; Orchilles, A. V. J. Catal.1996, 159,375.
    9. Corma, A.; Martinez, C.; Sauvanaud, L. Catal. Today 2007,127,3.
    10. Trong-On, D.; Ungureanu, A.; Kaliaguine, S.; Phys. Chem. Chem. Phys.2003,5, 3534.
    11. Froment, G. F. Catal. Rev. Sci. Eng.2008,50,1.
    12. Hosseinpour, N.; Mortazavi, Y.; Bazyari, A.; Khodadadi, A. A. Fuel Process. Technol.2009,90,171.
    13. Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009,461, 246.
    14. Kloetstra, K. R.; Zandbergen, H. W.; Jansen, J. C.; vanBekkum, H. Micropor. Mater.1996,6,287.
    15. Li, X.; Zhou, F.; Wang, A. J.; Wang, L. Y.; Hu, Y. K. Ind. Eng. Chem. Res.2009, 48,2870.
    16. H. J. Zhang, X. C. Meng, Y. D. Li, Y. S. Lin, Ind. Eng. Chem. Res.2007,46, 4186-4192.
    17. Ooi, Y. S.; Zakaria, R.; Mohamed, A. R.; Bhatia, S. Energy Fuels 2005,19,736.
    18. Galeano, C.; Guttel, R.; Paul, M.; Arnal, P.; Lu, A. H.; Schiith, F. Chem. Eur.J. 2011,17,8434.
    19. Zhao, W. R.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, J. L. J. Am. Chem. Soc. 2005,127,916.
    20. Kim, J.; Lee, J. E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang, Y.; Shin, C. H.; Park, J. G.; Kim, J.; Hyeon, T. J. Am. Chem. Soc.2006,128,688.
    21. Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Nature Mater.2009,8,126.
    22. Deng, Y H.; Cai, Y.; Sun, Z. K.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Y J. Am. Chem. Soc.2010,132,8466.
    23. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. J. Am. Chem. Soc. 2008,130,28.
    24. Wang, Z. M.; Wang, W. D.; Coombs, N.; Soheilnia, N.; Ozin, G. A. Acs Nano 2010,4,7437.
    25. Liu, J.; Qiao, S. Z.; Hu, Q. H.; Lu, G Q. Small 2011,7,425.
    26. Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Angew. Chem. Int. Ed.2010,49, 4981.
    27. Zhang, L; Qiao, S. Z.; Jin, Y G.; Yang, H. G.; Budihartono, S.; Stahr, F.; Yan, Z. F.; Wang, X. L.; Hao, Z. P.; Lu, G. Q.Adv. Funct. Mater.2008,18,3203.
    28. Corma, A. Chem. Rev.1997,97,2373.
    29. Davis, M. E. Nature 2002,417,813.
    30. On, D. T.; Kaliaguine, S.J. Am. Chem. Soc.2003,125,618.
    31. Do, T. O.; Nossov, A.; Springuel-Huet, M. A.; Schneider, C.; Bretherton, J. L.; Fyfe, C. A.; Kaliaguine, S.J. Am. Chem. Soc.2004,126,14324.
    32. Vinu, A.; Murugesan, V.; Bohlmann, W.; Hartmann, M. J. Phys. Chem. B 2004, 108,11496.
    33. Yu, J. S.; Yoon, S. B.; Lee, Y J.; Yoon, K. B. J. Phys. Chem. B 2005,109,7040.
    34. Han, Y.; Pitukmanorom, P.; Zhao, L.; Ying, J. Y. Small 2011,7,326.
    35. Xu, L.; Le, Y. J.; Wu, H. H.; Liu, Y. M.; Wang, Z. D.; Zhang, Y. T.; Xu, J. J.; Peng, H. G.; Wu, P. J. Mater. Chem.2011,21,10852.
    36. Hu, Y. Y.; Liu, C.; Zhang, Y. H.; Ren, N.; Tang, Y.; Micropor. Mesopor. Mater. 2009,119,306.
    37. Crank, J. The mathematics of diffusion; Oxford Press:London,1975.
    38. Sun, D. H.; Zhang, R.; Liu, Z. M.; Huang, Y.; Wang, Y.; He, J.; Han, B. X.; Yang, G. Y. Macromolecules 2005,38,5617.
    39. Lesthaeghe, D.; Vansteenkiste, P.; Verstraelen, T.; Ghysels, A.; Kirschhock, C. E. A.; Martens, J. A.; Speybroeck, V. Van; Waroquier, M. J. Phys. Chem. C 2008,112, 9186.
    40. Li, Y.; Zhang, W. H.; Zhang, L.; Yang, Q. H.; Wei, Z. B.; Feng, Z. C.; Li, C. J. Phys. Chem. B 2004,108,9739.
    41. Chen, X. Y.; Huang, L. M.; Ding, G. Z.; Li, Q. Z. Catal. Lett.1997,44,123.
    1. Corma, A. Chem. Rev.1997,97,2373.
    2. Schiith, F.; Schmidt, W. Adv. Mater.2002,14,629.
    3. Davis, M. E. Nature 2002,417,813.
    4. Wan, Y.; Zhao, D. Y. Chem. Rev.2007,107,2821.
    5. Vinu, A.; Murugesan, V.; Bohlmann, W.; Hartmann, M. J. Phys. Chem. B 2004, 108,11496.
    6. Vinu, A.; Justus, J.; Anand, C.; Sawant, D. P.; Ariga, K.; Mori, T.; Srinivasu, P.; Balasubramanian, V. V.; Velmathi, S.; Alam, S. Micropor. Mesopor. Mater.2008, 116,108.
    7. Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. J. Am. Chem. Soc.2000,122,7116.
    8. Tao, Y. S.; Kanoh, H.; Kaneko, K. J. Phys. Chem. B 2003,107,10974.
    9. Kim, S. S.; Shah, J.; Pinnavaia, T. J. Chem. Mater.2003,15,1664.
    10. Bouizi, Y.; Diaz, I.; Rouleau, L.; Valtchev, V. P. Adv. Funct. Mater.2005,15, 1955.
    11. Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D. H.; Ryoo, R. Nat. Mater.2006,5,718.
    12. Tao, Y. S.; Kanoh, H.; Abrams, L.; Kaneko, K. Chem. Rev.2006,106,896.
    13. Wang, H.; Pinnavaia, T. J.Angew. Chem. Int. Edit.2006,45,7603
    14. Egeblad, K.; Christensen, C. H.; Kustova, M.; Christensen, C. H. Chem. Mater. 2008,20,946.
    15. Park, D. H.; Kim, S. S.; Wang, H.; Pinnavaia, T. J.; Papapetrou, M. C.; Lappas, A. A.; Triantafyllidis, K. S.Angew. Chem. Int. Edit.2009,48,7645.
    16. Yu, J. S.; Yoon, S. B.; Lee, Y. J.; Yoon, K. B. J. Phys. Chem. B 2005,109,7040.
    17. Bouizi, Y.; Rouleau, L.; Valtchev, V. P. Chem. Mater.2006,18,4959.
    18. Chen, D. M.; Wang, J.; Ren, X. Q.; Teng, H.; Gu, H. W. Catal. Lett.2010,136, 65.
    19. Nooney, R. I.; Thirunavukkarasu, D.; Chen, Y. M.; Josephs, R.; Ostafin, A. E. Langmuir 2003,19,7628.
    20. Lin, K. J.; Chen, L. J.; Prasad, M. R.; Cheng, C. Y.Adv. Mater.2004,16,1845.
    21. Zhao, W. R.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, J. L. J. Am. Chem. Soc. 2005,127,8916.
    22. Kim, J.; Lee, J. E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang, Y.; Shin, C. H.; Park, J. G.; Kim, J.; Hyeon, T.J. Am. Chem. Soc.2006,128,688.
    23. Botella, P.; Corma, A.; Navarro, M. T. Chem. Mater.2007,19,1979.
    24. Gorelikov, I.; Matsuura, N. Nano Lett.2008,8,369.
    25. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D.Y. J. Am. Chem. Soc. 2008,130,28.
    26. Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Nat. Mater.2009,8,126.
    27. Yang, J. P.; Deng, Y. H.; Wu, Q. L.; Zhou, J.; Bao, H. F.; Li, Q.; Zhang, F.; Li, F. Y.; Tu, B.; Zhao, D. Y. Langmuir 2010,26,8850.
    28. Deng, Y. H.; Cai, Y.; Sun, Z. K.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Y. J. Am. Chem. Soc.2010,132,8466.
    29. Guo, X. H.; Deng, Y. H.; Gu, D.; Che, R. C.; Zhao, D. Y. J. Mater. Chem.2009, 19,6706.
    30. Nooney, R. I.; Dhanasekaran, T.; Chen, Y. M.; Josephs, R.; Ostafin, A. E. Adv. Mater.2002,14,529.
    31. Crank, J. The mathematics of diffusion; Oxford Press:London,1975.
    32. Aksay, I. A.; Trau, M.; Manne, S.; Honma, I.; Yao, N.; Zhou, L.; Fenter, P.; Eisenberger, P. M.; Gruner, S. M. Science 1996,273,892.
    33. Yang, H.; Coombs, N.; Sokolov, I.; Ozin, G. A. Nature 1996,381,589.
    34. Grosso, D.; Balkenende, A. R.; Albouy, P. A.; Ayral, A.; Amenitsch, H.; Babonneau, F. Chem. Mater.2001,13,1848.
    35. Yang, H.; Coombs, N.; Dag, O.; Sokolov, I.; Ozin, G. A. J. Mater. Chem.1997,7, 1755.
    36. Kleitz, F.; Berube, F.; Guillet-Nicolas, R.; Yang, C. M.; Thommes, M. J. Phys. Chem. C 2010,114,9344.
    37. Reitmeier, S. J.; Gobin, O. C.; Jentys, A.; Lercher, J. A. Angew. Chem. Int. Edit. 2009,48,533.
    38. Sun, D. H.; Zhang, R.; Liu, Z. M.; Huang, Y.; Wang, Y.; He, J.; Han, B. X.; Yang, G. Y. Macromolecules 2005,38,5617.
    39. Lesthaeghe, D.; Vansteenkiste, P.; Verstraelen, T.; Ghysels, A.; Kirschhock, C. E. A.; Martens, J. A.; Speybroeck, V. V.; Waroquier, M. J. Phys. Chem. C 2008,112, 9186.
    40. Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y. J. Am. Chem. Soc.2002, 124,4556.
    41. Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y. Chem. Commun.2001, 2726.
    42. Ruthstein, S.; Schmidt, J.; Kesselman, E.; Talmon, Y.; Goldfarb, D. J. Am. Chem. Soc.2006,128,3366.
    43. Imperor-Clerc, M.; Grillo, I.; Khodakov, A. Y.; Durand, D.; Zholobenko, V. L. Chem. Commun.2007,834.
    44. Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, B. F. Science 1995,267,1138.
    45. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998,279,548.
    46. Brinker, C. J.; Scherer, G. W. Sol-Gel Science; Academic Press:New York,1990.
    47. Ivanova, S.; Lebrun, C.; Vanhaecke, E.; Pham-Huu, C.; Louis, B. J. Catal.2009, 265,1.
    48. Liu, J.; Zhang, C. X.; Z. Shen, H.; Hua, W. M.; Tang, Y.; Shen, W.; Yue, Y. H.; Xu, H. L. Catal. Commun.2009,10,1506.
    49. Cui, Z. M.; Liu, Q.; Ma, Z.; Bian, S. W.; Song, W. G. J. Catal.2008,258,83.
    50. Mei, C. S.; Wen, P. Y.; Liu, Z. C.; Liu, H. X.; Wang, Y. D.; Yang, W. M.; Xie, Z. K.; Hua, W. M.; Gao, Z.J. Catal.2008,258,243.
    51. Aguayo, A. T.; Gayubo, A. G.; Vivanco, R.; Olazar, M.; Bilbao, J.Appl. Catal. A Gen.2005,283,197.
    1. Walt, D. R. Nat. Mater.,2002,1,17.
    2. Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Nat. Mater.,2009,8, 132.
    3. Wu, Z. X.; Zhao, D. Y. Chem. Commun.,2011,47,3332.
    4. Gao, J. H.; Gu, H. W.; Xu, B. Acc. Chem. Res.,2009,42,1097.
    5. Ji, Q. M.; Yoon, S. B.; Hill, J. P.; Vinu, A.; Yu, J. S.; Ariga, K. J. Am. Chem. Soc., 2009,131,4220.
    6. Deng, Y. H.;Cai, Y.; Sun, Z.K.; Liu, J.; Liu, J.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Y.J. Am. Chem. Soc.,2010,132,8466.
    7. Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Chem. Commun.,2011,20,4268.
    8. Guerrero-Martinez, A.; Perez-Juste, J.; Liz-Marzan, L. M. Adv. Mater.,2010,22, 1182.
    9. Chen, Y.; Chen, H. R.; Zeng, D. P.; Tian, Y. B.; Chen, F.; Feng, J. W.; Shi, J. L. Acs Nano,2010,4,6001.
    10. Zhang, Q.; Lima, D. Q.; Lee, I.; Zaera, F., Chi, M. F.; Yin, Y D. Angew. Chem. Int. Ed.,2011,50,7088.
    11. Liu, S. H.; Han, M. Y. Chem. Asian J.,2010,5,36.
    12. Gai, S. L.; Yang, P. P.; Li, C. X.; Wang, W. X.; Dai, Y. L.; Niu, N.; Lin, J. Adv. Func. Mater.,2010,20,1166.
    13. S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. D. Yang, G. A. Somorjai, Nat. Mater.2009,8,126.
    14. Galeano, C.; Guttel, R.; Paul, M.; Arnal, P.; Lu, A. H.; Schuth, F. Chem. Eur. J. 2011,17,8434.
    15. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992,359,710.
    16. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Mclosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998,279,548.
    17. Corma, A. Chem. Rev.1997,97,2373.
    18. Zhu, Y. F.; Kockrick, E.; Ikoma, T.; Hanagata, N.; Kaskel, S. Chem. Mater.2009, 21,2547-2553.
    19. Wan, Y.; Zhao, D. Y. Chem. Rev.2007,107,2821.
    20. Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky, G. D.; Zhao, D. Y. Nat. Mater.2003,2,159.
    21. Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T.ACS Nano 2008,2,120.
    22. Gorelikov, I.; Matsuura, N.Nano Lett.2008,8,369.
    23. Kim, J.; Lee, J. E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang,Y.; Shin, C. H.; Park, J. G.; Kim, J.; Hyeon,T.J. Am. Chem. Soc.2006,128,688.
    24. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D.Y.J. Am. Chem. Soc. 2008,130,28.
    25. Lin, K. J.; Chen, L. J.; Prasad, M. R.; Cheng, C. Y.;Adv. Mater.2004,16,1845.
    26. Nooney, R. I.; Dhanasekaran, T.; Chen, Y. M.; Josephs, R.; Ostafin, A. E. Adv. Mater.2002,14,529.
    27. Xu, L.; Le, Y. J.; Wu, H. H.; Liu, Y. M.; Wang, Z. D.; Zhang, Y. T.; Xu, J. J.; Peng, H. G.; Wu, P. J. Mater. Chem.2011,21,10852.
    28. Scire, S.; Minico, S.; Crisafully, C.; Galvagno, S. Catal. Commun.,2001,2,229.
    29. Veldsink, J. W.; Versteeg, G. F.; van Swaaij, W. P. M. Chem. Eng. J. Biochem. Eng.J.,1995,57,273.
    30. Tancrede, M.;Wilson, R.; Zeisen, L.; Crouch, E. A. Atmos. Environ.1987,21, 2187.
    31. Li, J. J.; Jiang, Z.; Hao, Z. P.; Xu, X. Y.; Zhuang, Y. H. J. Mol. Catal. A:Chem., 2005,225,173.
    32. Li, J. J.; Xu, X. Y.; Jiang, Z.; Hao, Z. P.; Hu, C. Environ. Sci. Technol.,2005,39, 1319.
    33. Deprelle, P.; Hermia, J. Catal. Today,1996,27,229.
    34. Sharma, R. K.; Zhou, B.; Toung, S.; Chuang, K. Ind. Eng. Chem. Res.,1995,34, 4310.
    35. Mu, Z.; Li, J. J.; Duan, M. H.; Hao, Z. P.; Qiao, S. Z. Catal. Commun.,2008,9, 1874.
    36. Ordonez, S.; Bello, L.; Sastre, H.; Rosal, R.; Diez, F. V. Appl. Catal., B,2002,38, 139.
    37. He, C.; Li, J. J.; Cheng, J.; Li, L. D.; Li, P.; Hao, Z. P.; Xu, Z. P. Ind. Eng. Chem. Res.,2009,48,6930.
    1. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M.Adv. Mater.2010,22, E28.
    2. Frackowiak, E. Phys. Chem. Chem. Phys.2007,9,1774.
    3. Rufford, T. E.; Hulicova-Jurcakova, D.; Khosla, K.; Zhu, Z. H.; Lu, G Q. J. Power Sources 2010,195,912.
    4. Simon, P.; Y. Gogotsi, Nat. Mater.2008,7,845.
    5. Xing, W.; Huang, C. C.; Zhuo, S. P.; Yuan, X.; Wang, G. Q.; Hulicova-Jurcakova, D.; Yan, Z. F.; Lu, G Q. Carbon,2009,47,1715.
    6. Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev.2009,38,2520.
    7. Li, W.; Zhang. F.; Dou, Y. Q.; Wu, Z. X.; Liu, H. J.; Qian, X. F.; Gu, D.; Xia, Y. Y.; Tu, B.; Zhao, D. Y. Adv. Energy Mater.2011,1,382.
    8. Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F.Appl. Phys. Lett.2000,77, 2421.
    9. Izadi-Najafabadi, A.; Yamada, T.; Futaba, D. N.; Yudasaka, M.; Takagi, H.; Hatori, H.; Iijima, S.; Hata, K.ACS Nano 2011,5,811.
    10. Liu, C. G.; Liu, M.; Li, F.; Cheng, H. M.Appl. Phys. Lett.2008,92,143108.
    11. Zhang, L. L.; Zhou, R.; Zhao, X. S.J. Mater. Chem.2010,20,5983.
    12. Bordjiba, T.; Mohamedi, M.; Dao, L. H.Adv. Mater.2008,20,815.
    13. Lee, J.; Yoon, S.; Hyeon, T.; Oh, S. M.; Kim, K. B. Chem. Commun.1999,2177.
    14. Li, Q.; Jiang, R. R.; Dou, Y. Q.; Wu, Z. X.; Huang, T.; Feng, D.; Yang, J. P.; Yu, A. S.; Zhao, D. Y. Carbon 2011,49,1248.
    15. Li, H. Q.; Luo, J. Y.; Zhou, X. F.; Yu, C. Z.; Xia, Y. Y.J. Electrochem. Soc.,2007, 154, A731.
    16. Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M.J. Phys. Chem. C 2008,112, 9950.
    17. Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Nat. Nanotechnol.2010,5,651.
    18. Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M.Angew. Chem. Int. Ed.2008, 47,373.
    19. Zhang, M.; Wu, Y. P.; Feng, X. Z.; He, X. W.; Chen, L. X.; Zhang, Y. K.J. Mater. Chem.2010,20,5835.
    20. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998,279,548.
    21. Lu, A. H.; Schuth, F.Adv. Mater.2006,18,1793.
    22. Li, Y. H.; Ding, J.; Chen, J. F.; Xu, C. L.; Wei, B. Q.; Liang, J.; Wu, D. H. Mater. Res. Bull.2002,37,313.
    23. Kasuya, A.; Sasaki, Y.; Saito, Y.; Tohji, K.; Nishina, Y. Phys. Rev. Lett.1997,78, 4434.
    24. Thomsen, C. Reich, S. Phys. Rev. Lett.2000,85,5214.
    25. Galarneau, A.; Iapichella, J.; Bonhomme, K.; Renzo, F. D.; Kooyman, P.; Terasaki, O.; Fajula, F.Adv. Fun. Mater.2006,16,1657.
    26. Zhang, L.; Geng, W. C.; Qiao, S. Z.; Zheng, H. J.; Lu, G. Q.; Yan, Z. F.ACS Appl. Mater. Interfaces 2010,2,2767.
    27. Zhong J. X.; Stocks, G. M.Appl. Phys. Lett.2005,87,133105.
    28. Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Z. N. Gu, Nano Lett. 2008,8,2664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700