有序介孔碳制备及萘吸附性能的实验和分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃是环境中广泛存在的一类持久性有机污染物,随着排放量的日益增加,其对环境及人类健康均构成严重威胁。因此,开展多环芳烃及其衍生物的吸附去除研究是当前非常重要的一项课题。鉴于此,本文选取萘作为多环芳烃的典型代表物,运用多种实验技术及分子模拟技术,详细研究了吸附剂有序介孔碳的制备及其对萘的吸附性能。
     综合考虑各种有序介孔碳制备方法的优缺点,本文以三嵌段聚合物F127为模板剂,酚醛树脂为碳源,在乙醇溶液中采用软模板法制备有序介孔碳。首先确定了酚醛树脂热聚温度为80℃,苯酚/甲醛摩尔比为1:3,前驱物焙烧条件为在N2保护下,以1℃/min升温至600℃,保持2h,再以5℃/min升温至900℃,保持2h。此外,分别采用硼酸和正癸烷做扩孔剂对有序介孔碳孔径进行调节,其孔径调控范围分别为3.4—4.7nm和3.4—4.2nm。而且,通过XRD、TEM、XPS、Raman、N2吸脱附及FT-IR等现代测试技术对有序介孔碳进行了表征,结果表明两种扩孔剂的添加并未改变其有序结构。
     目前,虽然科研人员提出了多种聚合物在溶液中自组装机理,但目前仍存在争议。为了更好的理解有序介孔碳的制备机理,也鉴于分子模拟技术中耗散粒子动力学方法对聚合物体系的有效应用,本文创新性的利用该模拟方法开展了对F127/酚醛树脂/乙醇体系自组装过程的研究。首先,根据各珠子体积近似相等的原则对体系内各物质粗粒化处理为P、E、T和R珠子,并确定了相互作用参数。其次,总体上研究了亲水端和疏水端组成不同的PEO-PPO-PEO型三嵌段聚合物在乙醇溶液中的自组装规律。然后,考察了温度和剪切速率对自组装结构的影响规律。最后,结合实验分别研究了F127/乙醇体系和F127/酚醛树脂/乙醇体系的自组装规律。结果得出选择适中的温度(k_BT=1),较低的剪切速率(0.01≤γ≤0.2)对有序介孔碳前驱物的制备有利。随着F127浓度从15%逐渐增大到75%,其在乙醇溶液中自组装的胶束结构经历了从球状,柱状,层状逐渐过渡到更复杂的立体结构的过程,且酚醛树脂的加入并未破坏F127在乙醇溶液中的胶束结构,而是以其为结构模板,很好的包裹在外面,这与制备实验中得出的结论相一致,从而得出有序介孔碳制备过程中F127的致孔机制及有序介孔碳的形成机理,为有序介孔碳制备提供了微观尺度上的理解和认识。
     本研究以实验制备的一系列不同孔径的有序介孔碳为吸附剂,通过对萘的吸附穿透曲线、吸附等温线、吸附热力学和吸附动力学等方面,分别研究了有序介孔碳对萘的吸附性能。实验结果表明有序介孔碳对萘具有优异的吸附性能,其对萘吸附容量与比表面积和表面基团间没有明显关系,而介孔孔径尺寸与孔径分布是影响其对萘吸附容量的关键因素,孔径介于2~3.5nm之间的孔径更有利于萘吸附过程。此外,萘在有序介孔碳上的吸附等温线与Langmuir吸附等温方程相吻合,其吸附动力学行为可用Langmuir吸附动力学方程很好地描述,热力学研究表明萘在有序介孔碳上的吸附为放热过程,属于物理吸附。
     萘在有序介孔碳上的吸附性能实验能够得到一些有价值的结论,但却无法直接给出吸附质萘在有序介孔碳上的吸附位,吸附状态等详细情况。由于受实验条件、表征技术限制和人为因素干扰,使得人们对有序介孔碳的一些重要微观结构特性还不是了解的十分透彻,进而严重影响到对此类材料结构上的优化、分子级设计、构-效关系研究及实用化进程,而分子模拟技术则是一种较为有效的补充手段。目前,有关介孔碳建模的文献大都采用的是粗粒化模型,但是随着现代计算机技术的飞速发展,粗粒化模型已经不太适合,细化的全原子结构模型表述介孔碳是未来趋势。因此,本文借鉴挖孔建模的方法在微孔、介孔分子筛设计中的成功经验,采用巨正则系综蒙特卡罗方法,依据实验合成的有序介孔碳的结构数据,利用分子建模技术创新性的建立了有序介孔碳的全原子结构模型,并通过模拟小角XRD、广角XRD以及对孔结构的模拟分析,对该结构模型进行了一系列的表征,结果表明该模型与实际样品具有相似的微观孔结构和宏观的二维六方有序结构,模型建立较为合理。在此基础上,详细地模拟研究了萘在该模型上的吸附行为及规律,结果表明吸附等温线显示出第IV类吸附等温线的特点,属于典型的介孔材料吸附;对萘的吸附量达105.4mg/g;吸附开始时其在介孔孔道中主要以单分子层吸附在孔壁为主,随着萘吸附量的逐渐增加,逐渐过渡到多层吸附,直至最后充满整个介孔孔道;经计算得到萘在有序介孔碳模型上的平均吸附热为16.8Kcal/mol,低于20Kcal/mol,因此该过程属于物理吸附;在其它吸附条件相同的情况下,随着孔径的增加萘吸附速率逐渐增大。以上结论均与实验结论相一致,揭示了有序介孔碳在气体吸附方面的构-效关系。
Polycyclic aromatic hydrocarbons (PAHs), known as one of the persistent organicpollutants, which have threatened people health and atmospheric environment seriously. Soit’s very important to investigate how to remove PAHs effectively. In this work,naphthalene is taken as target pollutant of PAHs, and we investigated systematically thepreparation of ordered mesoporous carbons (OMCs) and the naphthalene adsorptionperformance by experiment and molecular simulation. The relatively detailed summaries wereas followed:
     OMCs with tunable pore sizes were synthesized by soft-template method, using F127astemplate, resol as carbon source, and boric acid and decane as pore-regulator agent. First ofall, the thermal polymerization temperature of resol and the molar ratio of phenol andformaldehyde are determined at80℃and1:3. The calcination was carried out in a tubularfurnace at450℃for2h and at900℃for3h under N2flow, the heating rate was1℃min~(-1)below450℃and5℃min-1above450℃. Then, the prepared samples were characterized byXRD, TEM, FT-IR and N2adsorption-desorption, the results showed that the OMCs have wellordered2D-hexagonal structures and the pore sizes are finely tunable from3.4to4.7nm byusing boric acid and from3.4nm to4.2nm by using decane as the pore-regulator agent.
     Actually, the synthesis mechanism of OMCs by soft template method is still in disputednow. In this thesis,computer simulation is applied to simulate the preparation process ofOMCs by dissipative particle dynamics (DPD) method in order to better understanding thepreparation mechanism from a macroscopic perspective. Firstly, all substances in the systemwere described successfully by Course-Grain model and the DPD interaction parameters weredefined by calculation. Secondly, we studied the self-assembly behavior of PEO_n-PPO_m-PEO_ntype triblock copolymer in solution. Thirdly, the effect of temperature and shearing rate onmicellar structures of F127were studied too. Fourthly, with the increasing of F127concentration, the micellar structure in F127/Ethanol system changed from sphere, cylinder,layer to cubic structure, respectively. Also, the introduction of resol did not change themicellar structure of F127in ethanol solution. The simulation results showed that thecylindrical micelle of F127was formed with hydrophobic core and hydrophilic corona aroundthe micelle interior, and resol surrounded the hydrophilic corona, which means F127acted asa structure-directing agent and played a key role in the precursor formation of OMCs, whichcorresponded with the experimental results.
     The naphthalene adsorption experiments on OMCs indicated that the OMCs have strongadsorption affinity to naphthalene and the maximum adsorption capacity was shown to reachup to303.2mg g-1. Furthermore, the mesopore volume between2~3.5nm of OMCs wascrucial to the adsorption capacity and OMCs with pore sizes of2~3.5nm were much morefavorable for the naphthalene adsorption process. The adsorption isotherms of naphthalene onOMCs match well with the Langmuir adsorption isotherm. Theoretical studies show that theadsorption kinetics of naphthalene on OMCs can be well accounted for using the Langmuiradsorption kinetics equation.
     We could draw some valuable conclusions by naphthalene adsorption experiments, butthe experiments could not tell us directly what the adsorption location and adsorption state areexactly on the surface of OMCs. Actually, we still don’t know the microscopic structure ofOMCs very well because of the restriction of characterization technology, human factor andexperimental conditions. However, molecular simulation technology could make up thedisadvantages. In the work, grand canonical Monte Carlo (GCMC) method is applied tosimulate the naphthalene adsorption behavior on OMCs model. Firstly, the atomic structuremodel of OMCs was built by using molecular modeling technique, and then was characterizedby calculating the accessible solvent surface area, total pore volume, small-angle andwide-angle X-ray diffraction patterns. The observed steep adsorption increase in OMCs are oftype Langmuir IV with a clear H1-type hysteresis loop, this is characteristic of highly orderedmesoporous materials. And the naphthalene adsorption amount is105.4mg/g. Additionally,the adsorption heat is16.8Kcal/mol, which is less than20Kcal/mol and it means the process isphysical adsorption. Also, the adsorption rate rose with the increasing of pore size. Thesimulation results are proved and compared with corresponding experiment results.
引文
[1]Gibson, D.T. Microbial Degradation of Organic Compounds [M]. NewYork: MareelDekker.1984.
    [2]王连生,邹惠仙等.多环芳烃分析技术[M].南京:南京大学出版社,1988
    [3]Varanasi, U.. Metabolism of Polyaromatic Hydrocarbons in the Aquatic Environment [J].Boca Raton,Florida: CRC Press.1989.
    [4]Keith, L.H., Telliard, W.A. Priority pollutants-a perspective view [J]. Environ.Sci.Technol.1979,13:416-423.
    [5]Mastral,A.M.,Callen,M.S.,Gareia,T.. Polycyclic aromatic hydrocarbons organic matterassociated to particulate matter emitted from atmospheric fluidized bed coal combustion[J].Environ.Sci.Technol.1999,33,3177-3184.
    [6]陆豪.杭州市空气中PAHs的污染特征及源汇机制[D].浙江大学博士论文.2008.
    [7]Mastral,A.M.,Callen,M.S.,Murillo,R. Assessment of PAH emissions as a function ofcoal combustion variables[J]. Fuel.1996,75,1533-1536.
    [8]Bonfanti,L., De Michcle,G.,Riccardi,J.,Lopez-Doriga.E.. Influence of coal type andoperating conditions on the formation of incomplete combustion products. Pilot Plantexperiments[J]. Combust. Sci. Technol.1994,101,505-525.
    [9]Mastral, A.M., Callen, M.S.. A review on Polycyclic aromatic hydrocarbon(PAH)emissions from energy generation[J]. Environ.Sci.Technol.2000,34,3051-3057.
    [10]Williams,R.T.,Bartle,K.D.,Andrews, G.E. The relation between polycyclic aromaticcompounds in diesel fuels and exhaust particulates[J]. Fuel.1986,65,1150-1158.
    [11]Charles, W., Bauschlicher, J., Alessandra, R.. Mechanisms for polycyclic aromatichydrocarbon(PAH) growth[J]. Chem.Phys.Lett.2000,326,283-287.
    [12]李晓东,祁明峰,尤孝方,严建华,池涌,倪明江,岑可法.烟煤燃烧过程中多环芳烃生成研究[J].中国电机工程学报,2002,22,127-l32.
    [13]Wang, L.C., Wang, I.C., Chang, J.E., et al.. Emission of polycyclic aromatic hydrocarbons(PAHs) from the liquid injection incineration of petrochemical industrial wastewater[J].Journal of Hazardous Materials,2007,148(1-2),296-302.
    [14]Yang, H.H., Lee, W.J., Chen, S.J., et al.. PAH emission from various industrial stacks[J].Journal of Hazardous Materials,1998,60(2),159-174.
    [15] Garcia A.N., Esperanza M.M., Font R.. Comparison between Produe tyields in thePyrolysis and combustion of different refuse[J]. Journal of analytical and applied pyrolysis,2003,68:577-598.
    [16]Cook, J., Beyea, J., Potential toxic and carcinogenic chemical contaminants insource-separated municipal solid waste composts: Review of available data andrecommendations [J]. Toxicological and Environmental Chemistry,1998,67(1-2),27-69.
    [17] Polynuclear AromaticCompounds, Part1: International Agency for Research on Cancer(IARC); Chemical Environmental and Experimental Data: Lyon,1983.
    [18]Evaluation and Estimation of Potential Carcinogenic Risks of PAH: CarcinogenAssessment Group; U.S. EPA: Washington D.C.,1985.
    [19]Muller, P. Scientific Criteria Document for Multimedia Standards DevelopmentPolycyclic Aromatic Hydrocarbons (PAH); Part1: Hazard Identification and Dose-ResponseAssessment; Ministry of Environment and Energy: Ontario,1997.
    [20]赵文昌,程金平,谢海,马英歌,王文华.环境中多环芳烃(PAHs)的来源与监测分析方法。环境科学与技术。2006,3:105-107.
    [21]程能林.溶剂手册(第三版)[M].化学工业出版社.北京.2002
    [22]Kathryn E, Uhrich S M, Cannizzaro R S, et al. Polymeric systems for controlled drugrelease[J]. Chem Rev,1999,99:3181-3198.
    [23]Singh, O.V., Jain, R.K.. Phytoremediation of toxic aromatic pollutants from soil [J].Applied Microbiology and Biotechnology,2003,63:128-135.
    [24]Adam, G., Duncan, H.. Influence of diesel fuel on seed germination [J].EnvironmentalPollution,2002,120:363-370.
    [25]Schwab,A.P., Assi, A., Banks, M.K.. Adsorption of Naphthalene onto Plant Roots [J].Journal of Environmental Quality.1998,27:220-224.
    [26]Karl, J., Rockne, L., Stuart, E.. Anaerobic biodegradation of naphthalene, phenanthrene,and biphenyl by a denitrifying enrichment culture[J]. Wat. Res.2001,35:291-299.
    [27]Toma′s Garc′a, Benjam′n Solsona, Stuart H. Taylor. Naphthalene total oxidation overmetal oxide catalysts[J]. Applied Catalysis B: Environmental.2006,66:92–99.
    [28]Pires, J., Carvalho, A., Carvalho, M.B.. Adsorption of volatile organic compounds in Yzeolites and pillared clay [J]. Microporous and Mesoporous Materials,2001,43:227-280.
    [29]Engleman, V.S.. Updates on Choices of Appropriate Technology for Control of VOCsEmissions [J]. Metal finishing,2000,98:433-450.
    [30]Kim, H.J., Nah, S.S., Min, B.R.. A new technique for preparation of PDMS pervaporationmembrane for VOCs removal [J].Advances in Environmental Research,2002,6:255-264.
    [31]李国文.挥发性有机废气((VOCs)的污染控制技术[[J].西安建筑科技大学学报,1998,30:399-402.
    [32]Burgess, J.E., Parsons, S.A.. Developments in odour control and waste gas treatmentbiotechnology [J]. Biotechnology Advances,2001,19:35-63.
    [33]Yuan, M.H., Chang,C.Y., Shie, J.L., Chang, C.C., Chen, J.H., Tsai, W.T.. Destruction ofnaphthalene via ozone-catalytic oxidation process over Pt/Al2O3catalyst[J]. Journal ofHazardous Materials,2010,175:809–815.
    [34]谭天恩,聂勇,晏乃强.第十一届全国化学工程科技报告会论文集[C].湘潭:中国化工学会化学工程专业委员会,2002.
    [35]Yan, K., Heesch, E.M., Pemen, A.M.. Elements of pulsed corona induced non-thermalplasmas for pollution control and sustainable development [J]. Journal of Electrostatics,2001,51(3):218-224
    [36]Garcia, T., Solsona, B., Taylor, S.H.. Naphthalene total oxidation over metal oxidecatalysts [J]. Applied Catalysis B: Environmental,2006,66:92-99.
    [37]Zhang, X.W., Shen, S.C., Hidajat, K., et al. Naphthalene oxidation over1%Pt and5%Co/c-Al2O3catalysts: reaction intermediates and possible pathways [J]. Catalysis Letters2004,96:87-96.
    [38]DAVIES, J. I., EVANS, W.C.. Oxidative metabolism of naphthalene by soilpseudomonads. The ring fission mechanism[J]. Biochemical Journal.1964,91:251-261.
    [39]马沛,丁建江.微生物降解多环芳烃(PAH s)的研究进展[J].生物加工过程,2003,1:42-46.
    [40]周宏仓,仲兆平,金保升等.管道喷射活性碳脱除焚烧炉烟气中的多环芳烃[J].中国环境科学,2004,24:252-256.
    [41]Mastral, A.M., Garcia, T., Callen, M.S., et al. Removal of Naphthalene, Phenanthrene,and Pyrene by Sorbents from Hot Gas[J]. Environmental Science and Technology2001,35:2395-2400.
    [42]Seung, Y.L., Soo, J.K.. Adsorption of naphthalene by HDTMA modified kaolinite andhalloysite[J]. Applied Clay Science,2002,22:55–63.
    [43]马正月,陈皓侃,李文等.烟气中多环芳烃吸附脱除的研究[J].燃料化学学报,2004,32(15):526-530.
    [44]周仕禄,王英,徐佳卉等.用纳米孔材料去除卷烟烟气里的亚硝胺和多环芳烃[J].江苏化工,2004,32:29~31.
    [45]James, J.L., Huang, K.L., Yao, C.Y., et al. Laboratory retention of vapor-phase PAHsusing XAD adsorbents[J]. Atmospheric Environment,2004,38:6185-6193.
    [46]陈才,盛国英,王新明等.富勒烯的吸附性及其在大气挥发性有机物分析中的应用[J].环境化学,2000,19:165-169.
    [47]凌达仁,刘兵,吴国琪,等. GC-MS法测定大气样品的处理研究—碳化纤维树脂捕集大气中痕量多环芳烃[J].分析测试学报,2000,19:5-8.
    [48]Callén,M.S., Delacruz, M.T., Marinov,S.R., Stefanova, M., Mastral, A.M.. Flue gascleaning in power stations by using electron beam technology. Influence on PAHemissions[J].Fuel Processing Technology,2007,88:251-258.
    [49]Chmielewskia, A.G., Sun, Y.X., Lickib, J.,et al. NOx and PAHs removal from industrialflue gas by using electron beam technology with alcohol addition[J]. Radiation Physics andChemistry,2003,67:555–560.
    [50]Gerasimov, G.. Modeling study of electron-beam polycyclic and nitro-polycyclic aromatichydrocarbons treatment[J]. Radiat Phys Chem,2007,76:2736.
    [51]Chmielewski,A.G., Ostapczuk, A., Zimek, Z., Licki, J., Kubica, K.. Reduction of VOCs influe gas from coal combustion by electron beam treatment[J]. Radiation Physics andChemistry,2002,63:653-655.
    [52]孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    [53]Sekine, Y.. Oxidative decomposition of formaldehyde by metal oxides at roomTemperature [J]. Atmospheric Environment,2002,36:5543-5547.
    [54]田东旭,王浩静,Pd/Ce/Al/蜂窝陶瓷催化剂制备方法的研究[J].无机化学学报,2001,17:527-532.
    [55]柯子斌.二噁英稳定发生源开发及臭氧对萘降解试验研究[D].浙江大学硕士论文,2011.
    [56]Forstner, H.L., Flagan, R.C.. Secondary Organic Aerosol from the Photooxidation ofAromatic Hydrocarbons: Molecular Composition[J]. Environmental Science and Technology,1997,31:1345-1358.
    [57]Fan, Z., Kamens, R.M.. Photostability of Nitro-Polycyclic Aromatic Hydrocarbons onCombusition Soot Particles in Sunlight[J]. Environmental Science and Technology,1996,30:1358-1364.
    [58]McDow, S.R., Kamens, R.M., et al. Effect of Composition and State of OrganicComponents on Polycyclic Aromatic Hydrocarbon Decay in Atmospheric Aerosols[J].Environmental Science and Technology,1994,28:2147-2153.
    [59]王文兴,束勇辉,李金花.煤烟例子中PAHs光化学降解的动力学[J].中国环境科学,1997,17:97-102.
    [60]周爱娟. TiO2/Fe3O4-SiO2:光催化剂对废水中萘降解性能研究[D].哈尔滨工程大学硕士论文,2010.
    [61]潘相敏,乐致威,陈立民.大气气溶胶中多环芳烃的紫外光降解研究[J].上海化工,1999,21:28-30.
    [62] Lair, A., Ferronato, C., Chovelon, J.M., Herrmann, J.M.. Naphthalene degradation inwater by heterogeneous photocatalysis: An investigation of the influence of inorganicanions[J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,193:193–203.
    [63]罗晔,郭嘉, Chong, L.A.等.光化学降解汽车尾气中多环芳烃污染物的研究[J].应用化工,2005,34:754-768.
    [64]郭嘉,罗晔, Chong L.A.等.燃煤烟气中多环芳烃(PAHs)光化学降解的研究[J].能源环境保护,2006,20:25-28.
    [65]叶华.钯催化剂性能及其对燃煤烟气中多环芳烃的催化净化[J].环境科学,1999,5:55-58.
    [66]Saracco,G.,. Specchia, V.. Catalytic filters for the abatement of volatile organiccompounds[J]. Chem. Eng. Sci,2000,55:897.
    [67]García, T., Solsona, B., Taylor, S.H.. Naphthalene total oxidation over metal oxidecatalysts[J]. Applied Catalysis B: Environmental,2006,66:92-99.
    [68]Ndifor, E.N., Garcia, T., Taylor, S.H. et al. Influence of preparation conditions ofnano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclicaromatic hydrocarbon[J]. Applied Catalysis B: Environmental,2007,76:248–256.
    [69]Shie, J.L., Chang, C.Y., Chen, J.H.. Catalytic oxidation of naphthalene using a Pt/Al2O3catalyst[J]. Applied Catalysis B: Environmental,2005,58:289-295.
    [70]Zhang, X.W.,Shen S.C., Yu L. E.,et al. Oxidative decomposition of naphthalene bysupported metal catalysts[J]. Applied Catalysis A:General,2003,250(2):341-352
    [71]Zhang, X.W., Shen, S.C., Hidajat, K., et al. Naphthalene oxidation over1%Pt and5%Co/-Al2O3catalysts: reaction intermediates and possible pathways[J]. CatalysisLetters,2004,96:87-96.
    [72] Ntainjua, E., Albert, N., Carley, F., Taylor, S.H.. The role of support on the performanceof platinum-based catalysts for the total oxidation of polycyclic aromatic hydrocarbons[J].Catalysis Today,2008,137:362–366.
    [73]Ferrandon, M., Jornbom, E.B.. Hydrothermal Stabilization by Lanthanum of Mixed MetalOxides and Noble Metal Catalysts for Volatile Organic Compound Removal[J]. Journal ofCatalysis,2001.200:148-159.
    [74]Neyestanaki, A.K., Lindfors, L.E.. Catalytic clean-up of emissions from small-scalecombustion of biofuels[J]. PII:S0016-2361(98):113-116.
    [75]Rouquerol, J., Avnir, D., Fairbrdge, C.W., et al. Physical and biophysical chemistrydivision commission on colloid and surface chemistry including catalysis [J]. Pure ApplChem,1994,66:1739-1758.
    [76]Kresge, C.T., Leonomiez, M.E., Roth, W.J., et al. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710-712.
    [77]Grundig, B., Wittstock, G., Rudel, U., et al. Mediator-modified electrodes forelectrocatalytic oxidation of NADH [J]. Journal of Electroanalytical Chemistry,1995,395:143-157.
    [78]Jena, B.K., Raj, C.R. Efficient electrocatalytic oxidation of NADH at gold nanoparticlesself-assembled on three-dimensional sol-gel network [J]. Chemical Communications,2005,15:2005-2007.
    [79]Zhao, D.Y.; Huo, Q.S.; Feng, J.L.; Clmlelka, B.F., Stucky, G.D.. Nonionic triblock andstar diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermallystable, mesoporous silica structures[J]. J. Am. Chem. Soc.,1998,120:6024-6036.
    [80]Bagshaw, S.A., Prouzet, E., Pinnavaia, T.J.. Templating of Mesoporous Molecular Sievesby Nonionic Polyethylene Oxide Surfactants [J]. Science,1995,269:1242-1244.
    [81]Tanev, P.T., Pinnavaia, T.J.. A Neutral Templating Route to Mesoporous Moleuclar Sieves[J]. Science,1995,267:865-867.
    [82]Kresge, C.T., Leonomiez, M.E., Roth, W.J., et al. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710-712.
    [83]Ryoo, R., Joo, S.H., Jun, S.. Synthesis of Highly Ordered Carbon Molecular Sieves viaTemplate-mediated Structural Transformation [J]. Journal of Physical Chemistry B,1999,103:7743-7746.
    [84]Jun, S., Joo, S.H., Ryoo, R., et al. Synthesis of new, nanoporous carbon with hexagonallyordered mesostructure [J]. J.Am.Chem.Soc.,2000,122:10712-10713.
    [85]Joo, S.H, Choi, S.J., Oh, I., Kwak, J., et al. Ordered nanoporous arrays of carbonsupporting high dispersions of platinum nanoparticles [J]. Nature,2001,412:169-172.
    [86]Kawashina, D., Ahara, T., Kyotani, T., et al. Preparation of mesoporous carbon fromorganic polymer/silica nanocomposite [J]. Chem.Mater,2000,12:3397-3401.
    [87]Pang, J., Hu, Q., Wu, Z., et al. Direct synthesis of unimodal and bimodal nanoporouscarbon [J]. Microporous and Mesoporous Materials,2004,74:73-78.
    [88]Kim, J., Lee, J., Hyeon, T., Direct synthesis of uniform mesoporous carbons from thecarbonization of as-synthesized silica/triblock copolymer nanocomposites [J]. Carbon,2004,42:2711-2719.
    [89]Meng, Y., Gu, D., Zhang, F.Q., et al. Ordered mesoporous polymers and homobgouscarbon frameworks Amphiphilic surfactant templating and direct transformation [J]. Anewand the Chemical International Edition,2005,44.
    [90]Meng, Y, Gu, D., Zhang, F.Q., et al. A family of highly ordered mesoporous polymer resinand carbon structures from organic-organic self-assembly [J]. Chemistry of Materials,2006,18:4447-4464.
    [91]Liu, R.L., Shi, Y.F.,Wan, Y., et al. Triconstituent Co-assembly to Ordered MesostructuredPolymer Silica and Carbon Silica Nanocomposites and Large-Pore Mesoporous Carbonswith High Surface Areas [J]. Journal of the American Chemical Society,2006,128:11652-11662.
    [92]Zhang, F.Q., Meng, Y., Gu, D., et al. A Facile Aqueous Route to Synthesize HighlyOrdered Mesoporous Polymers and Carbon Frameworks with Ia3d Bicontinuous CubicStructure [J]. Journal of the American Chemical Society,2005,127:13508-13509.
    [93]Zhang, F.Q., Meng, Y., Gu, D., et al. An Aqueous Cooperative Assembly Route ToSynthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology [J].Chemistry of Materials.2006,18:5279-5288.
    [94]Liu, Y.L., Li, L.X., Chen, X.H., et al. The Electrochemical Hydrogen Storage Propertiesof Ordered Mesoporous Carbons[J]. Acta Phys.-Chim. Sin.2007,23:1399-1404.
    [95]邱会华,刘应亮,曾江华,左诗笛,郑明涛.简易模板法制备有序介孔碳[J].无机化学学报,2010,26:101-105.
    [96]Liang, C.,Dai, S.. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction [J]. J Am Chem Soc,2006,128:5316-5317.
    [97]Hajime, Y., Hisashi, T., Makiko, L., et al. Extremely large mesoporous carbon fiberssynthesized by the addition of rare earth metal complexes and their unique adsorptionbehaviors[J]. Adv Mater.1997,9:55-58.
    [98]邢宝林,张传祥,段玉玲等.聚合物共混碳化法制备多孔碳材料的研究进展[J].材料导报,2007,21:417-420.
    [99]Pekala, R.W., Kong, F.M.. Resorcinol-formaldehyde aerogels and their carbonizedderivatives [J]. Polymer Preprints,1989,30:221-223.
    [100]Tamon, H., Ishizaka, H., Araki, T., et al. Control of mesoporous structure of organic andcarbon aero gels [J]. Carbon,1998,36:1257-1262.
    [101]Tamon, H., lshizaka, H., Suzuki, T.. Extended abstracts. In: international symposium oncarbon[C]. Tokyo, Japan: The Carbon Society of Japan,1998:152-153.
    [102]Zhang, R., Li, W., Liang, X., et al. Effect of hydrophobic group inpolymer matrix onporosity of organic and carbon aerogels from sol-gel polymerization of phenolic resol andmethyloaded melamine.[J]. Micropor Mesopor Mater,2003,62:17-27.
    [103]Matsuoka, T., Hatori, H., Kodama, M., et al. Capillary condensation of water in themesopores of nitrogen-enriched carbon aerogel [J]. Carbon,2004,42:2346-2349.
    [104]Horikawa, T., Hayashi, J., Muroyama, K.. Controllability of pore characteristics ofresorcinol-formaldehyde carbon aerogels [J].Carbon,2004,42:1625-1633.
    [105]Pekala, R.W., Alviso, C.T., Kong, F.M., et al. Aerogel derived from multifunctionorganic monomers [J]. J Non-cryst Solids,1992,145:90-98.
    [106]Pekala, R.W.. Low density resorcinol-fommldehyde aerogels. US,5476878[P].1995-12-19.
    [107]Li, W., Reichenaue, G.,Frieke, J.. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors [J]. Carbon,2002,40:2955-2959.
    [108]Ryoo, R., Joo, S.H., Kruk, M.. Ordered mesoporous carbons [J]. Advanced Materials,200l,13:677-681.
    [109]Jun, S., Joo, S.H., Ryoo, R., et al. Synthesis of new, nanoporous carbon withhexagonally ordered mesostructure [J]. J.Am.Chem.Soc.,2000,122:10712-10713.
    [110]Joo, S.H., Choi, S.J., Oh, I., et al. Ordered nanoporous arrays of carbon supporting highdispersions of platinum nanoparticles[J]. Nature,2001,412:169-172
    [111]张光旭,高为芳,蔡卫权.以离子液体为模板剂合成MCM-41的研究—不同扩孔剂对介孔分子筛MCM-41孔径结构的影响[J].分子催化,2008,22:497-502.
    [112]Lee, H.I., Kim, J.H., You, D.J.. Rational Synthesis Pathway for Ordered MesoporousCarbon with Controllable30-to100-Angstrom Pores [J]. Advanced Materials.2008,20:757-762.
    [113]Brinker, C.J., Lu, Y.F., Sellinger, A., Fan, H.Y.. Evaporation-induced self-assembly:nanostructures made easy [J]. Adv. Mater.,1999,11:579-585.
    [114]Meng,Y., Gu, D., Zhang, F., et al. Ordered mesoporous polymers and homologouscarbon frameworks: amphiphilic surfactant templating and direct transformation [J].Angewandte Chemie International Edition,2005,44:2-8.
    [115]Tanaka, S., Nishiyama, N., Egashira, Y., et al. Synthesis of ordered mesoporous carbonswith channel structure from an organic-organic nanocomposite [J]. ChemicalCommunications,2005:2125-2127.
    [116]Wei, J., Deng, Y.H., Zhang, J.Y. Sun, Z.K. Tu, B., Zhao, D.Y.. Large-pore orderedmesoporous carbons with tunable structures and pore sizes templated from poly(ethyleneoxide)-b-poly(methyl methacrylate)[J]. Solid State Sciences,2011,13:784-792.
    [117]宋怀河,李丽霞,陈晓红.有序介孔碳的模板合成进展[J].新型碳材料,2006,21:374-383.
    [118]Li, H.Q., Liu, R. L., Zhao, D.Y., et al. Electrochemical properties of an orderedmesoporous carbon prepared by direct tri-constituent co-assembly[J]. Carbon,2007,45:2628-2635.
    [119]Liu, R.L., Shi, Y.F., Wan, Y., et al. Triconstituent Co-assembly to OrderedMesostructured Polymer Silica and Carbon Silica Nanocomposites and Large-PoreMesoporous Carbons with High Surface Areas [J]. Journal of the American Chemical Society,2006,128:11652-11662.
    [120]Walker, G.M., Weatherley, L.R.. Adsorption of Dyes from Aqueous Solution-the Effectof Adsorbent Pore Size Distribution and Dye Aggregation[J]. Chemical EngineeringJournal,2001,83:201-206.
    [121]Hartmann, M., Vinu, A., Chandrasekar, G.. Adsorption of Vitamin E on MesoporousCarbon Molecular Sieves[J]. Chemistry of Materials,2005,17:829-833.
    [122]Han, S.J., Sohn, K., Hyeon, T.. Fabrication of New Nanoporous Carbons through SilicaTemplates and Their Application to the Adsorption of Bulky Dyes[J]. Chemistry ofMaterials,2000,12:3337-3341.
    [123]祝建中,杨嘉,Deng, B.L..有序介孔碳合成、改性及其对汞离子的吸附性能[J.新型碳材料,2008,23:221-227.
    [124]Guo, Z., Zhu, G.S., Gao, B., et al. Adsorption of vitamin B12on ordered mesoporouscarbons coated with PMMA[J]. Carbon,2005,43:2344-2351.
    [125]Liu, G., Zheng, S., Yin, D., et al. Adsorption of aqueous alkylphenol ethoxylatesurfactants by mesoporous carbon CMK-3[J]. Journal of Colloid and Interface Science,2006,302:47-53.
    [126]Vinu, A., Hossain, K.Z., Kumar, G.S., et al. Adsorption of L-histidine over mesoporouscarbon molecular sieves[J]. Carbon,2006,44:530-536.
    [127]Yuan, X., Xing, W., Zhuo, S.P., et al. Adsorption of bulky molecules of nonylphenolethoxylate on ordered mesoporous carbons[J]. Journal of Colloid and Interface Science,2008,322:558-565.
    [128]Saha, D., Deng, S.G.. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3on ordered mesoporous carbon[J]. Journal of Colloid and Interface Science,2010,345:402–409.
    [129]Zhou, L., Liu, X.U., Li, J.W., Wang, N., Wang, Z., Zhou, YP.. Synthesis of orderedmesoporous carbon molecular sieve and its adsorption capacity for H2, N2, O2, CH4andCO2[J]. Chemical Physics Letters,2005,413:6-9.
    [130]Saini, V.K., Andrade, M., Pinto, M.L., Carvalho, A.P., Pires., J.. How the adsorptionproperties get changed when going from SBA-15to its CMK-3carbon replica[J]. Separationand Purification Technology,2010,75:366–376.
    [131]Joo,S.H., Choi, S.J., Oh, I., Kwak, J., et al. Ordered nanoporous arrays of carbonsupporting high dispersions of platinum nanoparticles [J]. Nature,2001,412:169-172.
    [132]Song, X.G., Ding, Y.J., Chen, W.M., Dong, W.D., Pei, Y.P., Zang, J., Yan, L., Lu, Y..Bimetal modified ordered mesoporous carbon as a support of Rh catalyst for ethanol synthesisfrom syngas[J]. Catalysis Communications,2012,19:100-104.
    [133]Minchev, C., Huwe, H., Tsoncheva, T., et al. Iron oxide modified mesoporous carbons:Physicochemical and catalytic study.[J] Microporous and Mesoporous Materials,2005,81:333-341.
    [134]Park, I.S., Choi, S.Y., Ha, J.S. High-performance titanium dioxide photocatalyst onordered mesoporous carbon support[J]. Chemical Physics Letters,2008,456:198-201.
    [135]Sun, Z.P., Zhang, X.G., Tong, H., Liang, Y.Y., Li, H.L.. Sulfonation of orderedmesoporous carbon supported Pd catalysts for formic acid electrooxidation[J]. Journal ofColloid and Interface Science,2009,337:614-618.
    [136]Liu, L., Deng, Q.F., Agula, B., Ren, T.Z., Liu, Y.P., Yuan, Z.Y.. Synthesis of orderedmesoporous carbon materials and their catalytic performance in dehydrogenation of propaneto propylene[J]. Catalysis Today,2011, In Press.
    [137]Armandi, M., Bonelli, B., Bottero, L.. Synthesis and characterization of ordered porouscarbons with potential applications as hydrogen storage media[J]. Microporous andMesoporous Materials,2007,103:150-157.
    [138]Zhou, H., Zhu, S., Honma, I., et al. Methane gas storage in self-ordered mesoporouscarbon (CMK-3)[J]. Chemical Physics Letters,2004,396:252-255.
    [139]Xing, W., Bai, P., Li, Z.,et al. Synthesis of ordered mesoporouse carbon and itsapplication in Li-ion battery[J]. Electrochimica Acta,2006,51:4626-4633.
    [140]Fang, B., Zhou, H., Horuna, I.. Ordered porous carbon with tailored pore size forelectrochemical hydrogen storage applieation[J]. Journal of Physical Chemistry B,2006,110:4875-4880.
    [141]Saha, D., Deng, S.G.. Enhanced hydrogen adsorption in ordered mesoporous carbonthrough clathrate formation[J]. International Journal of Hydrogen Energy,2009,34:8583-8588.
    [142]Fan, J., Wang, T., Zhao, D.Y., et al. Ordered Nanostructured Tin-based Oxides/carbonComposite as the Negative-electrode Material for Lithium-ion Batteries[J]. AdvancedMaterials,2004,16:1432-1436.
    [143]Zhu, S.M., Zhou, H.S., Miyoshi, T., et al. Self-assembly of the Mesoporous ElectrodeMaterial Li3Fe2(PO4)3using a Cationic Surfactant as the Template[J]. Advanced Materials,2004,16:2012-2017.
    [144]Lee, J.,Yoon, S., Hyeon, T., et al. Synthesis of a New Mesoporous Carbon and itsApplication to Electrochemical Double-layer Capacitors[J]. Chemical Communications,1999,21:2177-2178.
    [145]Lee, J., Yoon, S., Hyeon, T., et al. Synthesis of a new mesoporous carbon and itsapplication to electrochemical double-layer capaciors [J]. Chem Commum,1999,2177-2178.
    [146]Li, H., Xi, H.A., Zhu, S., et al. Preparation, structural characterization andelectrochemical properties of chemically modified mesoporous carbon.[J]. Microporous andMesoporous Materials,2006,96:357-362.
    [147]Huwe,H., Fr ba,M.. Synthesis and characterization transition metal and metal oxidenanoparticles inside mesoporous carbon CMK-3.[J]. Carbon,2007,45:304-314.
    [148]Kim, J.Y.,Yoon, S.B.,Yu, J.S.. Template synthesis of a new mesostructured silica fromhighly ordered mesoporous carbon molecular sieves.[J]. Chemical Materials,2003,15:1932-1934.
    [149]Yang, Z.,Xia, Y.,Mokaya, R.. Zeolite ZSM-5with unique supermicropores synthesizedusing mesoporous carbon as a template.[J]. Advanced Materials,2004,16:727-732.
    [150]Dong, A., Ren, N., Tang, Y., et al. General synthesis of mesoporous spheres of metaloxides and phosphates[J]. Journal of the American Chemical Society,2003,125:976-977.
    [151]Yan, X.X., Deng, H.X., Huang, X.H.. Mesoporous bioactive glasses. I. Synthesis andstructural characterization [J]. J. Non-Cryst. Solids,2005,351:3209-3217.
    [152]Zhao, J.W., Gao, F., Fu, Y.L., et al. Biomolecule Separation using Large PoreMesoporous SBA-15as a Substrate in High Performance Liquid Chromatography [J]. Chem.Commun.2002,752–753.
    [153]Hoogerbrugge, P.J., Koolman, J.M.. Simulating microscopic hydrodynamic Phenomenawith dissipative particle dynamics.[J] Europhys.Lett.,1992,19:155-160.
    [154]Koolman, J.M., Hoogerbrugge, P.J..Dynamics simulations of hard-sphere suspensionunder shear.[J] Europhys. Lett.,1993,21:363-368.
    [155]Espanol, P., Warren, P.. Statistical-mechanics of dissipative Particle dynamics.[J]Europhys. Lett,1995,30:191-196.
    [156]SchlijPer, A.G., Hoogerbrugge, P.J., Manke, C.W.. Computer-simulation of dilutePolymer-solutions with the dissipative Particle dynamies[J].J.Rheol.,1995,39:567-579.
    [157]Groot, R.D., Warren, P.B.. Dissipative particle dynamics: Bridging the gap betweenatomistic and mesoscopic simulation[J], J. Chem. Phys.1997,107:4423-4435.
    [158]Frnekelnadsmti (汪文川译).分子模拟:从算法到应用[M].北京:化学工业出版社,2002.
    [159]Leach, A.R.. Molecular Modelling principles and applications[M].北京:北京世界图书出版公司,1997.
    [160]Frenkel, D., Smit, B.. Understanding molecular simulation: From algorithms toapplications[M]. SanDiego: Academic Press,2002.
    [161]Lee,W.J.,Ju,S.P, Wang, Y.C. Modelling of Polyethylene and Poly(L-lactide) Polymerblends and diblock copolymer:Chain length and volume fraction effects on structuralarrangement[J]. J.Chem.phys.,2007,127:064902-064912.
    [162]Groot, R.D.. Mesoscopic simulation of Polymer-surfactant aggregation[J]. Langmuir,2000,16:7493-7502.
    [163]Ortiz, V., Nielsen, S.O., Discher, D.E., et al. Dissipative Particle dynamics simulationsof Polyrnersomes[J]. J.Phys. Chem. B,2005,109:17708-17714.
    [164]Figueroa, C.S., Hidalgo, M.R., Magadan, J.M., et al. Mesoscopic simulation ofmetastable microphases in the order-order transition from gyroid-to-lamellar states of PS-PIdiblock copolymer [J]. Chemical Physics Letters,2008,460:507-511.
    [165]Hidalgo, M.R., Figueroa, C.S., Magadan, J.M., et al. Mesoscopic simulation ofcylindrical Phases of Poly(styrene)-Poly(isoprene) copolymer:Order-order phase transitionsby temperature control[J]. Polymer,2009,50:4596-4601.
    [166]Zhao, Y., You, L.Y., Lu, Z.Y., et al. Dissipative Particle dynamics study on themulticompartment micelles self-assembled from the mixture of diblock copolymerPoly(ethylethylene)-block-Poly(ethylene oxide) and homopolymer Poly(propylene oxide) inaqueous solution[J]. Polymer,2009,50:5333-5340.
    [167]]Liu, D.H.,Zhong, C.L.. Multicompartment micelles formed from star-dendritictriblock copolymers in selective solvents: A dissipative particle dynamics study[J]. Polymer,2008,49:1407-1413.
    [168]Groot, R.D., Madden, T.J.. Dynamics simulation of diblock copolymer microphaseseparation[J]. J.Chem.Phys.,1998,108:8713-8724.
    [169]何石泉,丁静,尹辉斌,唐旺,杨建平.二氧化硫在HZSM–5分子筛中吸附的分子模拟[J].硅酸盐学报,2010,38:1832-1836.
    [170]Dai,W., Hu, P.. Computer simulation studies of structure characteristics ofFAU-MCM-41and its application for CO2–N2adsorption[J]. Materials Research Innovations2011,15,361-365.
    [171]Chen, H.Y., Xi, H.X., Cai, X.Y., Qian, Y.. Experimental and molecular simulationstudies of a ZSM-5-MCM-41micro-mesoporous molecular sieve[J]. Microporous andMesoporous Materials,2009,118:396–402.
    [172]曾余瑶,张秉坚.金属-有机骨架材料MOF-5的改进与吸附甲烷的巨正则蒙特卡罗模拟[J].Acta Phys.-Chim. Sin.,2008,24:1493-1497.
    [173]Son, H.J., Lim, Y.. Multiscale Simulation Starting at the Molecular Level for AdsorptionProcess Development[J]. Chinese Journal of Chemical Engineering,2008,16:108-111.
    [174]Anbia, M., Moradi, S.E.. Adsorption of naphthalene-derived compounds from water bychemically oxidized nanoporous carbon[J]. Chemical Engineering Journal,2009,148:452–458.
    [175]Arau′jo, R.S., Azevedo, D.S., Cavalcante Jr.,C.L., Jime′nez-Lo′pez, A. Rodr′guez-Castello′n, E.. Adsorption of polycyclic aromatic hydrocarbons (PAHs) from isooctanesolutions by mesoporous molecular sieves: Influence of the surface acidity[J]. Microporousand Mesoporous Materials,2008,108:213–222.
    [176]Tamai, H., Kakii, T., Hirota, Y., Kumamoto, T., Yasuda, H.. Synthesis of extremelylarge mesoporous activated carbon and its unique adsorption for giant molecules[J]. ChemMater,1996,8:454-462.
    [177]Lee, J., Yoon, S., Hyeon, T., Oh, S.M., Kim, K.B.. Synthesis of a new mesoporouscarbon and its application to electrochemical double-layer capacitors[J]. Chem Commun,1999,2177-2178.
    [178]Knox, J.H., Ross, P.. Carbon-based packing materials for liquid chromatographystructure, performance, and retention mechanisms[J]. Adv Chromatogr,1997,37:73-119.
    [179]黄焱.嵌段共聚物模板法合成新型有序介孔碳分子筛[D].上海:复旦大学博士论文,2008.
    [180]Li, H.Q., Liu, R.L., Zhao, D.Y., Xia, Y.Y.. Electrochemical properties of an orderedmesoporous carbon prepared by direct tri-constituent co-assembly[J]. Carbon,2007,45:2628–2635.
    [181]张震东.非离子表面活性剂导向下新型多孔分子筛材料的合成与表征[D].上海:复旦大学博士论文,2004。
    [182]Liu, R.L., Shi, Y.F., Wan, Y., et al. Triconstituent Co-assembly to OrderedMesostructured Polymer Silica and Carbon Silica Nanocomposites and Large-PoreMesoporous Carbons with High Surface Areas[J], J. Am. Chem. Soc.,2006,128:11652-11662.
    [183]Trick, K.A.; Saliba, T.E. Mechanisms of the pyrolysis of phenolic resin inacarbon/phenolic composite[J]. Carbon,1995,33:1509-1515.
    [184]Kim, J., Lee, J., Hyeon, T. Direct synthesis of uniform mesoporous carbons from thecarbonization of as-synthesized silica/triblock copolymer nanocomposites[J]. Carbon2004,42:2711-2719.
    [185]Yang, C.M., Zibrowius, B., Schmidt, W., Schuth, F.. Consecutive Generation ofMesopores and Micropores in SBA-15[J]. Chem Mater,2003,15:3739-3741.
    [186]Kruk, M., Jaroniec, M., Ko, C.H., Ryoo, R.. Characterization of the Porous Structure ofSBA-15[J]. Chemistry of Materials,2000,12:1961-1968.
    [187]Su, F., Hao, X.S., Mang, Y., et al. Hollow carbon spheres with a controllable shellstructure [J]. Journal of Materials Chemistry,2006,16:4413-4419.
    [188]方容川.固体光谱[M].合肥:中国科技技术大学出版社,2001.
    [189]Yang, H.,Yan, Y., Liu, Y., Zhang, F., Zhang, R.. Meng, Y., Tu, B., Zhao, D..[J]. J Phys.Chem. B,2004,108:17320-17328.
    [190]Su, F., Hao, X.S., Mang, Y., et al. Hollow carbon spheres with a controllable shellstructure [J]. Journal of Materials Chemistry,2006,16:4413-4419.
    [191]Groot, R.D., Madden, T.J..Dynamic Simulation of Diblock Copolymer MicrophaseSeparation[J].Journal ofChemical Physics.1998,108(20):8713·8724.
    [192]Groot, R.D..Mesocopic Simulation of Polymer-Suffactant Aggregation [J].Langmuir,2000,16:7493-7502.
    [193]Simon, J.,Peter, B.,Mike, C.,Sujata, l.,Maarten, H., Warren, P.B.. Simulation ofAmphiphilic Mesophases using Dissipative Partic Dynamics[J].Physical Chemistry ChemicalPhysics,1999,11:2051-2056.
    [194]Fraaije, J.G.,Vlimmeren, B.C.,Maurits, N.M., Hoffman, C., The Dynamic Mean-fieldDensity Functional Method and Its Application to the Mesoscopic Dynamics of QuenchedBlock Copalymer Melts[J].Journal of Chemical Physics.1997,106:4260-4269.
    [195]Beck, J.S., Vartuli, J.C., Roth, W.J, et al. A new family of mesoporousmolecular-sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc.,1992,114:10834-10843.
    [196]Huo, Q., Margolese,D.I., Feng, P., Gier,T.E., Stucky, G.D.. Generalized Syntheses ofPeriodic Surfactant/Inorganic Composite Materials[J]. Nature,1994,368:317-321.
    [197]Schacht, S., Huo, Q., Stucky, G.D., Schüth, F.. Oil-Water Interface Templating ofMesoporous Macroscale Structures[J]. Science,1996,273:768-771.
    [198]Huo, Q., Maxgolese, D.I., Clesia, U., et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature,1994,368:317-321.
    [199]Inagaki, S., Fukushima, Y., Kuroda, K.. Synthesis of highly ordered mesoporousmaterials from a layered polysilicate[J]. Chem. Commun.,1993,8:680-682.
    [200]Vlimmeren, B.A., Maurits, A.M., Zvelindovsky, A.V., Sevink, G.J., Fraaije, J.G..Simulation of3D Mesoscale Structure Formation in Concentrated Aqueous Solution of theTriblock Polymer Surfactants (Ethylene Oxide)13(Propylene Oxide)30(Ethylene Oxide)13and (Propylene Oxide)19(Ethylene Oxide)33(Propylene Oxide)19. Application of DynamicMean-Field Density Functional Theory[J], Macromolecules,1999,32:646-656.
    [201]Guo, S.L. Hou, T.J., Xu, X.J.. Simulation of the Phase Behavior of the(EO)13(PO)30(EO)13(Pluronic L64)/Water/p-Xylene System Using MesoDyn[J]. J. PhysChem. B,2002,106:11397-11403.
    [202]Dondevski, I., William, A.H.,John, T.W., Daniel, K.S..Atomic Force MicroscopeImaging of Molecular Aggregation during Self-Assembled Monolayer Growth[J].Colloidsand SurfacesA:Physicochemical and EngineeringAspects,2000,174:233-243.
    [203]Groot, R.D., Warren, P.B. Dissipative particle dynamics: Bridging the gap betweenatomistic and mesoscopic simulation[J]. J. Chem. Phys.1997,107:4423-4435.
    [204]Sheng, Y.J., Nung, C.H., Tsao, H.K.. Morphologies of star-block copolymers in dilutesolutions[J]. J. Phys. Chem. B,2006,110:21643-21650.
    [205]Srinivas, G., Shelley, J.C., Nielsen, S.O., Discher, D.E.. Klein, M.L.. Coarse grainmodels and the computer simulation of soft materials[J]. J. Phys. Chem. B,2004,108:8153-8160.
    [206]Srinivas, G., Discher, D.E., Klein, M.L. Self-assembly and properties of diblockcopolymers by coarse-grain molecular dynamics[J]. Nat. Mater,2004,3:638-644.
    [207]Milner, S.T.. Chain Architecture and Asymmetry in Copolymer Microphases[J].Macromolecules,1994,27:2333-2335.
    [208]Kimishima, K., Koga, T., Hashimoto, T.. Order Order Phase Transition betweenSpherical and Cylindrical Microdomain Structures of Block Copolymer. I. Mechanism of theTransition[J]. Macromolecules,2000,33:968–977.
    [209]Ohkubo,T., Miyawaki,J., Kaneko, K., Ryoo, R., Seaton, N.A.. Adsorption Properties ofTemplated Mesoporous Carbon (CMK-1) for Nitrogen and Supercritical MethanesExperimentand GCMC Simulation[J]. J. Phys. Chem. B,2002,106:6523-6528.
    [210]Peng, X, Cao, D.P., Wang,W.C.. Heterogeneity Characterization of Ordered MesoporousCarbon Adsorbent CMK-1for Methane and Hydrogen Storage: GCMC Simulation andComparison with Experiment[J]. J.Phys. Chem. C,2008,112:13024–13036.
    [211]Jain, S.K.. Molecular modeling of microporous and templated mesoporous carbons[D].Ph.D. thesis, North Carolina State University. USA.
    [212]Pellenq R.J., Levitz, P.E.. Capillary condensation in a disordered mesoporous medium:agrand canonical Monte Carlo study [J]. Molecular Physics,2002,100:2059-2077.
    [213]Chen, H.Y., Xi, H.X., Cai X.Y., Qian,Y.. Experimental and molecular simulation studiesof a ZSM-5-MCM-41micro-mesoporous molecular sieve[J]. Microporous and MesoporousMaterials,2009,118:396–402.
    [214]Kleestorfer, K., Vinek, H., Jentys, A.. Structure simulation of MCM-41type materials[J].Journal of Molecular Catalysis A: Chemical,2001,166:53–57.
    [215]Bhattacharya, S., Coasne, B., Hung, F.R., Gubbins, K.E.. Modeling Micelle-TemplatedMesoporous Material SBA-15: Atomistic Model and Gas Adsorption Studies[J]. Langmuir,2009,25:5802–5813.
    [216]Dai, W., Hu, P.. Computer simulation studies of structure characteristics of FAU-MCM-41and its application for CO2‐N2adsorption[J]. Materials Research Innovations,2011,15:361-365.
    [217]Zhou, S.C., Huang,Y.M., Hu, J., Liu. H.L.. Atomistic simulations for adsorption andseparation of flue gas in MFI zeolite and MFI/MCM-41micro/mesoporous composite[J].Front. Chem. Sci. Eng.,2011,5:264–273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700