介微孔分子筛和金属-有机骨架材料的合成、表征及其对气体的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CH4是仅次于CO_2的重要温室气体,因其排入大气而引起的气候异常以及对臭氧层的破坏,已经成为全世界共同面临的重大问题。煤矿乏风是最大的甲烷工业排放源,但由于煤矿乏风存在流量大、瓦斯浓度低、甲烷富集困难和安全隐患等问题,使得收集和利用煤矿乏风瓦斯,减少温室气体排放,成为我国面临的紧迫任务。因此,设计对甲烷具有高选择性、高吸附容量、低解吸能耗的新型吸附分离材料以降低煤矿乏风中CH_4的含量是本课题解决的主要问题。
     活性炭或各种类型的分子筛等多孔材料因其特定的骨架结构、大比表面积和良好的热稳定性而成为吸附甲烷的首选对象。实践证明,大比表面积的活性炭或分子筛即使微孔、介孔甚至大孔所占的百分比再高,也不能有效地吸附甲烷分子。因为甲烷分子的动力半径只有3.82,孔径大小不适宜的单一表面并不能捕获它。这一特点也成为吸附甲烷分子的障碍。文献表明,多孔分子筛对气体吸附性能的好坏,不仅与材料的骨架结构和比表面积有关,孔道极性、孔径大小和孔容也是影响气体吸附的重要原因。
     围绕如何设计合成新型的多孔材料,孔径尺寸与所吸附气体分子的动力半径相匹配为目的,改善和提高多孔分子筛对CH_4和N_2的变压吸附性能,本论文通过改变表面活性剂种类和控制合成条件,采用水热法制备了具有球状、棒状和多面体状的有序或蠕虫状介孔二氧化硅SBA-15和SBA-16;采用离子交换的方法改性Beta分子筛;选用多齿配体构筑具有一维孔道的新型三维金属-有机骨架配合物;通过X-射线衍射(XRD)、扫描电子显微镜(SEM)、氮气吸附-脱附(BET)、程序升温脱附(TPD)、等离子体发射光谱(ICP-AES)、电子发射能谱(EDS)、单晶衍射、热重分析(TGA)等技术表征了这些吸附材料的物化性质,并考察对CH4和N2的变压吸附性能。研究内容主要包括:
     (1)采用水热合成法,改变表面活性剂种类和控制合成条件,制备得到具有球状、棒状和多面体状的有序或蠕虫状介孔二氧化硅吸附剂SBA-15和SBA-16。在室温和压力为725~3630mmHg的条件下,具有有序介孔结构和较大孔容的棒状SBA-15对CH_4和N_2的变压吸附分离性能最好,其分离因子(CH_4/N_2)高达6.84。孔容、孔有序度和粒子形貌是影响此类材料变压吸附分离CH4和N2性能的主要因素。
     (2)采用离子交换的方法改性Beta分子筛制得M-Beta (M=H, Mg, Sr, Ba, Cu,Co, Ni, Ce)多孔分子筛。样品经过550℃的灼烧并没有改变分子筛的晶相结构。发现Sr-Beta分子筛对N2的吸附选择性最佳,Ba-Beta分子筛是对CH4和N2吸附量最大的吸附剂;碱土金属阳离子半径与N2吸附有关,离子半径越大,其对应的改性Beta分子筛对N2的吸附量也越大;确定在0~1000mmHg低压范围内,孔径和分子筛孔道酸性是影响分子筛对CH4和N2的变压吸附分离性能的主要因素,在强酸位,酸量按Ba-Beta> Sr-Beta> Co-Beta> Mg-Beta> Ce-Beta>Na-Beta> H-Beta> Ni-Beta的顺序减少,各吸附剂对CH_4吸附量也呈相同趋势递减,强酸位越多,对CH4的吸附量越大;在2000~6000mmHg高压范围内,比表面积是影响两种气体吸附的主要原因。
     (3)采用层析法和水热合成法,以吡啶-3,5-二羧酸、异烟酸和吡啶-2,6-二羧酸为有机配体,分别以Co、Ni、Mn和Cu的氯化物为金属前躯体合成新型金属有机配合物。
     (4)采用水热合成法,以吡啶-2,6-二羧酸为配体,与稀土金属离子和碱土金属Ca或Sr的金属前躯体氢氧化物合成新型金属-有机骨架材料。通过单晶衍射结果发现,在相同的反应条件下,吡啶-2,6-二羧酸为配体,稀土金属离子和碱土金属离子Ca的摩尔比不同,所得的金属-有机骨架结构不同。其中,Ln系的金属-有机聚合物为一维链状结构,而Ln-Ca(Ln=Eu, Sm, Tb和Pr)系列金属-有机骨架材料则具有一维孔道的三维骨架结构,通过粉末XRD及热重分析(TGA)技术表征金属-有机骨架材料的晶相结构和热稳定性,确定孔道中的客体水分子具有支撑孔道的作用,客体水分子和配位水分子的脱出会引起骨架结构的坍塌。在相似的反应条件下,由于不同的碱土金属离子配位方式不同,即使与相同的配体配位,所得金属-有机骨架材料的结构也不同。与Ln-Ca系列金属-有机骨架相比,以Sr的氢氧化物为金属前躯体的金属-有机聚合物为一维带状结构。
     (5)采用水热合成法,以4-羟基-吡啶-2,6-二甲酸为配体,与水合Cu(NO_3)2原位合成3-硝基-4-羟基-吡啶-6-羧酸铜([Cu(C_6H_5N_2O_6)2]·2(H_2O))配合物。
     (6)采用溶剂热方法,以1,4-苯二甲酸和异烟酸为有机配体,Zn(NO3)2·6H_2O为金属前躯体制得具有一维孔道的新型三维金属-有机骨架材料。通过TGA及PXRD表征技术确定金属-有机聚合物具有良好的热稳定性,150oC条件下真空干燥3h后仍能保持骨架结构的完整。由其对CH_4和N_2的吸附性能可得出,在0~1000mmHg低压范围内,金属-有机聚合物对CH_4吸附量小于Ba-Beta分子筛,随着压力增大,前者对CH_4吸附量逐渐大于后者;在整个压力范围内,金属-有机聚合物对N2吸附量均小于Ba-Beta分子筛。显然,在1000~6000mmHg压力范围,金属-有机聚合物对CH4吸附量的吸附选择性较好。
Methane is the main greenhouse gas in addition to carbon dioxide. The emissionof a large quantity of methane to the atmosphere is harmful to the climate and theozone layer. Hence, it has become the great problem to control methane emissions inthe word. Coal mine is one of the largest methane emission sources. It is very difficultto enrich methane gas due to the low concentration and involved safety problems.Therefore, it is urgent to design the novel porous materials with high selectivity andadsorption capacity and low desorption energy consumption of ventilated minemethane to reduce the content of methane in coal mine.
     Activated carbon or various types of molecular sieves have become the mostsuitable porous materials for methane adsorption because of their unique structures,large surface areas, and high thermal stability. Practically speaking, it has proved thatactivated carbon or various types of molecular sieves with large surface areas,including the high percentage of micropores, mesopores, and macropores, can noteffectively adsorb methane molecules because methane molecular radium is only3.82
     . The results reported in the literature have shown that the gas adsorptionperformance of porous materials is associated not only with the structures and surfaceareas but also with the channel polarity, pore sizes, and pore volumes.
     To improve and further enhance their pressure swing adsorption (PSA)performance of methane and nitrogen, we prepared spherical, rod-like, and polyhedralsilica SBA-15and SBA-16with ordered or wormhole-like mesopores under thehydrothermal conditions; Na-Beta adsorbents were obtained via the ion-exchangingroute with several metal cations; the porous metal-organic frameworks based onmultidentate ligands were synthesized. The physicochemical properties of theas-prepared materials were characterized by means of techniques, such as X-raydiffraction (XRD), scanning electron microscopy (SEM), N2adsorption-desorption(BET), temperature-programmed desorption (TPD), X-ray fluorescence spectroscopy(XRF), inductively coupled plasma-atomic emission spectrometry (ICP-AES), singlecrystal diffraction, and thermogravimetric analysis (TGA). The pressure swingadsorption behaviors for methane and nitrogen separation of these materials wereinvestigated. The main results obtained in the present investigations are as follows:
     (1) By changing the surfactant types and controlling the synthesis conditions, spherical, rod-like, and polyhedral silica SBA-15and SBA-16with ordered orwormhole-like mesopores were fabricated under the hydrothermal conditions. It isshown that the rod-like SBA-15sample with an ordered mesoporous structure andrelatively large pore volume exhibited the best PSA performance for the separation ofmethane and nitrogen, with the separation coefficient (CH4/N2) being up to6.84. ThePSA efficiency for methane and nitrogen separation of such kinds of mesoporoussilicas was associated with the pore volume, ordered porosity, and particlemorphology.(2) M-Beta porous adsorbents were obtained via the ion-exchanging route withseveral cations (H~+, Mg~2+, Sr~2+, Ba~2+, Cu~2+, Co~2+, Ni~2+, and Ce~3+) to study their effectson the adsorption behaviors of methane and nitrogen. It is shown that the Sr-Betamolecular sieve exhibited the best PSA performance for the separation of methane andnitrogen, whereas the maximal adsorption capacity for methane and nitrogen could beachieved for the Ba-Beta sample. For adsorbents containing alkaline-earth metalcations, the nitrogen adsorption capacity increased with increasing the cationic size. Itis confirmed that the pore size and channel acidity are the main factors in influencingthe PSA performance for the separation of methane and nitrogen in0~1000mmHgrange, whereas the surface area is the main factor in influencing the PSA performancefor the methane and nitrogen in2000~6000mmHg range. Furthermore, for the strongacid sites, the acidic amount of the adsorbent fellow a decreasing order of Ba-Beta>Sr-Beta> Co-Beta> Mg-Beta> Ce-Beta> Na-Beta> H-Beta> Ni-Beta, and themethane adsorption capacity decreased according to the same sequence. The more thestrong sites, the more is the methane adsorption capacity. Based on the results, weconclude that the adsorption capacity of methane is in concord with the sequence ofincreasing the strong acid sites.(3) Novel one-and two-dimensional metal-organic materials were synthesizedusing the solvent diffusion and hydrothermal method with pyridine-3,5-dicarboxylicacid, isonicotinic acid or pyridine-2,6-dicarboxylic acid as multidentate ligands, andCo, Ni, Mn and Cu as central metal ions,(4) Novel metal-organic materials were synthesized via the hydrothermal routeusing pyridine-2.6-dicarboxylic acid as ligand, and rare earth metal and alkaline earthmetal Ca or Sr hydroxides as precursors. X-ray single-crystallography reveals that twonovel coordination polymers were obtained when the molar ratio ofpyridine-2,6-dicarboxylate acid, Ln~3+, and Ca~2+was different. The Ln-organic polymer exhibited an one-dimensional chained structure. However, the novel Ln-Caheterometal-organic compounds displayed three-dimensional frameworks withone-dimensional channel. The XRD and TGA results indicate that the guest watermolecules played a role in supporting the pore structure, and the dehydration of thesematerials could induce serious collapses of the frameworks. Under the similar reactionconditions, the obtained metal–organic materials were different due to the differentcoordination modes of various alkaline earth metals and even to the coordination withthe same ligand. Ln-Sr-organic coordination polymers exhibited one-dimensionalribbon-like structure obtained solvethermally as compared to the Ln-Ca-organicframeworks.
     (5)[bis(3-nitryl-4-hydroxyl-pyridine-6-carboxylic) copper] dihydrate was insitu generated by using the hydrothermal method via the decarboxylation and nitrationof4-hydroxyl-pyridine-2,6-dicarboxylic acid ligand with copper nitratetrihydrate asthe metal source.
     (6) Novel metal-organic compound was synthesized via the solvethermal routewith isonicotinate and terephthalic acid as ligand and Zn~2+as center ion. X-raysingle-crystallography reveals that metal-organic compound displayed athree-dimensional framework with one-dimensional channel. The XRD and TGAresults indicate that the removal of DMF molecules in channel did not induce thecollapsing of the framework even when the sample was in vacuum dried at150oC for3h. The compound possessed good thermal stability. The Ba-Beta molecular sieveexhibited better PSA performance in methane adsorption capacity in the range of0~1000mmHg. The higher the pressure, the more is the methane adsorption capacityof the compound than that of Ba-Beta. Compared to metal-Beta zeolites, thecompound showed better PSA performance for nitrogen adsorption capacity andbetter methane adsorption selectivity in the range of1000~6000mmHg.
引文
[1] M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen, K. P. de Jong. Hydrogen storageusing physisorption–materials demands. Appl. Phys. A2001,72:619–623
    [2] J. Wegrzyn, M. Gurevich. Adsorbent storage of natural gas. Appl. Energy1996,55:71–83
    [3] A. W. Chester, P. Clement, S. Han. Faujasite zeolitic materials. US patent6136291-A (2000)
    [4] A. Stein. Advances in microporous and mesoporous solids-highlights of recent progress. Adv.Mater.2003,15:763–775
    [5] S. L. James. Metal-organic frameworks. Chem. Soc. Rev.2003,32:276–288
    [6] H. L. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi. Design and synthesis of an exceptionallystable and highly porous metal-organic framework. Nature1999,402:276–279
    [7]徐如人,庞文琴.分子筛与多孔材料化学.科学出版社,2004
    [8] H. K. Chae, D. Y. Siberio-Pe′rez, J. Kim, Y. B. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe,O. M. Yaghi. A route to high surface area, porosity and inclusion of large molecules in crystals.Nature2004,427:523–527
    [9] H. Furukawa, M. A. Millerb, O. M. Yaghi. Independent verification of the saturation hydrogenuptake in MOF-177and establishment of a benchmark for hydrogen adsorption inmetal–organic frameworks. J. Mater. Chem.2007,17:3197–3204
    [10] K. Koh, A.G. Wong-Foy, A. J. Matzger. A Porous Coordination Copolymer with over5000m2/g BET Surface Area. J. Am. Chem. Soc.2009,131:4184–4185
    [11] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi. Systematicdesign of pore size and functionality in isoreticular MOFs and their application in methanestorage. Science2002,295:469–472
    [12] H. L. Li, M. Eddaoudi, T. L. Groy, O. M. Yaghi. Establishing microporosity in openmetal-organic frameworks: gas sorption isotherms for Zn(BDC)(BDC=1,4-Benzenedicarboxylate). J. Am. Chem. Soc.1998,120:8571–8572
    [13] N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O. M. Yaghi. Rod packings andmetal-organic frameworks constructed from rod-shaped secondary building units. J. Am.Chem. Soc.2005,127:1504–1518
    [14] B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi. High H2adsorptionin a microporous metal–organic framework with open metal sites. Angew. Chem. Int. Ed.2005,44:4745–4749
    [15] B. Chen, M. Eddaoudi, S. T. Hyde, M. O’Keeffe, O. M. Yaghi. Interwoven metal-orgnicframework on a periodic minimal surface with extra-large pore, Science2001,291:1021–1023
    [16] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams. A chemicallyfunctionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science1999,283:1148–1150
    [17] B. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O’Keeffe, O. M. Yaghi.Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals(ATC:1,3,5,7-adamantane tetracarboxylate). J. Am. Chem. Soc.2000,200:11559–11560
    [18] O. M. Yaghi, C. E. Davis, G. M. Li, H. L. Li,Selective guest binding by tailored channels ina3-D porous Zinc(II)-Benzenetricarboxylate network. J. Am. Chem. Soc.1997,119:2861–2868
    [19] H. Wu, W. Zhou, T. Yildirim. Methane sorption in nanoporous metal-organic frameworksand first-order phase transition of confined methane. J. Phys. Chem. C2009,113:3029-3035
    [20] T. Duren, L. Sarkisov, O. M. Yaghi, R. Q. Snurr. Design of new materials for methanestorage. Langmuir2004,20:2683–2689
    [21] P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom, Helmer Fjellv g. Hydrogen adsorption ina nickel based coordination polymer with open metal sites in the cylindrical cavities of thedesolvated framework. Chem. Commun.2006,959–961
    [22] H. Wu, W. Zhou, T. Yildirim. High-capacity methane storage in metal-organic frameworksM2(dhtp): the important role of open metal sites. J. Am. Chem. Soc.2009,131:4995–5000
    [23] P. D. C. Dietzel, V. Besikiotis, R. Blom. Application of metal–organic frameworks withcoordinatively unsaturated metal sites in storage and separation of methane and carbondioxide. J. Mater. Chem.2009,19:7362–7370
    [24] P. D. C. Dietzel, R. E. Johnsen, R. Blom, H. Fjellvag. Structural changes and coordinativelyunsaturated metal atoms on dehydration of honeycomb analogous microporousmetal–organic frameworks. Chem. Eur. J.2008,14,2389–2397
    [25] P. D. C. Dietzel, R. Blom, H. Fjellvag. Base-induced formation of two magnesiummetal-organic framework compounds with a bifunctional tetratopic ligand. Eur. J. Inorg.Chem.2008,23:3624–3632.
    [26] P. D. C. Dietzel, Y. Morita, R. Blom, H. Fjellvag. An in situ high-temperature single-crystalinvestigation of a dehydrated metal–organic framework compound and field-inducedmagnetization of one-dimensional metal–oxygen chains. Angew. Chem. Int. Ed.2005,44:6354–6358
    [27] P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvag. Hydrogen adsorption in anickel based coordination polymer with open metal sites in the cylindrical cavities of thedesolvated framework. Chem. Commun.2006,9:959–961
    [28] S. R. Caskey, A. G. Wong-Foy, A. J. Matzger. Dramatic tuning of carbon dioxide uptake viametal substitution in a coordination polymer with cylindrical Pores. J. Am. Chem. Soc.2008,130:10870–10871
    [29] C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, G. Ferey. Verylarge breathing effect in the first nanoporous chromium(III)-based solids: MIL-53orCr(OH)·{O2C-C6H4-CO2}·{O2C-C6H4-CO2}x·H2Oy. J. Am. Chem. Soc.2002,124:13519–13526
    [30] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey. Arationale for the large breathing of the porous aluminum terephthalate (MIL-53) uponhydration. Chem. Eur. J.2004,10:1373–1382
    [31] S. Bourrelly, P. L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Ferey. Differentadsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metalterephthalates MIL-53and MIL-47. J. Am. Chem. Soc.2005,127:13519–13521
    [32] G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki. Achromium terephthalate–based solid with unusually large pore volumes and surface area.Science2005,309:2040–2042
    [33] P. Chowdhury, C. Bikkina, S. Gumma. Gas adsorption properties of the chromium-basedmetal organic framework MIL-101. J. Phys. Chem. C2009,113:6616–6621
    [34] P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. D. Weireld, J. S.Chang, D. Y. Hong, Y. K. Hwang, S. H. Jhung, G. Ferey. High uptakes of CO2and CH4inmesoporous metals organic frameworks MIL-100and MIL-101. Langmuir2008,24:7245–7250
    [35] G. Ferey, C. Serre, C. M. Draznieks, F. Millange, S. Surble, J. Dutour, I. Margiolaki. Ahybrid solid with giant pores prepared by a combination of targeted chemistry, simulation,and powder diffraction. Angew. Chem. Int. Ed.2004,43:6296–6301
    [36] K. Seki, W. Mori. Syntheses and characterization of microporous coordination polymers withopen frameworks. J. Phys. Chem. B2002,106:1380–1385
    [37] S. Kitagawa, R. Kitaura, S. Noro. Functional porous coordination polymers. Angew. Chem.Int. Ed.2004,43:2334–2375
    [38] M. Gallo, D. Glossman-Mitnik. Fuel gas storage and separations by metal-organicframeworks: simulated adsorption isotherms for H2and CH4and their equimolar mixture. J.Phys. Chem. C2009,113:6634–6642
    [39] X. S. Wang, S. Q. Ma, K. Rauch, J. M. Simmons, D. Q. Yuan, X. P. Wang, T. Yildirim, W. C.Cole, J. J. Lopez, A. Meijere, H. C. Zhou. Metal-organic frameworks based ondouble-bond-coupled. Chem. Mater.2008,20:3145–3152
    [40] Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O’Keeffe, B.Chen. A metal-organic framework with optimized open metal sites and pore spaces for highmethane storage at room temperature. Angew. Chem. Int. Ed.2011,50:3178–3181
    [41] S. Q. Ma, D. F. Sun, J. M. Simmons, C. D. Collier, D. Q. Yuan, H. C. Zhou. Metal-organicframework from an anthracene derivative containing nanoscopic cages exhibiting highmethane uptake. J. Am. Chem. Soc.2008,130:1012–1016
    [42] T. Duren, R. Q. Snurr. Assessment of isoreticular metal-organic frameworks for adsorptionseparations: a molecular simulation study of methane/n-butane mixtures. J. Phys. Chem. B2004,108:15703–15708
    [43] M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa. Three-dimensional frameworkwith channeling cavities for small molecules:{[M2(4,4′-bpy)3(NO3)4]·xH2O}n(M=Co, Ni,Zn). Angew. Chem. Int. Ed. Engl.1997,36:1725–1727
    [44] S. Noro, R. Kitaura, M. Kondo, S. Kitagawa, T. Ishii, H. Matsuzaka, M. Yamashita.Framework engineering by anions and porous functionalities of Cu(II)/4,4′-bpy coordinationpolymers. J. Am. Chem. Soc.2002,124:2568–2583
    [45] S. Noro, S. Kitagawa, M. Kondo, K. Seki. A new, methane adsorbent, porous coordinationpolymer [{CuSiF6(4,4'-bipyridine)(2)}(n)]. Angew. Chem. Int. Ed.2000,39:2081–2084.
    [46] M. Kondo, M. Shimamura, S. Noro, S. Minakoshi, A. Asami, K. Seki, S. Kitagawa.Microporous materials constructed from the interpenetrated coordination networks. structuresand methane adsorption properties. Chem. Mater.2000,12:1288–1299
    [47] K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M.O’Keeffe, O. M. Yaghi. Exceptional chemical and thermal stability of zeolitic imidazolateframeworks. Proc. Natl. Acad. Sci. U.S.A.2006,103:10186–10191
    [48] H. Hayashi, A. P. Cote, H. Furukawa, M. O’keeffe, O. M. Yaghi. Zeolite a imidazolateframeworks. Nature2007,6:501–506.
    [49] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi.High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2capture.Science2008,319:939–943
    [50] R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O’Keeffe, O. M. Yaghi. Control of poresize and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxideselective capture properties. J. Am. Chem. Soc.2009,131:3875–3877
    [51] T. Wu, X. H. Bu, J. Zhang, P. Y. Feng. New zeolitic imidazolate frameworks: fromunprecedented assembly of cubic clusters to ordered cooperative organization ofcomplementary ligands. Chem. Mater.2008,20:7377–7382.
    [52] W. Zhou, H. Wu, T. J. Udovic, J. J. Rush, T. Yildirim. Quasi-free methyl rotation in zeoliticimidazolate framework-8. J. Phys. Chem. A2008,112:12602–12606
    [53] H. Bux, F. Y. Liang, Y. S. Li, J. Cravillon, M. Wiebcke, J. Caro. Zeolitic imidazolateframework membrane with molecular sieving properties by microwave-assisted solvothermalsynthesis. J. Am. Chem. Soc.2009,131:16000–16001
    [54] J. L. C. Rowsell, E. C. Spencer, J. Eckert, J. A. K. Howard, O. M. Yaghi. Gas adsorption sitesin a large-pore metal-organic framework. Science2005,309:1350–1354
    [55] W. Zhou, H. Wu, M. R. Hartman, T. Yildirim. Hydrogen and methane adsorption inmetal-organic frameworks: a high-pressure volumetric study. J. Phys. Chem. C2007,111:16131–16137
    [56] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi.High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2capture.Science2008,319:939–943
    [57] R. B. Rankin, J. Liu, A. D. Kulkarni, J. K. Johnson. Adsorption and diffusion of light gases inZIF-68and ZIF-70: A simulation study. J. Phys. Chem.2009,113:16906–16914
    [58] L. Dobrzanska, G. O. Lloyd, H. G. Raubenheimer, L. J. Barbour. A discrete metallocycliccomplex that retains its solvent-templated channel structure on guest removal to yield aporous, gas sorbing material. J. Am. Chem. Soc.2005,127:13134–13135
    [59] X. Lin, A. J. Blake, C. Wilson, X. Z. Sun, N. R. Champness, M. W. George, P. Hubberstey, R.Mokaya, M. Schroder. A porous framework polymer based on a zinc(II)4,4′-bipyridine-2,6,2′,6′-tetracarboxylate: synthesis, structure, and―seolite-like‖behaviors. J.Am. Chem. Soc.2006,128:10745–10753
    [60] I. Senkovska, S. Kaskel. High pressure methane adsorption in the metal-organic frameworksCu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3. Micropor. Mesopor. Mater.2008,112:108–115
    [61] H. Kim, D. G. Samsonenko, S. Das, G. H. Kim, H. S. Lee, D. N. Dybtsev, E. A. Berdonosova,K. Kim. Methane Sorption and Structural Characterization of the Sorption Sites inZn2(bdc)2(dabco) by Single Crystal X-ray Crystallography. Chem. Asian J.2009,4:886–891
    [62] H.Wang, J. Getzschmann, I. Senkovska, S. Kaskel. Structural transformation and highpressure methane adsorption of Co2(bdc)2(dabco). Micropor. Mesopor. Mater.2008,116:653–657
    [63]刘应书,杨雄,李永玲,张传钊,孟宇,杨海军.真空变压吸附分离含氧煤层气的工艺参数实验研究.现代化工.2011,31(1):64–67
    [64]郭璞,李明.煤层气中CH4/N2分离工艺研究进展.化工进展.2008,27(7):963967.
    [65]杨江峰,赵强,于秋红,董晋湘,李晋平.煤层气回收及CH4/N2分离PSA材料的研究进展.化工进展.2011,30(4):793–800
    [66]孙思,吴永永,罗仕忠,储伟,倪宏志.葡萄糖还原法制备CuCl/NaY吸附剂及其CO吸附和CO/H2分离性能.高等学校化学学报.2011,32(8):1794–1798
    [67]杨皓,龚茂初,陈耀强.活性炭的孔径分布对CH4和CO2的吸附性能的影响.无机化学学报.2011,27(6):1053–1058
    [68]刘克万,辜敏,鲜晓红.变压吸附分离CH4/N2的分子筛吸附剂进展.材料导报.2010,24(1):59–63
    [69] J. R. Li, R. J. Kuppler, H. C. Zhou. Selective gas adsorption and separation in metal–organicframeworks. Chem. Soc. Rev.2009,38:1477–1504
    [70] M. Hartmann. Ordered mesoporous materials for bioadsorption and biocatalysis. Chem.Mater.2005,18:4577–4593
    [71] L. Mercier, T. J. Pinnavaia. Access in mesoporous materials: advantages of a uniform porestructure in the design of a heavy metal ion adsorbent for environmental remediation. Adv.Mater.1997,6:500–503
    [72] L. Zhang, Y. H. Zhao, H. X. Dai, H. He, C. T. Au. A comparative investigation on theproperties of Cr-SBA-15and CrOx/SBA-15. Catal. Today.2008,131:42–54
    [73]赵岚,朱广山,张大梁,邸岩,裘式纶.孔壁部分有序化的介孔二氧化硅材料的合成与表征.高等学校化学学报.2006,27(2):208–211
    [74] L. Zhang, J. G. Deng, H. X. Dai, C. T. Au. Binary Cr–Mo oxide catalysts supported onMgO-coated polyhedral three-dimensional mesoporous SBA-16for the oxidativedehydrogenation of iso-butane. Appl. Catal. A.2009,354:72–81
    [75]张昉,万颖,李和兴.纳米介孔Ru-PPh2-SBA-16催化水相中高烯丙醇异构化反应的研究.高等学校化学学报.2007,28(1):125–128
    [76]聂鑫,曲凤玉,李晓丰,林惠明.富含羧基的球形介孔分子筛SBA-15的合成及药物释放性能.高等学校化学学报.2011,32(7):1478–1482
    [77] Y. Belmabkhout, A. Sayari. Adsorption of CO2from dry gases on MCM-41silica at ambienttemperature and high pressure.2: Adsorption of CO2/N2, CO2/CH4and CO2/H2binarymixtures. Chem. Eng. Sci.2009,64:3729–3735
    [78]辜敏,刘克万,鲜学福,冯砚艳.无烟煤制备颗粒活性炭及其PSA分离CH4/N2性能.材料科学与工艺.2011,19(3):82–87
    [79]刘应书,郭广栋,杨雄,李永玲,张辉,孟宇.变压吸附浓缩煤层气吸附剂的选择实验.矿业安全与环保.2010,37(4):4–7
    [80] D. Saha, Z. B. Bao, F. Jia, S. G. Deng. Adsorption of CO2, CH4, N2O, and N2on MOF-5,MOF-177, and Zeolite5A. Environ. Sci. Technol.2010,44:1820–1826
    [81] X. W. Liu, L. Zhou, X. Fu, Y. Sun, W. Su, Y. P. Zhou. Adsorption and regeneration study ofthe mesoporous adsorbent SBA-15adapted to the capture/separation of CO2and CH4. Chem.Eng. Sci.2007,62:1101–1110
    [82] R.S. Pillai, S. A. Peter, R. V. Jasra. Adsorption of carbon dioxide, methane, nitrogen, oxygenand argon in NaETS-4. Micropor. Mesopor. Mater.2008,113:268–276
    [83] R.T. Yang. Adsorbents: Fundamentals and Applications. Wiley Interscience. New Jersey,2003
    [84] R.T. Yang. Gas Separation by Adsorption processes. Butterworth: Boston, MA,1987
    [85] D.M. Ruthven. Past Progress and Future Challenges in Adsorption Research. Ind. Eng. Chem.Res.2000,39:2127–2131
    [86] A. Dabrowski. Adsorptions—from Theory to Practice. Adv. Colloid Interface2001,93:135–224
    [87] R. Szostak. Molecular Sieves: Principles of Synthesis and Identification. Van Nostrand Rein-hold: New York,1989
    [88] J.C. Poshusta, V.A. Tuan, E.A. Pape, R.D. Noble, J.L. Falconer. Separation of light gasmixtures using SAPO-34membranes. AIChE J.2000,46:779–789
    [89] D.W. Breck. Zeolite Molecular Sieves. Wiley: New York,1973
    [90] H.W. Habgood. The Kinetics of Molecular Sieve Action: Sorption of nitrogen-methanemixtures by Linde Molecular Sieve4A. Can. J. Chem. Eng.1958,36:1384–1994
    [91] M.W. Ackley, R.T. Yang. Kinetic separation by pressure swing adsorption: Method ofcharacteristics model. AIChE J.1990,36,1229–1238
    [92] M.W. Ackley, R.T. Yang. Adsorption characteristic of high-exchange clinoptilolite. Ind. Eng.Chem. Res.1991,30:2523–2530
    [93] A. Jayaraman,A. J. Hernandez-Maldonado,R.T. Yang,D. Chinn,C.L. Munson,D.H. Mohr.Clinoptilolites for nitrogen/methane separation. Chem. Eng. Sci.2004,59:2407–2417
    [94] A. Jayaraman, R.T. Yang, D. Chinn, C.L. Munson. Tailored clinoptilolite fornitrogen/methane separation. Ind. Eng. Chem. Res.2005,44:5184–5192
    [95] S. Mintova,V. Valtchev, S. Angelova, L. Konstantinov. Kinetic investigation of the effect ofNa, K, Li and Ca on the crystallization of titanium silicate ETS-4. Zeolites1997,18:269–273
    [96] A. Philippou, M.W. Anderson. Structural investigation of ETS-4. Zeolites1996,16:98–107
    [97] C. Braunbarth, H.W. Hillhouse, S. Nair, M. Tsapatsis. Structure of strontium ion-exchangedETS-4microporous molecular sieves. Chem. Mater.2000,12:1857–1865
    [98] S.M. Kuznicki, V.A. Bell, S. Nair, H.W. Hillhouse, R.M. Jacubinas, C.M. Braunbarth, B.H.Toby, M. Tsapatsis. A titanosilicatemolecular sieve with adjustable pores for size-selectiveadsorption of molecules. Nature2001,412:720–724
    [99]徐如人,庞文琴.分子筛与多孔材料化学.科学出版社,2004
    [100] M. E. Rivera-Ramos, A.J. Hernández-Maldonado. Adsorption of N2and CH4byion-exchanged silicoaluminophosphate nanoporous sorbents: interaction with monovalent,divalent, and trivalent cations. Ind. Eng. Chem. Res.2007,46:4991–5002
    [101] R.L. Wadlinger, G.T. Kerr, E.J. Rosinski. Catalytic composition of a crystalline zeolite. U.S.Patent3308069,1967
    [102] J. M. Newsam, M.M.J. Treacy, W.T. Koetsier, C.B. De Gruyter. Structural characterizationof zeolite Beta. Proc. R. Soc. A. Math. Phys. Eng. Sic.1988,420:375–405
    [103] J.B. Higgins, R.B. Lapierre, J.L. Schlenker, A.C. Rohrman, J.D. Wood, G.T. Kerr, W.J.Rohrbaugh. The framework topology of zeolite beta. Zeolites1988,8:446–452
    [104] A. Chica, A. Corma. Hydroisomerization of pentane, hexane, and heptane for improving theoctane number of gasoline. J. Catal.1999,187:167–176
    [105] L. Bonetto, M. Camblor, A. Corma, J. Perezpariente. Optimization of zeolite-beta incracking catalysis-influence of crystallite size. Appl. Catal. A.1992,82:37–50
    [106] G. Bellussi, G. Pazzuconi, C. Perego, G. Girotti, G. Terzoni. Liquid-phase alkylation ofbenzene with light olefins catalyzed by β zeolites. J. Catal.1995,157:227–234
    [107] M. Boronat, P. Concepción, A. Corma, M. Renz, S. Valencia. Determination of thecatalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation bythe combination of theoretical and experimental studies. J. Catal.2005,111–118
    [108] T. Atoguchi, T. Kanougi. Phenol oxidation over alkaline earth metal ion exchange betazeolite in the presence of ketone. J. Mol. Catal. A2004,222:253–257
    [109] J. Zhang, W. Fan, Y. Liu, R. Li. Synthesis and catalytic property of a Co2+-exchangedBeta/Y composite for the selective catalytic reduction of NO by CH4in the presence ofexcess oxygen. Appl. Catal. B2007,76:174–184
    [110] R.D. Shannon. Revised effective ionic radii and systematic studies of interatomic distancesin halides and chalcogenides. Acta. Cryst. A1976,32:751–767
    [111] H.G. Karge. Catalysis and adsorption by zeolites. Amsterdam: Elsevier Science Publisher.1991,113–155
    [112] S. Das, H. Kim, K. Kim. Metathesis in single crystal: complete and reversible exchange ofmetal ions constituting the frameworks of metal-organic frameworks. J. Am. Chem. Soc.2009,131:38143815
    [113] S. Noro, R. Kitaura, M. Kondo, S. Kitagawa, T. Ishii, H. Matsuzaka, M. Yamashita.Framework engineering by anions and porous functionalities of Cu(II)/4,4′-bpy coordinationpolymers. J. Am. Chem. Soc.2002,124:25682583.
    [114] M.E. Braun, C.D. Steffek, J. Kim, P.G. Rasmussen, O.M. Yaghi.1,4-Benzenedicarboxylatederivatives as links in the design of paddle-wheel units and metal–organic frameworksChem. Commun.2001,25322533
    [115] O.M. Yaghi, C.E. Davis, G. Li, H. Li. Selective guest binding by tailored channels in a3-Dporous zinc(II)-benzenetricarboxylate network. J. Am. Chem. Soc.1997,119:28612868.
    [116] M. Eddaoudi, H. Li, O.M. Yaghi. Highly porous and stable metal-organic frameworks:structure design and sorption properties. J. Am. Chem. Soc.2000,122:13911397.
    [117] N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi. Rod packings andmetal-organic frameworks constructed from rod-shaped secondary building units. J. Am.Chem. Soc.2005,127:15041518.
    [118] J. Seo, R. Matsuda, H. Sakamoto, C. Bonneau, S. Kitagawa. A pillared-layer coordinationpolymer with a rotatable pillar acting as a molecular gate for guest molecules. J. Am. Chem.Soc.2009,131:1279212800
    [119] Y.Y. Lv, Y. Qi, L.X. Sun, F. Luo, Y.X. Che, J.M. Zheng. Construction of metal-organicframeworks with the pyridine-3,5-dicarboxylate anion and bis(imidazolel ligands: synthesis,structure, and thermostability studies. Eur. J. Inorg. Chem.2010,55925596
    [120] Y.H. Zhao, Z.M. Su, Y.M. Fu, K.Z. Shao, P. Li, Y. Wang, X.R. Hao, D.X. Zhu, S.D. Liu.Syntheses and characterizations of four metal coordination polymers constructed by thepyridine-3,5-dicarboxylate ligand. Polyhedron2008,27:583592
    [121] Q. Shi, S. Zhang, Q. Wang, H. Ma, G. Yang, W.H. Sun. Synthesis and crystal structure ofmetal-organic frameworks [Ln2(pydc-3,5)3(H2O)9]n·3nH2O (Ln=Sm, Eu, Gd, Dy; pydc-3,5=pyridine-3,5-dicarboxylate) along with the photoluminescent property of its europium one.J. Mol. Struct.2007,837:185189
    [122] Y.L. Lu, J.Y. Wu, M.C. Chan, S.M. Huang, K.L. Lu. Influence of water content on theself-assembly of metal-organic frameworks based on pyridine-3,5-dicarboxylate. Inorg.Chem.2006,45:24302437
    [123] J.Y. Lu, V. Schauss. Crystal engineering of a three-dimensional coordination polymerbasedon both covalent and O–H…O hydrogen bonding interactions of bifunctional ligands.CrystEngComm2001,26:13
    [124] J. Jia, X. Lin, A.J. Blake, N.R. Champness, P. Hubberstey, L. Shao, G. Walker, C. Wilson,M. Schr der. Triggered ligand release coupled to framework rearrangement: generatingcrystalline porous coordination materials. Inorg. Chem.2006,45:88388840
    [125] J. Xia, B. Zhao, H.S. Wang, W. Shi, Y. Ma, H.B. Song, P. Cheng, D.Z. Liao, S.P. Yan.Two-and three-dimensional lanthanide complexes: synthesis, crystal structures, andproperties. Inorg. Chem.2007,46,34503458
    [126] J.Y. Wua, J.F. Yin, T.W. Tseng, K.L. Lu. Water aggregate: Combination of octameric watercube and (H2O)20cluster within3d–4f heterometallic metal–organic coordination networks.Inorg. Chem. Commun.2008,11:314317
    [127] L. Du, K.M. Wang, R.B Fang, Q.H. Zhao. Multidimensional snowflake-shaped (3,9)-connected metal-organic frameworks composed of Ni3(μ3-O) building blocks andsymmetry ligand pyridine-3,5-dicarboxylic acid. Z. Anorg. Allg. Chem.2009,635:375378
    [128] S.K. Ghosh, J. Ribas, P.K. Bharadwaj. Characterization of3-D metal-organic frameworksformed through hydrogen bonding interactions of2-D networks with rectangular voids byCoII-and NiII-pyridine-2,6-dicarboxylate and4,4′-bipyridine or1,2-di(pyridyl)ethylene.Cryst. Growth Des.2005,5:623–629
    [129] S.W. Jin, W.Z. Chen. Synthesis and characterization of Cu(II), Co(II) and Ni(II)coordination polymers containing bis(imidazolyl) ligands. Polyhedron2007,26:3074–3084
    [130] X.L. Wang, C. Qin, E. Wang, C. Hu, L. Xu. A novel three-dimensional supramolecularnetwork containing one-dimensional trapezoid channels based on nickel and mixed organicligands assembly. J. Mol. Struct.2004,692:187–193
    [131] J.C. MacDonald, P.C. Dorrestein, M.M. Pilley, M.M. Foote, J.L. Lundburg, R.W. Henning,A.J. Schultz, J. L. Manson. Design of layered crystalline materials using coordinationchemistry and hydrogen bonds. J. Am. Chem. Soc.2000,122:11692–11702
    [132] H.L. Gao, L. Yi, B. Zhao, X.Q Zhao, P. Cheng, D.Z. Liao, S.P. Yan. Synthesis andcharacterization of metal organic frameworks based on4-hydroxypyridine-2,6-dicarboxylicacid and pyridine-2,6-dicarboxylic acid ligands. Inorg. Chem.2006,45:5980–5988
    [133] S.K. Ghosh, J. Ribas, P.K. Bharadwaj. Metal–organic framework structures of Cu(II) withpyridine-2,6-dicarboxylate and different spacers: identification of a metal bound acyclicwater tetramer. CrystEngComm2004,6:250–256
    [134] A.T. olak, F. olak, O.Z. Ye ilel, O. Büyükgüng r. Synthesis, spectroscopic, thermal,voltammetric studies and biological activity of crystalline complexes of pyridine-2,6-dicarboxylic acid and8-hydroxyquinoline. J. Mol. Struct.2009,936:67–74
    [135] L. Wen, Y. Li, Z. Lu, J. Lin, C. Duan, Q. Meng. Syntheses and structures of four d10metalorganic frameworks assembled with aromatic polycarboxylate and bix
    [bix(1,4-Bis(imidazol-1-ylmethyl)benzene]. Cryst. Growth Des.2006,6:530–537
    [136] Y.G. Huang, D.Q. Yuan, Y.Q. Gong, F.L. Jiang, M.C. Hong. Synthesis, structure andluminescent properties of lanthanide–organic frameworks based onpyridine-2,6-dicarboxylic acid. J. Mol. Struct.2008,872:99–104
    [137] J.P. Zou, Q. Peng, Z. Wen, G.S. Zeng, Q.J. Xing, G.C. Guo. Two novel metal-organicframeworks (MOFs) with (3,6)-connected net topologies: syntheses, crystal structures,third-order nonlinear optical and luminescent properties. Cryst. Growth Des.2010,10:2613–2619
    [138] M.O. Rodrigues, N.B. da Costa Júnior, C.A. de Simone, A.A.S. Araújo, A.M. Brito-Silva,F.A. Almeida Paz, M.E. de Mesquita, S.A. Júnior, R.O. Freire. Theoretical anexperimental studies of the photoluminescent properties of the coordination polymer
    [Eu(DPA)(HDPA)(H2O)2]·4H2O. J. Phys. Chem. B.2008,112:4204–4212
    [139] X.F. Guo, M.L. Feng, Z.L. Xie, J.R. Li, X.Y. Huang. The first examples of lanthanideselenite-carboxylate compounds: syntheses, crystal structures and properties. Dalton Trans.2008,3101–3106
    [140] J. Xu, W. Su, M. Hong. A series of lanthanide secondary building units based metal-organicframeworks constructed by organic pyridine-2,6-dicarboxylate and inorganic sulfate. Cryst.Growth Des.2011,11:337–346
    [141] J. Lü, E. Shen, Y. Li, D. Xiao, E. Wang, L. Xu. A novel pillar-layered organic-inorganichybrid based on lanthanide polymer and polyomolybdate clusters: new opportunity towardthe design and synthesis of porous framework. Cryst. Growth Des.2005,5:65–67
    [142] M.S. Liu, Q.Y. Yu, Y.P. Cai, C.Y. Su, X.M. Lin, X.X. Zhou, J.W. Cai. One-, two-, andthree-dimensional lanthanide complexes constructed from pyridine-2,6-dicarboxylic acidand oxalic acid ligands. Cryst. Growth Des.2008,8:4083–4091
    [143] B. Zhao, L. Yi, Y. Dai, X.Y. Chen, P. Cheng, D.Z. Liao, S.P. Yan, Z.H. Jiang. Systematicinvestigation of the hydrothermal syntheses of Pr(III)-PDA (PDAn=Pyridine-2,6-dicarboxylate Anion) metal-organic frameworks. Inorg. Chem.2005,44:911–920
    [144] B. Zhao, P. Cheng, Y. Dai, C. Cheng, D.Z. Liao, S.P. Yan, Z.H. Jiang, G.L. Wang. Ananotubular3D coordination polymer based on a3d–4f heterometallic assembly. Angew.Chem. Int. Ed.2003,42:934–936
    [145] J. Xu, W. Su, M. Hong,3D lanthanide–transition-metal–organic frameworks constructedfrom tetranuclear {Ln4} SBUs and Cu centres with fsc net. CrystEngComm2011,13:3998–4004
    [146] C.H. Li, K.L. Huang, Y.N. Chi, X. Liu, Z.G. Han, L. Shen, C.W. Hu. Lanthanide-organiccation frameworks with zeolite gismondine topology and large cavities from intersectedchannels templated by polyoxometalate counterions. Inorg. Chem.2009,48:2010–2017
    [147] Y. Gao, Y. Xu, Z. Han, C. Li, F. Cui, Y. Chi, C. Hua. Syntheses, structures and properties of3D inorganic–organic hybrid frameworks constructed from lanthanide polymer andkeggin-type tungs to silicate. J. Solid State Chem.2010,183:1000–1006
    [148] X.Q. Zhao, B. Zhao, S. Wei, P. Cheng. Synthesis, structures, and luminescent and magneticproperties of Ln-Ag heterometal-organic frameworks. Inorg. Chem.2009,48:11048–11057
    [149] T.K. Prasad, M.V. Rajasekharan. Cerium(IV)-lanthanide(III)-pyridine-2,6-dicarboxylic acidsystem: coordination salts, chains, and rings. Inorg. Chem.2009,48:11543–11550
    [150] X.Q. Zhao, B. Zhao, W. Shi, P. Cheng, D.Z. Liao, S.P. Yan. Self-assembly of novel3d–4d–4f heterometal–organic framework based on double-stranded helical motifs. DaltonTrans.2009,2281–2283.
    [151] Z.G. Gu, H.C. Fang, P.Y. Yin, L. Tong, Y. Ying, S.J. Hu, W.S. Li, Y.P. Cai. A family ofthree-dimensional lanthanide-zinc Heterometal-organic frameworks from4,5-Imidazoledicarboxylate and oxalate. Cryst. Growth Des.2011,11:2220–2227
    [152] B. Zhao, H.L. Gao, X.Y. Chen, P. Cheng, W. Shi, D.Z. Liao, S.P. Yan, Z.H. Jiang. Apromising MgII-Ion-selective luminescent probe: structures and properties of Dy–Mnpolymers with high symmetry. Chem. Eur. J.2006,12:149–158.
    [153] X.Q. Zhao, B. Zhao, Y. Ma, W. Shi, P. Cheng, Z.H. Jiang, D.Z. Liao, S.P. Yan. Lanthanide(III)-cobalt(II) heterometallic coordination polymers with radical adsorption properties.Inorg. Chem.2007,46:5832–5834
    [154] X.Q. Zhao, B. Zhao, W. Shi, P. Cheng. Structures and luminescent properties of a series ofLn–Ag heterometallic coordination polymers. CrystEngComm2009,11:1261–1269
    [155] X.Q. Zhao, Y. Zuo, D.L. Gao, B. Zhao, W. Shi, P. Cheng. Syntheses, structures, andluminescence properties of a series of LnIII-BaIIheterometal-organic frameworks. Cryst.Growth Des.2009,9:3948–3957
    [156] O. R. Evans, W. Lin. Pillared,3D metal-organic frameworks with rectangular channels.synthesis and characterization of coordination polymers based on tricadmium carboxylates.Inorg. Chem.2000,39:2189-2198
    [157] J. Sun, L. Weng, Y. Zhou, J. Chen, Z. Chen, Z. Liu, D. Zhao. QMOF-1and QMOF-2: three-dimensional metal-organic open frameworks with a quartzlike topology. Angew. Chem. Int.Ed.2002,41:4471-4473
    [158] J. X. Moua, R. H. Zeng, Y. C. Qiu, W. G. Zhang, H. Deng, M. Zeller. Construction of three-dimensional Ln–Ag (Ln=Eu; Tm) coordination polymers based on isonicotinate andoxalate ligands. Inorg. Chem. Commun.2008,11:1347–1351
    [159] D. Y. Ma, H. L. Liu, Y. W. Li.3D Ln–Ag (Ln=Nd; Eu) coordination polymers based onisonicotinate and oxalate ligands: Synthesis, crystal structures and luminescence. Inorg.Chem. Commun.2009,12:883–886
    [160] Y. Kang, F. Wang, J. Zhang. Structural diversity and distinct photoluminescent properties oftwo new lanthanide-copper (I) frameworks based on mixed isonicontinate/oxalate ligands.Inorg. Chem. Commun.2010,13:938–940

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700