介孔过渡金属氧化物及多孔负载型氧化物催化活化甲烷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的飞速发展,石油和煤等能源、资源已经面临着日益短缺的问题,以甲烷为主要成分的C1资源已经成为人们争相开发和利用的资源,这也是世界各国改善环境和维持可持续发展的最佳选择。然而,甲烷是自然界中最稳定的碳氢分子,其转化研究已经历经百年,除已实现工业化的间接转化法外,直接转化法进展缓慢,已研究过的催化剂多达数千种以上,所使用的元素几乎包括了除零族元素以外的全部元素,但仍有诸多难以逾越的障碍。深入系统的研究和探索甲烷转化新途径,揭示甲烷转化的内在规律,对解决目前人类面临的能源、资源和环境等问题有着极为重要的理论和实用意义。
     介孔过渡金属氧化物除具有过渡金属氧化物的组成和通常的物理化学性质外,由于介孔的存在,它们还呈现出大孔径,大比表面积,丰富的表面结构,纳米粒子属性和微型反应器的功能。此外,它们的孔道结构和组成是可调节的,具有可设计的特性。与已知的甲烷转化催化剂相比,确有许多无以伦比之处。因此,可以毫无怀疑的认为,稳定的介孔过渡金属氧化物材料为寻找能够在温和条件下打开甲烷分子中的C-H键,建立C-C、C-O等新键的新型高效催化剂提供了一个难得的机会。基于此,本文以介孔过渡金属氧化物为催化剂,开展了一系列催化活化甲烷转化的研究工作,主要内容如下:
     (1)以离子液体和苯醚为媒介、乙酰丙酮铁为铁源、离子液体并参与形貌控制制备出新颖的介孔α-Fe203材料,通过扫描电镜(SEM)表征发现其具有花瓣状结构,每个纳米棒长约567nm,宽约52nm;进一步通过透射电镜(TEM)可以在棒体上观察到有明显的介孔孔道,孔径为3.2nm;N2吸附脱附曲线(BET)分析得该新颖介孔材料的比表面为55.1m2·g-1。同时将其用于催化活化甲烷,实验结果发现在3atm,CH4/02=3,GHSV=4800ml/g.h条件下,130℃的低温下就可以打破甲烷分子中的C-H键,生成含C-O键产物。这比文献上报道的纳米α-Fe203活化甲烷的最低温度降低了220℃,比目前报道的甲烷热转化的最低活化温度低70C。经研究证明此介孔α-Fe203材料中存在三种活性氧,其中对应于可在130℃时活化甲烷的是表面吸附氧。
     (2)通过改进的硬模板法批量制备了介孔氧化物Co304及其掺杂5%其它过渡金属和稀土金属Ce氧化物材料,并将其用于活化甲烷,发现纯的介孔Co3O4可以在145℃时活化甲烷,在以5%Cr-Co3O4为催化剂时甲烷的最低活化温度也为130℃,这比目前文献中以Co3O4为活性组分的材料活化甲烷的最低温度要低71℃,在低温下CO的选择性高于90%,并有长寿命,其有望成为低温下甲烷重整制合成气的催化剂。通过XPS测试发现该系列催化剂上含有两种活性氧即表面吸附氧和晶格氧,该系列催化剂中表面吸附氧的含量大于介孔α-Fe2O3,这也是该系列催化剂在低温下较α-Fe2O3具有长寿命的催化活性的原因。
     (3)利用改进并放大的硬模板法批量制备了介孔NiO及其掺杂过渡金属和稀土金属Ce氧化物系列催化剂并将其用于甲烷的活化,结果证明纯介孔NiO可以在210℃的低温下活化甲烷,以5%Fe-NiO的材料为催化剂时,发现其也可以在130℃的低温下活化甲烷,这比文献中报道的以NiO为活性的催化剂活化甲烷最低温度要低191℃,该系列催化剂在反应温度升高到250℃时,CO2的选择性始终高于80%,可见,该系列材料有可能发展为一种低温下催化燃烧甲烷的优秀催化剂。
     (4)通过改进的酸碱自调节法制备了介孔TiO2以及负载过渡和稀土金属Ce氧化物系列材料,并将其用于催化活化甲烷,实验结果显示介孔TiO2催化剂可以在210℃活化甲烷,比块体TiO2对甲烷的活化温度低290℃。当以5%Ce-TiO2为催化剂时甲烷的活化温度可以低至140℃,这也比文献报道的最好的同类TiO2催化剂活化甲烷的最低温度降低了360℃,同时比目前报道的甲烷热转化的最低温度降低了60℃。掺杂少量铁系(Fe、Co和Ni)可以使甲烷的活化温度降低到160℃和180℃。XPS测试结果证实该类催化剂低温催化活性应归因于表面吸附氧,高温时主要是晶格氧起催化氧化作用。
     (5)为了进一步深入理解孔及其孔结构在催化转化甲烷中的作用,本文还利用浸渍法制备了无孔的石英砂、介孔分子筛KIT-6、微孔分子筛HZSM-5负载过渡金属氧化物及稀土金属Ln(Ln=La、Ce和Gd)的催化剂,并分别研究了它们对甲烷的催化活化行为。发现无孔的石英砂活化甲烷生成含C-O键产物的温度最高,为670℃;KIT-6分子筛上含C-O键的产物生成温度为550℃,纯的HZSM-5载体在350℃活化甲烷,生成含C-O键的产物(CO和CO2),微孔HZSM-5负载的稀土改性材料显示出优异的催化活性。微孔的HZSM-5负载双金属Ln和Zn的材料上最低在270℃活化甲烷生成含C-O键产物,介孔分子筛负载5%的Fe材料却可以在200℃时活化甲烷,这说明介孔分子筛负载的氧化物活化甲烷能力大于微孔分子筛负载的氧化物活化甲烷的活性,这证明了适宜的孔大小和结构因负载稀土改性的金属氧化物后可以创造出优异催化活性,负载了金属氧化物微孔分子筛催化剂的活性低于介孔分子筛负载氧化物的活性,是因为微孔分子筛催化剂中适宜的孔及其结构因负载而减少的缘故。这三类载体及负载金属氧化物材料活化甲烷生成C-C键产物的能力与生成C-O键产物能力有些不同。微孔HZSM-5负载金属氧化物材料活化甲烷生成C-C键产物的能力最强,可以在550℃时活化甲烷生成C-C键产物。有利于芳构化产物的生成。特别是在无氧、乙烯存在条件下该类催化剂可以显著降低甲烷的活化温度,使得甲烷在450℃的低温下生成芳烃,甲烷的最高转化率可以达到37.3%,这比文献上报道的获得相近甲烷转化率时的反应温度降低了150℃。
     上述研究结果充分说明在过渡金属氧化物中的孔及其结构和组成对催化甲烷转化有非常重要的作用,能显著的提高低温催化活性。介孔过渡金属氧化物是一类很有希望的低温高效催化转化甲烷的材料。对其深入系统的研究不仅能深刻地揭示出甲烷催化转化的内在本质,丰富催化化学的基础理论知识,而且还可能开发出低耗高效清洁催化转化甲烷的实用技术。
At current usage, worldwide reserves of petroleum and coal are projected to only last for a few decades. This situation is a serious problem on a global level.Developin g efficient strategies for the selective activation and transformation of methane as the most abundant feedstock for organic chemicals to value-added chemicals or liquid fuels would provide a promising alternative for easing up the coal and oil-demanding situation during the high-growth process of the economic and the rapid development of science and technology. However, the bonds to be broken are thermodynamically strong and kinetically inert. Construction of the more sophisticated value-added architectures via C-H bond activation in methane is a highly difficult task.
     Although methane conversion has been investigated for one hundred years, only indirect conversion method has realized in industrial scale. The development of direct conversion of methane to useful chemicals by activating C-H bonds still remains a difficult task despite thousands of Catalysts and almost all elements except group zero elements in periodical table used in the past decades.The investigation for new ways of methane conversion and the inherent laws of methane conversion is very important to solve the energy, resources and environmental problems in the sustainable development of humane society.
     In addition to with the composition of the transition metal oxides and the usual physical and chemical properties, mesoporous transition metal oxides possess a large aperture, large surface area, diverse surface structures, nanoparticle properties and function of micro-reactor. Moreover, their pore structure and composition can be tunable. By comparison with the known methane conversion catalyst, mesoporous transition metal oxide materials exhibit a lot of unusual characters and may provide a great deal of opportunity to find the excellent catalysts for breaking the C-H bonds to establish the new C-C, C-O. In this thesis, the research effort has focused on the preparation of mesoporous transition metal oxide and activation of methane by mesoporous transition metal oxide as catalyst. The main points of the thesis are as follows.
     (1) A novel mesoporous α-Fe2O3material have been prepared by using the ionic liquid as the media, acetylacetone iron as the iron source and diphenyl ether as the morphology control reagent. It is found that the material has a flower-like structure by SEM, each nanorod of about567nm, the width of52nm. It is also characterized by TEM, and found there are mesopores in the the nanorod, the pore diameter is3.2nm. The BET showed that the novel material has a specific surface area of55.1m2·g-1. Carried out the catalytic activation of methane experiments, at3atm, CH4/O2=3, GHSV=4800ml/g-h, the results show the lowest temperature of breaking C-H bond of methane is130℃over this Mesoporous α-Fe2O3nanorods catalyst. The reason is mesoporous α-Fe2O3surface adsorption of oxygen and interstitial oxygen plays an important part in the methane activation
     (2) Three-dimensional mesoporous CO3O4and doped with other transition metal and rare earth metal (Ce) material have been prepared by using improved hard template methods. Activation methane experiment were carried out over these CO3O4materials, and found mesoporous Co3O4catalyst can activate methane at145℃, compared to bulk Co3O4,the activation temperature is lower30℃, which is lower71℃than the lowest temperature in the literature. While using the mesoporous Co3O4doped with chromium(5%Cr-Co3O4) it can help break C-H bond of methane and build C-O bond at130℃, the selectivity of CO is higher than90%, and the catalyst has long life. It is promising that the material can be used as syngas catalyst.
     (3) Mesoporous NiO and doped with other transition metal and rare earth metal (Ce) material have been prepared by using improved hard template methods. Activation methane experiment were carried out over these NiO materials, and found mesoporous NiO catalyst can activate methane at210℃, compared to bulk NiO, the activation temperature is lower70℃, While using the mesoporous NiO doped with iron (5%Fe-NiO) it can help break C-H bond of methane and build C-O bond at130℃, which is lower86℃than the lowest temperature in the literature. The selectivity of CO2is higher than90%at250℃, and the catalyst has long life. It is promising that the material can be used as methane combustion catalyst.
     (4) Synthesis of the two-dimensional mesoporous TiO2and doped transition and rare earth metal oxide (Ce) catalysts have been completed by using acid-base self-regulating method. Activation methane experiment were carried out over these TiO2catalyst, we can found that the mesoporous TiO2can activate methane at210℃, compared to bulk TiO2,the activation temperature is lower290℃. The5%Ce-TiO2catalyst can activate methane at140℃, which is lower76℃than the lowest temperature in the literature. The XPS results confirmed the type of catalyst the reason is mainly chemical adsorbed oxygen from the catalytic oxidation at low react temperature, while and lattice oxygen plays an important part in high react temperature.
     (5) In order to further understand the rule of pore and pore structure in the catalytic conversion of methane, we prepared non-porous quartz sand, and mesoporous molecular sieve KIT-6, microporous zeolite HZSM-5supported transition metal oxides and rare earth metal Ln (Ln=La and Ce, and Gd) catalyst by impregnation method, and studied the behavior of the catalytic activation respectively. According to the experiment results, the activation temperature in non-porous quartz sand supported is the highest (670℃). Methane activation temperature over KIT-6supported metal catalyst is550℃, while the HZSM-5supported transition metal oxides and rare earth metal can activate methane at350℃. At low temperature of723K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modified Zn/HZSM-5zeolite catalysts. Methane can get37.3%conversion over the above catalysts, the catalysts show a longer lifetime than usual metal supported HZSM-5zeolite catalysts without adding any rare earth metals.
     In conclusions, these results indicated the pore and porous structure in mesoporous transition metal oxides play a important role in the activate methane and can significantly improve the catalytic activity of mesoporous transition metal oxides under low temperature. Mesoporous transition metal oxides may be a promising catalytic material in the large-scale production of the fine chemicals.
引文
[I]J. Clayton, Int J Coal Geol.1998,35,159.
    [2]K. A. Kvenvolden, Org Geochem.1995,23,997.
    [3]李伟,孙慧,李广,国际石油经济.2010,37.
    [4]刘吉余,马志欣,孙淑艳,天然气地球科学.2008,316.
    [5]G. A. Olah, A. Goeppert, G. K. S. Prakash. Beyond oil and gas:the methanol economy [M]. Wiley-Vch,2006.
    [6]史斗,郑军卫,地球科学进展.2001,533.
    [7]贺黎明,沈召军.甲烷的转化和利用[M/OL].2005[
    [8]黄福堂,沈殿成,宗瑞,黄正鹏,国外油田工程.2000,28.
    [9]董大忠,高世葵,李玉喜,天然气工业.2004,118.
    [10]J. H. Lunsford, Catal Today.2000,63,165.
    [11]E. F. Sousa-Aguiar, L. G. Appel, C. Mota, Catal Today.2005,101,3.
    [12]T. Koerts, R. A. van Santen, J Mol Catal.1991,70,119.
    [13]G. E. Keller, M. M. Bhasin, J Catal.1982,73,9.
    [14]H. Mimoun, N J Chem.1987,11,513.
    [15]W. Hua, A. Goeppert, J. Sommer, Appl Catal, A.2001,219,201.
    [16]S. Hou, Y. Cao, W. Xiong, H. Liu, Y. Kou, Industrial & Engineering Chemistry Research. 2006,45,7077.
    [17]A. Malekzadeh, A. K. Dalai, A. Khodadadi, Y. Mortazavi, Catal Commun.2008,9,960.
    [18]A. G. Dedov, A. S. Loktev,I.I. Moiseev, A. Aboukais, J. F. Lamonier, I. N. Filimonov, Appl Catal, A.2003,245,209.
    [19]R. Goncalves, F. Muniz, F. Passos, M. Schmal, Catal Lett.2010,135,26.
    [20]L. Jun, Z. Ling, L. Guanzhong, Industrial & Engineering Chemistry Research.2008,48, 641.
    [21]J. W. Miao, Y. N. Fan, Y. S. Jin, Y. Chen, Chinese J Inorg Chem.2004,20,967.
    [22]J. W. Miao, G. H. Song, Y. N. Fan, J. Zhou, Chin J Catal.2005,26,533.
    [23]J. W. Miao, G. H. Song, Y. N. Fan, J. Zhou, Chin J Catal.2008,29,1277.
    [24]L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, Y. Xu, Catal Lett.1993,21,35.
    [25]NEDO Report. Code:010017420, www.tech.nedo.go.jp/jsp/tsjsp/Houkokusho Kensaku.jsp.
    [26]L. Liu, D. Ma, H. Chen, H. Zheng, M. Cheng, Y. Xu, X. Bao, Catal Lett.2006,108,25.
    [27]H. Jiang, L. S. Wang, W. Cui, Y. D. Xu, Catal Lett.1999,57,95.
    [28]L. S. Wang, W. Cui, Y. D. Xu, X. X. Guo, Prog Nat Sci.1998,8,690.
    [29]B. M. Weckhuysen, D. J. Wang, M. P. Rosynek, J. H. Lunsford, J Catal.1998,175,338.
    [30]P. Tan, C. Au, S. Lai, Catal Lett.2006,112,239.
    [31]O. Bragin, T. Vasina, A. Preobrazhenskii, K. M. Minachev, Izv Akad Nauk SSSR, Ser Khim.1989,3,750.
    [32]T. Inui, Y. Ishihara, K. McKamachi, H. Matsuda, Stud Surf Sci Catal.1989,49,1183.
    [33]M. Marczewski, H. Marczewska, React Kinet Catal Lett.1994,53,33.
    [34]O. Anunziata, Catal Commun.2004,5,401.
    [35]O. A. Anunziata, G. A. Eimer, L. B. Pierella, Appl Catal, A.2000,190,169.
    [36]O. A. Anunziata, G. G. Mercado, Catal Lett.2006,107,111.
    [37]V. R. Choudhary, K. C. Mondal, S. A. R. Mulla, Angewandte Chemie-International Edition.2005,44,4381.
    [38]G. V. Echevsky, E. G. Kodenev, O. V. Kikhtyanin, V. N. Parmon, Appl Catal, A.2004,258, 159.
    [39]X. C. Shen, H. Lou, K. Hu, X. M. Zheng, Chin Chem Lett.2007,18,479.
    [40]O. A. Anunziata, G. V. Gonzalez Mercado, L. B. Pierella, Catal Lett.2003,87,167.
    [41]V. R. Choudhary, K. K. Anil, V. C. Tushar, Angewandte Chemie International Edition in English.1997,36,1305.
    [42]V. R. Choudhary, A. K. Kinage, T. V. Choudhary, Science.1997,275,1286.
    [43]A. Alkhawaldeh, X. Wu, R. G. Anthony, Catal Today.2003,84,43.
    [44]P. Qiu, J. H. Lunsford, M. P. Rosynek, Catal Lett.1998,52,37.
    [45]V. Allenger, R. N. Pandey, P. Yarlagadda. Synthesis of isobutene from methane and acetylene [M]. US 5026944.1991.
    [46]L. Pierella, L. Wang, O. Anunziata, React Kinet Catal Lett.1997,60,101.
    [47]R. A. Periana, D. J. Taube, E. R. Evitt, D. G. Loffler, P. R. Wentrcek, G. Voss, T. Masuda, Science.1993,259,340.
    [48]R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science.1998,280, 560.
    [49]N. J. Bjerrum., G. Xiao, A.Hjuler, WO 9924383.1999
    [50]L. Chen, B. Yang, X. Zhang, W. Dong, K. Cao, X. Zhang, Energy & Fuels.2006,20,915.
    [51]S. Mukhopadhyay, M. Zerella, A. T. Bell, Advanced Synthesis & Catalysis.2005,347, 1203.
    [52]B. Michalkiewicz, Polish Journal of Chemical Technology.2008,10,20.
    [53]L. C. Kao,A. C. Hutson,A. Sen, J Am Chem Soc.1991,113,700.
    [54]Y. Seki, N. Mizuno, M. Misono, Appl Catal, A.1997,158, L47.
    [55]N. Mizuno, M. Misono, Y. Nishiyama, Y. Seki, I. Kiyoto, C. Nozaki, Res Chem Intermed. 2000,26,193.
    [56]I. Yamanaka, M. Soma, K. Oisuka, J Chem Soc, Chem Commun.1995,2235.
    [57]I. Yamanaka, M. Soma, K. Otsuka, Res Chem Intermed.2000,26,129.
    [58]G R. Williams, S. T. Kolaczkowski, P. Plucinski, Catal Today.2003,81,631.
    [59]M. D. Khokhar, R. S. Shukla, R. V. Jasra, J Mol Catal A:Chem.2009,299,108.
    [60]T. Osako, E. J. Watson, A. Dehestani, B. C. Bales, J. M. Mayer, Angew Chem Int Ed. 2006,45,7433.
    [61]K. Otsuka, R. Takahashi, K. Amakawa, I. Yamanaka, Catal Today.1998,45,23.
    [62]T. Takemoto, K. Tabata, Y. Teng, S. Yao, A. Nakayama, E. Suzuki, Energy & Fuels.2000, 15,44.
    [63]D. M. Newitt, A. E. Haffner. Proc R Soc Ser A London,1932[
    [64]S. Antonik, M. Lucquin, Bull Soc Chim Fr.1968,4043.
    [65]H. P. Stroud, Silica-Supported MoO} & V2Os Catalysts.
    [66]D. A. Dowden. CATALYTIC COMPOSITION [M]. US3718498.1973.
    [67]H. Berndt, A. Martin, A. BrUckner, E. Schreier, D. Muller, H. Kosslick, G. U. Wolf, B. Lucke, J Catal.2000,191,384.
    [68]V. Fornes, C. Lopez, H. H. Lopez, A. Martinez, Appl Catal, A.2003,249,345.
    [69]L. D. Nguyen, S. Loridant, H. Launay, A. Pigamo, J. L. Dubois, J. M. M. Millet, J Catal. 2006,237,38.
    [70]T. Kobayashi, K. Nakagawa, K. Tabata, M. Haruta, J Chem Soc, Chem Commun.1994.
    [71]J. He, Y. Li, D. An, Q. Zhang, Y. Wang, J Nat Gas Chem.2009,18,288.
    [72]Y. Li, D. L. An, Q. H. Zhang, Y. Wang, J Phys Chem C.2008,112,13700.
    [73]T. Kawabe, K. Tabata, E. Suzuki, Y. Ichikawa, Y. Nagasawa, Catal Today.2001,71,21.
    [74]沈师孔,石油化工.2006,799.
    [75]T. V. Choudhary, V. R. Choudhary, Angew Chem Int Ed.2008,47,1828.
    [76]B. Neumann, K. Z. Jacob, Elektrochem.1924,30,557.
    [77]P. J. Byrne, E. J. Gohr, E. N. J, R. T. Haslam, Industrial & Engineering Chemistry.1932, 24,1129.
    [78]R. Haslam, R. Russell, Industrial & Engineering Chemistry.1930,22,1030.
    [79]刘少文,李永丹,武汉化工学院学报.2005,27.
    [80]F. Fischer, H. Tropsch, Brennstoff Chem.1923,9,39.
    [81]J. Lang, Zeitschr Physikal Chem.1888,2,161.
    [82]A. Ashcroft, A. Cheetham, M. L. H. Green, Nature.1991,352,225.
    [83]J. Richardson, S. Paripatyadar, Applied Catalysis.1990,61,293.
    [84]S. Tsang, J. Claridge, M. Green, Catal Today.1995,23,3.
    [85]H. Wang, E. Ruckenstein, Appl Catal, A.2000,204,143.
    [86]O. Tokunaga, S. Ogasawara, React Kinet Catal Lett.1989,39,69.
    [87]余长春,丁雪加,分子催化.1993,7,151.
    [88]纪敏,吴越,分子催化.1998,12,199.
    [89]M. C. J. Bradford, M. A. Vannice, Catalysis Reviews-Science and Engineering.1999,41, 1.
    [90]H. Liander, Transactions of the Faraday Society.1929,25,462.
    [91]C.Padovani, P. Franchetti, Giom. Chem. lnd. Appl. Catal..1933,15.
    [92]R. Pitchai, K. Klier, Catalysis Reviews:Science and Engineering.1986,28,13
    [93]A. T. Ashcroft, A. K. Cheetham, J. S. Foord, M. L. H. Green, C. P. Grey, A. J. Murrell, P. D. F. Vernon, Nature.1990,344,319.
    [94]D. A. Hickman, L. D. Schmidt, Science.1993,259,343.
    [95]M.Y, J Catal.1994,148.
    [96]G. Veser, J. Frauhammer, U. Friedle, Catal Today.2000,61,55.
    [97]G. A. Olah, B. Gupta, M. Farina, J. D. Felberg, W. M. Ip, A. Husain, R. Karpeles, K. Lammertsma, A. K. Melhotra, N. J. Trivedi, J Am Chem Soc.1985,107,7097.
    [98]V. Degirmenci, D. Uner, A. Yilmaz, Catal Today.2005,106,252.
    [99]I. Lorkovic, M. Noy, M. Weiss, J. Sherman, E. McFarland, G. D. Stucky, P. C. Ford, Chem Commun.2004,566.
    [100]I. M. Lorkovic, M. L. Noy, W. A. Schenck, C. Belon, M. Weiss, S. L. Sun, J. H. Sherman, E. W. McFarland, G. D. Stucky, P. C. Ford, Catal Today.2004,98,589.
    [101]I. M. Lorkovic, M. L. Noy, M. Weiss, J. H. Sherman, E. W. McFarland, G. D. Stucky, P. C. Ford, W. A. Schenck, Chem Commun.2004,026.
    [102]I. M. Lorkovic, S. L. Sun, S. Gadewar, A. Breed, G. S. Macala, A. Sardar, S. E. Cross, J. H. Sherman, G. D. Stucky, P. C. Ford, J Phys Chem A.2006,110,8695.
    [103]I. M. Lorkovic, A. Yilmaz, G. A. Yilmaz, X. P. Zhou, L. E. Laverman, S. L. Sun, D. J. Schaefer, M. Weiss, M. L. Noy, C.1. Cutler, J. H. Sherman, E. W. McFarland, G. D. Stucky, P. C. Ford, Catal Today.2004,98,317.
    [104]S. L. Sun, I. M. Lorkovic, M. Weiss, J. H. Sherman, G. D. Stucky, P. C. Ford, E. W. McFarland, Chem Commun.2004,2100.
    [105]F. Yang, Z. Liu, W. S. Li, T. H. Wu, X. P. Zhou, Catal Lett.2008,124,226.
    [1]亓新华,谷永庆,王红娟,天然气工业2007,125.
    [2]R. Labrecque, J. M. Lavoie, Bioresour. Technol.2011,102,11244.
    [3]T. Kobayashi, N. Guilhaume, J. Miki, N. Kitamura, M. Haruta, Catal. Today 1996,32,171.
    [4]B. Michalkiewicz, Appl. Catal., A 2004,277,147.
    [5]Q. Zhang, Y. Li, D. An, Y. Wang, Appl. Catal., A 2009,356,103.
    [6]F. Arena, G. Gatti, G. Martra, S. Coluccia, L. Stievano, L. Spadaro, P. Famulari, A. Parmaliana, J. Catal.2005,231,365.
    [7]J. He, Y. Li, D. An, Q. Zhang, Y. Wang, J. Nat. Gas Chem.2009,18,288.
    [8]X. Wang, Y. Wang, Q. Tang, Q. Guo, Q. Zhang, H. Wan, J. Catal.2003,217,457.
    [9]Y. Wang, X. X. Wang, Z. Su, Q. Guo, Q. H. Tang, Q. H. Zhang, H. L. Wan, Catal. Today 2004,93-5,155.
    [10]J. Kniep, Y. S. Lin, Industrial & Engineering Chemistry Research 2011,50,7941.
    [11]T. V. Reshetenko, L. B. Avdeeva, A. A. Khassin, G. N. Kustova, V. A. Ushakov, E. M. Moroz, A. N. Shmakov, V. V. Kriventsov, D. I. Kochubey, Y. T. Pavlyukhin, A. L. Chuvilin, Z. R. Ismagilov, Appl. Catal., A 2004,268,127.
    [12]K. Li, H. Wang, Y. Wei, D. Yan, Int. J. Hydrogen Energy 2011,36,3471.
    [13]R. M. Malek Abbaslou, J. Soltan, A. K. Dalai, Fuel 2011,90,1139.
    [14]S. Kwon, M. Fan, T. D. Wheelock, Environ. Eng. Sci.2007,24,1065.
    [15]X. Liu, J. Liu, Z. Chang, X. Sun, Y. Li, Catal. Commun.2011,12,530.
    [16]V. R. Choudhary, V. P. Patil, P. Jana, B. S. Uphade, Applied Catalysis a-General 2008,350, 186.
    [17]M. A. A1-Daous, A. Stein, Chem. Mater.2003,15,2638.
    [18]H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, A. Stein, Chem. Mater.2000,12,1134.
    [19]H. Yoshitake, T. Tatsumi, Chem. Mater.2003,15,1695.
    [20]D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, J. Kehr, B. Bjelke, M. Muhammed, Scr. Mater. 2001,44,1713.
    [21]K. G, Sens. Actuators, B 2005,107,209.
    [22]D. L. Leslie-Pelecky, R. D. Rieke, Chem. Mater.1996,8,1770.
    [23]F. Jiao, A. Harrison, J. C. Jumas, A. V. Chadwick, W. Kockelmann, P. G. Bruce, J. Am. Chem. Soc.2006,128,5468.
    [24]B. Z. Tian, X. Y. Liu, H. F. Yang, S. H. Xie, C. Z. Yu, B. Tu, D. Y. Zhao, Adv. Mater.2003, 15,1370.
    [25]J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem.2001,3,156.
    [26]袁爱华,唐丽,包小波,周虎,缪海泉,江苏科技大学学报(自然科学版)2008,45.
    [27]Z. Li, Z. Liu, J. Zhang, B. Han, J. Du, Y. Gao, T. Jiang, The Journal of Physical Chemistry B 2005,109,14445.
    [28]Y.-J. Zhu, W.-W. Wang, R.-J. Qi, X.-L. Hu, Angew. Chem. Int. Ed.2004,43,1410.
    [29]Y. Jiang, Y.-J. Zhu, G.-F. Cheng, Crystal Growth & Design 2006,6,2174.
    [30]Y. Jiang, Y. J. Zhu, J. Cryst. Growth 2007,306,351.
    [31]W. W. Wang, Y. J. Zhu, Inorg. Chem. Commun.2004,7,1003.
    [32]D. S. Jacob, L. Bitton, J. Grinblat, I. Felner, Y. Koltypin, A. Gedanken, Chem. Mater.2006, 18,3162.
    [33]Y. Zhou, M. Antonietti, J. Am. Chem. Soc.2003,125,14960.
    [34]B. G. Trewyn, C. M. Whitman, V. S. Y. Lin, Nano Lett.2004,4,2139.
    [35]S. Zeng, K. Tang, T. Li, J. Colloid Interface Sci.2007,312,513.
    [36]P. C. Wu, W. S. Wang, Y. T. Huang, H. S. Sheu, Y. W. Lo, T. L. Tsai, D. B. Shieh, C. S. Yeh, Chemistry-a European Journal 2007,13,3878.
    [37]K. Wang, S. Ji, X. Shi, J. Tang, Catal. Commun.2009,10,807.
    [38]B. M. Weckhuysen, D. J. Wang, M. P. Rosynek, J. H. Lunsford, J. Catal.1998,175,347.
    [39]M. Yamamoto, O. Nishimura, T. Kotanigawa, Applied Catalysis a-General 1998,174,41.
    [40]缪建文,范以宁,金永漱,陈懿,化工时刊2003,36.
    [41]K. Z. Li, H. Wang, Y. G. Wei, D. X. Yan, Chem. Eng. J.2011,173,574.
    [42]王来来,吕世杰,马忠乾,杨宏秀,分子催化1993,7,317.
    [43]R. J. Li, C. C. Yu, X. P. Dai, S. K. Shen, Chin. J. Catal.2002,23,381.
    [44]Z. Q. Chen, U. Cvelbar, M. Mozetic, J. Q. He, M. K. Sunkara, Chem. Mater.2008,20,3224.
    [45]吴廷华,严前古,卢伟,牛振江,茆福林,张奇能,朱明乔,钟依均,李则林,万惠霖,催化学报2003,755.
    [46]V. Choudhary, A. Rajput, B. Prabhakar, Catal. Lett.1992,15,363.
    [47]V. R. Choudhary, A. M. Rajput, V. H. Rane, Catal. Lett.1992,16,269.
    [48]Y. Chang, H. Heinemann, Catal. Lett.1993,21,215.
    [1]N. N. Greenwood, A. Earnshaw, Knovel, Chemistry of the Elements 1997.
    [2]N. R. E. Radwan, M. Mokhtar, G A. El-Shobaky, Applied Catalysis a-General 2003,241, 77.
    [3]L. F. Liotta, G. Di Carlo, G Pantaleo, G Deganello, Catal. Commun.2005,6,329.
    [4]N. A. M. Deraz, Colloids and Surfaces a-Physicochemical and Engineering Aspects 2002, 207,197.
    [5]Y. Wang, Z. Zhong, Y. Chen, C. Ng, J. Lin, Nano Research 2011,4,695.
    [6]B. de Rivas, R. Lopez-Fonseca, C. Jimenez-Gonzalez, J. I. Gutierrez-Ortiz, J. Catal.2011, 281,88.
    [7]T. L. Lai, Y. L. Lai, C. C. Lee, Y. Y. Shu, C. B. Wang, Catal. Today 2008,131,105.
    [8]X. Y. Chen, J. W. Chen, X. L. Qiao, D. G. Wang, X. Y. Cai, Applied Catalysis B-Environmental 2008,80,116.
    [9]Y. Feng, L. Li, S. Niu, Y. Qu, Q. Zhang, Y. Li, W. Zhao, H. Li, J. Shi, Appl. Catal., B 2012, 111-112,461.
    [10]H. Yoshino, C. H. Ohnishi, S. Hosokawa, K. Wada, M. Inoue, Journal of Materials Science 2011,46,797.
    [11]K. Asano, C. Ohnishi, S. Iwamoto, Y. Shioya, M. Inoue, Appl. Catal., B 2008,78,242.
    [12]Y. Huang, D. M. Gao, Z. Q. Tong, J. F. Zhang, H. Luo, J. Nat. Gas Chem.2009,18,421.
    [13]Z. Mu, J. J. Li, H. Tian, Z. P. Hao, S. Z. Qiao, Mater. Res. Bull.2008,43,2599.
    [14]Z. Mu, J. J. Li, M. H. Du, Z. P. Hao, S. Z. Qiao, Catal. Commun.2008,9,1874.
    [15]Z. J. Mei, Z. M. Shen, W. H. Wang, Y. J. Zhang, Environmental Science & Technology 2008,42,590.
    [16]C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G. Q. Lu, Z. P. Hao, S. Z. Qiao, J. Am. Chem. Soc.2010,132,2608.
    [17]T.-W. Kim, F. Kleitz, B. Paul, R. Ryoo, J. Am. Chem. Soc.2005,127,7601.
    [18]C. Dickinson, W. Zhou, R. P. Hodgkins, Shi, Zhao, He, Chem. Mater.2006,18,3088.
    [19]A. Rumplecker, F. Kleitz, E.-L. Salabas, F. Schuth, Chem. Mater.2007,19,485.
    [20]L. H. Hu, Q. Peng, Y. D. Li, J. Am. Chem. Soc.2008,130,16136.
    [21]L. H. Hu, Q. Peng, Y. D. Li, Chemcatchem 2011,3,868.
    [22]S. J. Miao, Y. Q. Deng, Applied Catalysis B-Environmental 2001,31, L1.
    [23]缪少军,邓友全,分子催化2001,15,4.
    [24]L. F. Liotta, G. Di Carlo, A. Longo, G. Pantaleo, A. M. Venezia, Catal. Today 2008,139, 174.
    [25]G. Laugel, J. Arichi, M. Moliere, A. Kiennemann, F. Garin, B. Louis, Catal. Today 2008, 138,38.
    [26]J. Y. Luo, M. Meng, X. Li, X. G. Li, Y. Q. Zha, T. D. Hu, Y. N. Xie, J. Zhang, J. Catal. 2008,254,310.
    [27]B. Ernst, L. Hilaire, A. Kiennemann, Catal. Today 1999,50,413.
    [28]A. M. Hilmen, D. Schanke, A. Holmen, Catal. Lett.1996,38,143.
    [29]J. M. Kanervo, A. O.1. Krause, J. Catal.2002,207,57.
    [30]L. F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, G. Marci, L. Retailleau, A. Giroir-Fendler, Applied Catalysis a-General 2008,347,81.
    [1]杨红琳,胡菊,十堰职业技术学院学报2004,70.
    [2]杨红琳,马俊林,宋武林,胡菊,十堰职业技术学院学报2003,51.
    [3]A. Maki, J. Mizuguchi, Materials Transactions 2010,51,1361.
    [4]张金涛,曹桂萍,刘宝亮,壮亚峰,化学与生物工程2011,36.
    [5]张智宏,李凤生,王玉峰,武汉理工大学学报2010,74.
    [6]陈铜,李文钊,于春英,物理化学学报1999,613.
    [7]X. Zhang, J. Liu, Y. Jing, Y. Xie, Appl. Catal., A 2003,240,143.
    [8]L. Wang, W. Chu, C. F. Jiang, Y. F. Liu, J. Wen, Z. K. Xie, J. Nat. Gas Chem.2012,21, 43.
    [9]V. Demidiouk, S. I. Moon, J. O. Chae, D. Y. Lee, Journal of the Korean Physical Society 2003,42, S966.
    [10]M. Yamamoto, O. Nishimura, T. Kotanigawa, Applied Catalysis a-General 1998,174,41.
    [11]刘昉,张昭,电子元件与材料2008,72.
    [12]宋伟明,邓启刚,日用化学工业2008,360.
    [13]S. Xiong, C. Yuan, X. Zhang, Y. Qian, CrystEngComm 2011,13,626.
    [14]C. Hu, Z. Gao, X. Yang, J. Sol-Gel Sci. Technol.2007,44,171.
    [15]F. Jiao, A. H. Hill, A. Harrison, A. Berko, A. V. Chadwick, P. G. Bruce, J. Am. Chem. Soc. 2008,130,5262.
    [16]W. Ni, D. Wang, Z. Zhao, Z. Huang, J. Zhao, Chem. Lett.2010,39,98.
    [17]F. Kleitz, S. Hei Choi, R. Ryoo, Chem. Commun.2003,2136.
    [18]B. Z. Tian, X. Y. Liu, H. F. Yang, S. H. Xie, C. Z. Yu, B. Tu, D. Y. Zhao, Adv. Mater.2003, 15,1370.
    [19]H. Liu, G. X. Wang, J. Liu, S. Z. Qiao, H. J. Ahn, J. Mater. Chem.2011,21,3046.
    [20]L. Xu, H. Song, L. Chou, Appl. Catal., B 2011,108-109,177.
    [21]Z. Xu, Y. Li, J. Zhang, L. Chang, R. Zhou, Z. Duan, Appl. Catal, A 2001,213,65.
    [22]E. Ruckenstein, Y. Hang Hu, Appl. Catal., A 1999,183,85.
    [23]J. Horiguchi, Y. Kobayashi, S. Kobayashi, Y. Yamazaki, K. Omata, D. Nagao, M. Konno, M. Yamada, Applied Catalysis a-General 2011,392,86.
    [24]Y. S. Seo, S. K. Kang, M. H. Han, Y. S. Baek, Catal. Today 1999,47,421.
    [25]Y. X. Li, Y. H. Guo, B. Xue, Fuel Process. Technol.2009,90,652.
    [26]A. M. Diskin, R. H. Cunningham, R. M. Ormerod, Catal. Today 1998,46,147.
    [1]A. Fujishima, K. Honda, Nature 1972,238,37.
    [2]R. Long, R. Yang, J. Catal.2002,207,158.
    [3]H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, K. Asakura, Y. Iwasawa, J. Catal.1999,185, 252.
    [4]戚建英,杨启云,刘振义,李贤均,分子催化2000,294.
    [5]戚建英,杨启云,刘振义,李贤均,高等学校化学学报1999,20,640.
    [6]赵黔榕,毕韵梅,李璧玉,杜霞,袁朗白,云南师范大学学报:自然科学版2004,24,28.
    [7]D. M. Antonelli, J. Y. Ying, Angewandte Chemie International Edition in English 1995, 34,2014.
    [8]V. Luca, J. N. Watson, M. Ruschena, R. B. Knott, Chem. Mater.2006,18,1156.
    [9]H. Chen, K. Dai, T. Peng, H. Yang, D. Zhao, Mater. Chem. Phys.2006,96,176.
    [10]T. Peng, A. Hasegawa, J. Qiu, K. Hirao, Chem. Mater.2003,15,2011.
    [11]B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y. Zhao, Nat. Mater.2003,2,159.
    [12]B. Z. Tian, H. F. Yang, X. Y. Liu, S. H. Xie, C. Z. Yu, J. Fan, B. Tu, D. Y. Zhao, Chem. Commun.2002,1824.
    [13]M. C. Gong, X. H. Xu, Y. Q. Chen, J. L. Zhou, Y. Chen, Catal. Today 1995,24,263.
    [14]Q. Yan, W. Weng, H. Wan, H. Toghiani, R. Toghiani, C. Pittman, Appl. Catal., A 2003, 239,43.
    [15]A. Parmaliana, F. Arena, J. Catal.1997,167,57.
    [16]K. Nagaoka, K. Takanabe, K.-i. Aika, Appl. Catal., A 2003,255,13.
    [17]M. Atashbar, H. Sun, B. Gong, W. Wlodarski, R. Lamb, Thin Solid Films 1998,326,238.
    [18]B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, M. S. El-Aasser, Langmuir 2001,17,2664.
    [19]B. M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J. C. Volta, The Journal of Physical Chemistry B 2003,107,5162.
    [20]W. Xingyi, K. Qian, L. Dao, Appl. Catal., B 2009,86,166.
    [21]F.9. Larachi, J. Pierre, A. Adnot, A. Bernis, Appl. Surf. Sci.2002,195,236.
    [22]C. Elmasides, X. E. Verykios, J. Catal.2001,203,477.
    [23]Y. Zhang, Z. X. Li, X. B. Wen, Y. Liu, Chem. Eng. J.2006,121,115.
    [1]徐如人,庞文琴,科学出版社,2004,p.分子筛与多孔材料化学.
    [2]A. Taguchi, F. Schuth, Microporous Mesoporous Mater.2005,77,1.
    [3]曾垂省,陈晓明,闫玉华,高玉香,化工科技2004,48.
    [4]王连洲,施剑林,禹剑,严东生,无机材料学报1999,333.
    [5]M. V. Landau, L. Titelman, L. Vradman, P. Wilson, Chem. Commun.2003,594.
    [6]B. Chiche, E. Sauvage, F. Di Renzo, I. I. Ivanova, F. Fajula, J. Mol. Catal. A:Chem.1998, 134,145.
    [7]E. Armengol, M. L. Cano, A. Corma, H. Garcia, M. T. Navarro, J. Chem. Soc., Chem. Commun.1995,519.
    [8]M. Iwamoto, Y. Tanaka, N. Sawamura, S. Namba, J. Am. Chem. Soc.2003,125,13032.
    [9]L. J. Davies, P. McMorn, D. Bethell, P. C. Bulman Page, F. King, F. E. Hancock, G. J. Hutchings, J. Mol. Catal. A:Chem.2001,165,243.
    [10]Y. Li, D. L. An, Q. H. Zhang, Y. Wang, J. Phys. Chem. C 2008,112,13700.
    [11]F. Kleitz, S. Hei Choi, R. Ryoo, Chem. Commun.2003,2136.
    [12]戴成勇,华东师范大学硕十论文(甲烷低温催化活化的研究),2005.
    [13]J. A. Sofranko, J. J. Leonard, C. A. Jones, J. Catal.1987,103,302.
    [14]T. Baba, H. Sawada, PCCP 2002,4,3919.
    [15]Oscar A. Anunziata*, Griselda V. Gonzalez Mercado, L. B. Pierella, Catal. Lett.2003.
    [16]O. Anunziata, Catal. Commun.2004,5,401.
    [17]T. Baba, Y. Abe, K. Nomoto, K. Inazu, T. Echizen, A. Ishikawa, K. Murai, J. Phys. Chem. B 2005,109,4263.
    [18]V. R. Choudhary, A. K. Kinage, T. V. Choudhary, Science 1997,275,1286.
    [19]G. V. Echevsky, E. G. Kodenev, O. V. Kikhtyanin, V. N. Parmon, Appl. Catal., A 2004, 258,159.
    [20]Z.-T. Xiong, L.-L. Chen, H.-B. Zhang, J.-L. Zeng, G.-D. Lin, Catal. Lett.2001,74,227.
    [21]L. ZL, L. W. M, L. Q. C, W. Q. Y, Nat Gas Chem Ind(Tianranqi Huagong) 1997,22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700