多孔二氧化硅系材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成了具有发散性介孔孔道结构的荧光二氧化硅纳米颗粒(FMSN)。研究了FMSN的生长过程,TEM结果表明随着反应时间的延长,颗粒之间的二氧化硅连接体的作用变弱导致二氧化硅纳米颗粒的形成,反应时间为3h时是最优化的反应时间。研究了荧光基团(APTES-SA,氨基丙基三乙氧基硅烷-水杨酸)和催化剂(TEA,三乙醇胺)对FMSN的影响,结果表明随着TEOS(正硅酸乙酯)与TEA的摩尔比的降低,FMSN的颗粒尺寸增大,随着APTES-SA的加入量的增加,颗粒尺寸增大,同时颗粒变得更致密。太多的APTES-SA(APTES-SA/TEOS=0.4)将会导致整片二氧化硅的形成。FMSN的荧光性质通过吸收和发射光谱测试获得,结果表明荧光基团完全加载到了二氧化硅上,没有游离地存在于液体中。
     在室温下快速合成了具有发散性定向孔道结构的中空二氧化硅材料(ROPHS)。研究了DMF(N-N二甲基甲酰胺)的加入量对其形成过程的影响,TEM结果表明当DMF的加入量为零或很少时,只形成了实心纳米二氧化硅颗粒。然而,随着DMF的加入量的增加,中空结构逐渐形成。研究了反应时间对ROPHS生长过程的影响,结果表明,中空二氧化硅材料可以在很短的时间内形成,即只需要0.5h,并且此时实心的二氧化硅纳米颗粒还没有形成。随着反应时间的延长,孔道结构部分的厚度增加。当用超声代替搅拌时,发现中空二氧化硅材料的总的尺寸和中空部分的尺寸均有所减小。TEM观察显示,Au和Fe3O4纳米颗粒均可被包裹于中空部分形成核壳结构,在药物释放领域具有潜在的应用价值。
     研究了ZSM-5、Silicalite-1和Zeolite Y分子筛材料的合成以及通过TGA测试研究了其在吸附CO_2方面的性能。通过水热反应法合成了尺寸均匀的ZSM-5分子筛材料,并对其进行了离子交换处理。尺寸均匀的Silicalite-1通过回流加热的方法制得。合成了具有纯相结构的Zeolite Y分子筛材料,并对其进行了离子交换处理。TGA结果表明:ZSM-5(AS2)、Na(Ⅰ)-ZSM-5(AS2)、 Na(Ⅱ)-ZSM-5(AS2)、 Na(Ⅰ)-CBV2314、Na(Ⅱ)-CBV2314、 Na(Ⅱ)-CBV8014、 Silicalite-1-500-10、 Na(Ⅰ)-Y、 Na(Ⅱ)-Y、 La(Ⅰ)-Na(Ⅰ)-Y、 Mg(Ⅰ)-Na(Ⅰ)-Y和NaY分别可以吸附0.5%、2.3%、5.0%、1.9%、2.5%、3.6%、3.4%、3.6%、4.0%、2.0%、2.5%和3.4%的CO_2。本实验研究的所有分子筛材料中,Na(II)-ZSM-5(AS2)吸附CO_2的能力最强。
Fluorescent mesoporous silica nanoparticles (FMSN) with radialmesochannels were synthesized. The growth process of FMSN was studied.TEM results indicated that with the extension of reaction time, the effect ofsilica connectors between particles was weakened, resulting in theformation of silica nanoparticles. The optimal reaction time was3h. Theeffects of fluorescent groups (APTES-SA,Aminopropyltriethoxysilane-Salicylic Acid) and catalyst (TEA,Triethanolamine) on the FMSN were investigated, suggesting that withdecreasing the molar ratio of TEOS (Tetraethyl Orthosilicate)/TEA, theparticle size of FMSN increased. Meanwhile, as the addition of APTES-SA,the particle size increased and the particles became more compaction. Buttoo much APTES (APTES-SA/TEOS=0.4) resulted in the formation ofwhole piece of silica. The fluorescent properties of FMSN were studied bythe absorption and emission spectra, revealing that all fluorescent groupswere linked to the silica particles.
     The hollow porous silica particles with radially oriented porous wall(ROPHS) were synthesized at room temperature by an instant method. Theeffect of DMF (N,N-dimethylformide) on the formation of ROPHS wasstudied. When zero or small amount of DMF was added, pure solid silicananoparticles were obtained by TEM. However, with the increase of theaddition of DMF, more hollow silica particles were formed. Moreover, thethickness of the wall kept the same in each condition. The effects ofdifferent reaction time on the growth process of ROPHS were studied,indicating that hollow porous silica can be formed instantly, only in0.5h. At the same time, the solid mesoporous silica was not formed. With theincrease of reaction time, the thickness of the porous wall increased. Whenchanging stirring to sonication, the total size and the hollow phase size ofporous silica decreasd. TEM observation showed that Au and Fe3O4nanoparticles could be totally trapped into porous silica to form core-shellstructure, which has the potential application in drug release.
     ZSM-5, silicalite-1and zeolite Y materials were synthesized and itsCO_2adsorption performance was carried out by TGA method. HomogenousZSM-5crystals were synthesized by hydrothermal treatment and treated byion exchange. Homegeneous silicalite-1particles were synthesized byreflux heating treatment. Pure zeolite Y material was synthesized andtreated by ion exchange. According to the TGA results, CO_2pickupcapacities of ZSM-5(AS2), Na(Ⅰ)-ZSM-5(AS2), Na(Ⅱ)-ZSM-5(AS2),Na(Ⅰ)-CBV2314, Na(Ⅱ)-CBV2314, Na(Ⅱ)-CBV8014, silicalite-1-500-10,Na(Ⅰ)-Y, Na(Ⅱ)-Y, La(Ⅰ)-Na(Ⅰ)-Y, Mg(Ⅰ)-Na(Ⅰ)-Y and NaY are0.5%,2.3%,5.0%,1.9%,2.5%,3.6%,3.4%,3.6%,4.0%,2.0%,2.5%and3.4%,respectively. Among all zeolite samples studied in this work, CO_2pickupcapacity of Na(Ⅱ)-ZSM-5(AS2) was the highest.
引文
[1] Luyten J, Cooymans J, De Wilde A, et al. Porous materials, synthesisand characterization [J]. Euro. Ceram. VII,2002,206-2:1937-1940.
    [2] Sakintuna B, Aktas Z, Yurum Y. Synthesis of porous carbon materialsby carbonization in natural zeolite nanochannels [J]. J. Am. Chem. Soc.,2003,226: U538-U538.
    [3] Sen T, Tiddy G J T, Casci J L, et al. Synthesis and characterization ofhierarchically ordered porous silica materials [J]. Chem. Mater.,2004,16(11):2044-2054.
    [4] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porouscarbon materials [J]. Adv. Mater.,2006,18(16):2073-2094.
    [5] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered MesoporousMolecular-Sieves Synthesized by a Liquid-Crystal TemplateMechanism [J]. Nature,1992,359(6397):710-712.
    [6] Beck J S, Vartuli J C, Roth W J, et al. A New Family of MesoporousMolecular-Sieves Prepared with Liquid-Crystal Templates [J]. J. Am.Chem. Soc.,1992,114(27):10834-10843.
    [7] Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporousorganic-inorganic hybrid materials [J]. Angew. Chem. Int. Ed.,2006,45(20):3216-3251.
    [8] Vallet-Regi M. Nanostructured mesoporous silica matrices innanomedicine [J]. J. Int. Med.,2010,267(1):22-43.
    [9] Xu W J, Gao Q, Xu Y, et al. Controlled drug release frombifunctionalized mesoporous silica [J]. J. Solid State Chem.,2008,181(10):2837-2844.
    [10] Cauda V, Fiorilli S, Onida B, et al. SBA-15ordered mesoporous silicainside a bioactive glass-ceramic scaffold for local drug delivery [J]. J.Mater. Sci.,2008,19(10):3303-3310.
    [11] Li J S, Miao X Y, Hao Y X, et al. Synthesis, amino-functionalization ofmesoporous silica and its adsorption of Cr(VI)[J]. J. Colloid InterfaceSci.,2008,318(2):309-314.
    [12] Showkat A M, Zhang Y P, Kim M S, et al. Analysis of heavy metaltoxic ions by adsorption onto amino-functionalized orderedmesoporous silica [J]. Bull. Korean Chem. Soc.,2007,28(11):1985-1992.
    [13] Saeung S, Boonamnuayvitaya V. Adsorption of formaldehyde vapor byamine-functionalized mesoporous silica materials [J]. J. Environ.Sci.-China,2008,20(3):379-384.
    [14] Samart C, Sreetongkittikul R, Sookman C. Heterogeneous catalysis oftransesterification of soybean oil using KI/mesoporous silica [J]. FuelProcess. Technol.,2009,90(7-8):922-925.
    [15] Kung H H. Catalysis by microporous and mesoporous silica-basedmaterials [J]. J. Am. Chem. Soc.,2001,222: U167-U167.
    [16] Timofeeva M N, Jhung S H, Hwang Y K, et al. Ce-silica mesoporousSBA-15-type materials for oxidative catalysis: Synthesis,characterization, and catalytic application [J]. Appl. Catal. A,2007,317(1):1-10.
    [17] He Q J, Shi J L, Zhao J J, et al. Bottom-up tailoring of nonionicsurfactant-templated mesoporous silica nanomaterials by a novelcomposite liquid crystal templating mechanism [J]. J. Mater. Chem.,2009,19(36):6498-6503.
    [18] Monnier K, Schmitt G, Laude B, et al. Reaction of2-Benzoyl-1,2-Dihydroisoquinoline-1-Carbonitrile TetrafluoroborateSalt with Diethyl Azodicarboxylate-an Unexpected Evolution of theCondensation-Rearrangement Product [J]. J. Chem. Res.,1994,2:64-65.
    [19] Huo Q S, Leon R, Petroff P M, et al. Mesostructure Design withGemini Surfactants-Supercage Formation in a3-DimensionalHexagonal Array [J]. Science,1995,268(5215):1324-1327.
    [20] Stober W, Fink A, Bohn E. Controlled Growth of Monodisperse SilicaSpheres in Micron Size Range [J]. J. Colloid Interface Sci.,1968,26(1):62-69.
    [21] Grun M, Lauer I, Unger K K. The synthesis of micrometer-andsubmicrometer-size spheres of ordered mesoporous oxide MCM-41[J].Adv. Mater.,1997,9(3):254-259.
    [22] Huo Q S, Feng J L, Schuth F, et al. Preparation of hard mesoporoussilica spheres [J]. Chem. Mater.,1997,9(1):14-15.
    [23] Qi L M, Ma J M, Cheng H M, et al. Micrometer-sized mesoporoussilica spheres grown under static conditions [J]. Chem. Mater.,1998,10(6):1623-1626.
    [24] Zhao D Y, Huo Q S, Feng J L, et al. Novel mesoporous silicates withtwo-dimensional mesostructure direction using rigid bolaformsurfactants [J]. Chem. Mater.,1999,11(10):2668-2672.
    [25] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblockcopolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem.Soc.,1998,120(24):6024-6036.
    [26] Kosuge K, Singh P S. Mesoporous silica spheres via l-alkylaminetemplating route [J]. Micro. Meso. Mater.,2001,44:139-145.
    [27] Han Y, Ying J Y. Generalized fluorocarbon-surfactant-mediatedsynthesis of nanoparticles with various mesoporous structures [J].Angew. Chem. Int. Ed.,2005,44(2):288-292.
    [28] Yamauchi Y, Suzuki N, Gupta P, et al. Aerosol-assisted synthesis ofmesoporous organosilica microspheres with controlled organiccontents [J]. Sci. Tech. Adv. Mater.,2009,10(2):1-9.
    [29]杨立明,王玉军,黄丹,等.高度有序的介孔二氧化硅微球的合成[C].中国颗粒学会2006年年会暨海峡两岸颗粒技术研讨会.北京,2006,169-172.
    [30] Tsai C P, Chen C Y, Hung Y, et al. Monoclonal antibody-functionalizedmesoporous silica nanoparticles (MSN) for selective targeting breastcancer cells [J]. J. Mater. Chem.,2009,19(32):5737-5743.
    [31] Mukherjee I, Mylonakis A, Guo Y, et al. Effect of nonsurfactanttemplate content on the particle size and surface area of monodispersemesoporous silica nanospheres [J]. Micro. Meso. Mater.,2009,122(1-3):168-174.
    [32] Chen H M, He J H. Fine control over the morphology and structure ofmesoporous silica nanomaterials by a dual-templating approach [J].Chem. Commun.,2008,37:4422-4424.
    [33] Huh S, Wiench J W, Yoo J C, et al. Organic functionalization andmorphology control of mesoporous silicas via a co-condensationsynthesis method [J]. Chem. Mater.,2003,15(22):4247-4256.
    [34] Moller K, Kobler J, Bein T. Colloidal suspensions of nanometer-sizedmesoporous silica [J]. Adv. Func. Mater.,2007,17(4):605-612.
    [35] Moller K, Kobler J, Bein T. Colloidal suspensions ofmercapto-functionalized nanosized mesoporous silica [J]. J. Mater.Chem.,2007,17(7):624-631.
    [36] Kobler J, Moller K, Bein T. Colloidal suspensions of functionalizedmesoporous silica nanoparticles [J]. ACS Nano,2008,2(4):791-799.
    [37] Cauda V, Schlossbauer A, Kecht J, et al. Multiple Core-ShellFunctionalized Colloidal Mesoporous Silica Nanoparticles [J]. J. Am.Chem. Soc.,2009,131(32):11361-11370.
    [38] Zhu Y F, Shi J L, Chen H R, et al. A facile method to synthesize novelhollow mesoporous silica spheres and advanced storage property [J].Micro. Meso. Mater.,2005,84(1-3):218-222.
    [39] Zhu Y F, Shi J L, Shen W H, et al. Stimuli-responsive controlled drugrelease from a hollow mesoporous silica sphere/polyelectrolytemultilayer core-shell structure [J]. Angew. Chem. Int. Ed.,2005,44(32):5083-5087.
    [40] Liu S, Rao J C, Sui X, et al. Preparation of hollow silica spheres withdifferent mesostructures [J]. J. Non-Cryst. Solids,2008,354(10-11):826-830.
    [41] Zhu Y F, Shi J L, Li Y S, et al. Storage and release of ibuprofen drugmolecules in hollow mesoporous silica spheres with modified poresurface [J]. Micro. Meso. Mater.,2005,85(1-2):75-81.
    [42] Wang J G, Li F, Zhou H J, et al. Silica Hollow Spheres with Orderedand Radially Oriented Amino-Functionalized Mesochannels [J]. Chem.Mater.,2009,21(4):612-620.
    [43] Wang J G, Xiao Q, Zhou H J, et al, Anionic surfactant-templatedmesoporous silica (AMS) nano-spheres with radially orientedmesopores [J]. J. Colloid Interface Sci.,2008,323(2):332-337.
    [44] Zhao W R, Lang M D, Li Y S, et al. Fabrication of uniform hollowmesoporous silica spheres and ellipsoids of tunable size through afacile hard-templating route [J]. J. Mater. Chem.,2009,19(18):2778-2783.
    [45] Holmberg B A, Wang H T, Norbeck J M, et al. Controlling size andyield of zeolite Y nanocrystals using tetramethylammonium bromide[J]. Micro. Meso. Mater.,2003,59(1):13-28.
    [46] Walcarius A, Etienne M, Lebeau B. Rate of access to the binding sitesin organically modified silicates2: Ordered mesoporous silicas graftedwith amine or thiol groups [J]. Chem. Mater.,2003,15(11):2161-2173.
    [47] Khatri R A, Chuang S S C, Soong Y, et al. Carbon dioxide capture bydiamine-grafted SBA-15: A combined Fourier transform infrared andmass spectrometry study [J]. Ind. Eng. Chem. Res.,2005,44(10):3702-3708.
    [48] Yokoi T, Yoshitake H, Tatsumi T. Synthesis of amino-functionalizedMCM-41via direct co-condensation and post-synthesis graftingmethods using mono-, di-and tri-amino-organoalkoxysilanes [J]. J.Mater. Chem.,2004,14(6):951-957.
    [49] Zheng F, Tran D N, Busche B J, et al. Ethylenediamine-modifiedSBA-15as regenerable CO2sorbent [J]. Ind. Eng. Chem. Res.,2005,44(9):3099-3105.
    [50] Trens P, Russell M L, Spjuth L, et al. Preparation ofmalonamide-MCM-41materials for the heterogeneous extraction ofradionuclides [J]. Ind. Eng. Chem. Res.,2002,41(21):5220-5225.
    [51] Antochshuk V, Olkhovyk O, Jaroniec M, et al.Benzoylthiourea-modified mesoporous silica for mercury(II) removal[J]. Langmuir,2003,19(7):3031-3034.
    [52] Feng X, Fryxell G E, Wang L Q, et al. Functionalized monolayers onordered mesoporous supports [J]. Science,1997,276(5314):923-926.
    [53] Antochshuk V, Jaroniec M.1-allyl-3-propylthiourea modifiedmesoporous silica for mercury removal [J]. Chem. Commun.,2002,3:258-259.
    [54] Venkatesan K A, Srinivasan T G, Rao P R V. Removal of complexedmercury by dithiocarbamate grafted on mesoporous silica [J]. J.Radioanal. Nucl. Chem.,2003,256(2):213-218.
    [55] Kang T, Park Y, Choi K, et al. Ordered mesoporous silica (SBA-15)derivatized with imidazole-containing functionalities as a selectiveadsorbent of precious metal ions [J]. J. Mater. Chem.,2004,14(6):1043-1049.
    [56] Sae-ung S, Boonamnuayvitaya V. Direct Synthesis andCharacterization of Amine-Functionalized Mesoporous SilicaMaterials and Their Applications as Formaldehyde Adsorbents [J].Environ. Eng. Sci.,2008,25(10):1477-1485.
    [57] Lin V S Y, Lai C Y, Huang J G, et al. Molecular recognition inside ofmultifunctionalized mesoporous silicas: Toward selective fluorescencedetection of dopamine and glucosamine [J]. J. Am. Chem. Soc.,2001,123(46):11510-11511.
    [58] Mercier L, Pinnavaia T J. Heavy metal lan adsorbents formed by thegrafting of a thiol functionality to mesoporous silica molecular sieves:Factors affecting Hg(II) uptake [J]. Environ. Sci. Technol,1998,32(18):2749-2754.
    [59] Ho K Y, McKay G, Yeung K L. Selective adsorbents from orderedmesoporous silica [J]. Langmuir,2003,19(7):3019-3024.
    [60] Burkett S L, Sims S D, Mann S. Synthesis of hybrid inorganic-organicmesoporous silica by co-condensation of siloxane and organosiloxaneprecursors [J]. Chem. Commun.,1996,11:1367-1368.
    [61] Macquarrie D J. Direct preparation of organically modified MCM-typematerials. Preparation and characterisation of aminopropyl-MCM and2-cyanoethyl-MCM [J]. Chem. Commun.,1996,16:1961-1962.
    [62] Lim M H, Blanford C F, Stein A. Synthesis and characterization of areactive vinyl-functionalized MCM-41: Probing the internal porestructure by a bromination reaction [J]. J. Am. Chem. Soc.,1997,119(17):4090-4091.
    [63] Mercier L, Pinnavaia T J. Direct synthesis of hybrid organic-inorganicnanoporous silica by a neutral amine assembly route:Structure-function control by stoichiometric incorporation oforganosiloxane molecules [J]. Chem. Mater.,2000,12(1):188-196.
    [64] Fowler C E, Burkett S L, Mann S. Synthesis and characterization ofordered organo-silica-surfactant mesophases with functionalizedMCM-41-type architecture [J]. Chem. Commun.,1997,18:1769-1770.
    [65] Margolese D, Melero J A, Christiansen S C, et al. Direct syntheses ofordered SBA-15mesoporous silica containing sulfonic acid groups [J].Chem. Mater.,2000,12(8):2448-2459.
    [66] Jia M J, Seifert A, Berger M, et al. Hybrid mesoporous materials with auniform ligand distribution: Synthesis, characterization, andapplication in epoxidation catalysis [J]. Chem. Mater.,2004,16(5):877-882.
    [67] Wirnsberger G. Scott B J, Stucky G D. pH Sensing with mesoporousthin films [J]. Chem. Commun.,2001,1:119-120.
    [68] Bourlinos A B, Karakassides M A, Petridis D. Synthesis andcharacterization of hollow clay microspheres through a resin templateapproach [J]. Chem. Commun.,2001,16:1518-1519.
    [69]夏厚胜,童东绅,周春晖,等.功能化有序介孔有机硅催化剂的合成与应用[J].工业催化,2008,16(10):8-13.
    [70] Inagaki S, Guan S, Fukushima Y, et al. Novel mesoporous materialswith a uniform distribution of organic groups and inorganic oxide intheir frameworks [J]. J. Am. Chem. Soc.,1999,121(41):9611-9614.
    [71] Yoshina-Ishii C, Asefa T, Coombs N, et al. Periodic mesoporousorganosilicas, PMOs: fusion of organic and inorganic chemistry 'inside'the channel walls of hexagonal mesoporous silica [J]. Chem. Commun.,1999,24:2539-2540.
    [72] Melde B J, Holland B T, Blanford C F, et al. Mesoporous sieves withunified hybrid inorganic/organic frameworks [J]. Chem. Mater.,1999,11(11):3302-3308.
    [73] Muth O, Schellbach C, Froba M. Triblock copolymer assisted synthesisof periodic mesoporous organosilicas (PMOs) with large pores [J].Chem. Commun.,2001,19:2032-2033.
    [74] Burleigh M C, Markowitz M A, Spector M S, et al. Direct synthesis ofperiodic mesoporous organosilicas: Functional incorporation byco-condensation with organosilanes [J]. J. Phys. Chem. B,2001,105(41):9935-9942.
    [75] Bao X Y, Zhao X S, Li X, et al. Pore structure characterization oflarge-pore periodic mesoporous organosilicas synthesized with varyingSiO2/template ratios [J]. Appl. Surf. Sci.,2004,237(1-4):380-386.
    [76] Bao X Y, Zhao X S, Qiao S Z, et al. Comparative analysis of structuraland morphological properties of large-pore periodic mesoporousorganosilicas and pure silicas [J]. J. Phys. Chem. B,2004,108(42):16441-16450.
    [77] Bao X Y, Zhao X S, Li X, et al. A novel route toward the synthesis ofhigh-quality large-pore periodic mesoporous organosilicas [J]. J. Phys.Chem. B,2004,108(15):4684-4689.
    [78] Guo W P, Kim I, Ha C S. Highly ordered three-dimensional large-poreperiodic mesoporous organosilica with Im3m symmetry [J]. Chem.Commun.,2003,21:2692-2693.
    [79] Matos J R, Kruk M, Mercuri L P, et al. Periodic mesoporousorganosilica with large cagelike pores [J]. Chem. Mater.,2002,14(5):1903-1905.
    [80] Zhu Y F, Shi J L, Shen W H, et al. Preparation of novel hollowmesoporous silica spheres and their sustained-release property [J].Nanotechnology,2005,16(11):2633-2638.
    [81] Zhao Y J, Zhang J L, Li W, et al. Synthesis of uniform hollow silicaspheres with ordered mesoporous shells in a CO2inducednanoemulsion [J]. Chem. Commun.,2009,17:2365-2367.
    [82] Liz-Marzan L M, Mulvaney P. Au@SiO2colloids: effect of temperatureon the surface plasmon absorption [J]. New J. Chem.,1998,22(11):1285-1288.
    [83] Mine E, Yamada A, Kobayashi Y, et al. Direct coating of goldnanoparticles with silica by a seeded polymerization technique [J]. J.Colloid Interface Sci.,2003,264(2):385-390.
    [84] Mulvaney P, Liz-Marzan L M. Rational material design using Aucore-shell nanocrystals [J]. Colloid Chem.1,2003,226:225-246.
    [85] Xu J, Perry C C. A novel approach to Au@SiO2core-shell spheres [J].J. Non-Crystal. Solids,2007,353(11-12):1212-1215.
    [86] Lee J, Park J C, Song H. A nanoreactor framework of a Au@SiO2yolk/shell structure for catalytic reduction of p-nitrophenol [J]. Adv.Mater.,2008,20(8):1523-1528.
    [87] Zhu Y, Kaskel S, Shi J, et al. Immobilization of Trametes versicolorlaccase on magnetically separable mesoporous silica spheres [J]. Chem.Mater.,2007,19(26):6408-6413.
    [88] Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release ofguest molecules from coumarin-modified mesoporous silica [J]. Nature,2003,421(6921):350-353.
    [89] Mal N K, Fujiwara M, Tanaka Y, et al. Photo-switched storage andrelease of guest molecules in the pore void of coumarin-modifiedMCM-41[J]. Chem. Mater.,2003,15(17):3385-3394.
    [90] Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drugdelivery [J]. Angew. Chem. Int. Ed.,2007,46(40):7548-7558.
    [91] Sieben S, Bergemann C, Lubbe A, et al. Comparison of differentparticles and methods for magnetic isolation of circulating tumor cells[J]. J. Magn. Magn. Mater.,2001,225(1-2):175-179.
    [92] Zhou J, Wu W, Caruntu D, et al. Synthesis of porous magnetic hollowsilica nanospheres for nanomedicine application [J]. J. Phys. Chem. C,2007,111(47):17473-17477.
    [93] Wu P G, Zhu J H, Xu Z H. Template-assisted synthesis of mesoporousmagnetic nanocomposite particles [J]. Adv. Funct. Mater.,2004,14(4):345-351.
    [94] Zhao W R, Gu J L, Zhang L X, et al. Fabrication of uniform magneticnanocomposite spheres with a magnetic core/mesoporous silica shellstructure [J]. J. Am. Chem. Soc.,2005,127(25):8916-8917.
    [95] Zhu Y F, Kockrick E, Ikoma T, et al. An Efficient Route to Rattle-TypeFe3O4@SiO2Hollow Mesoporous Spheres Using Colloidal CarbonSpheres Templates [J]. Chem. Mater.,200,21(12):2547-2553.
    [96] http://baike.baidu.com/view/177098.htm.
    [97]高滋,沸石催化与分离技术[M].1999,北京:中国石化出版社.
    [98] Pacheco G, Zhao E, Garcia A, et al. Syntheses of mesoporous zirconiawith anionic surfactants [J]. J. Mater. Chem.,1998,8(1):219-226.
    [99] Joo S H, Jun S, Ryoo R. Synthesis of ordered mesoporous carbonmolecular sieves CMK-1[J]. Micro. Meso. Mater.,2001,44:153-158.
    [100] Jun S, Choi M, Ryu S, et al. Ordered mesoporous carbon molecularsieves with functionalized surfaces [J]. Nanotechnology inMesostructured Mater.,2003,146:37-40.
    [101] Kimura T, Sugahara Y, Kuroda K. Synthesis of mesoporousaluminophosphates and their adsorption properties [J]. Micro. Meso.Mater.,1998,22(1-3):115-126.
    [102]李玉平,潘瑞丽,李晓峰,等.微孔-介孔复合分子筛的合成研究进展[J].石油化工,2005,34(2):188-194.
    [103]张晔,吴东,孙予罕,等.微孔-介孔复合SiO2-Al2O3分子筛的水热合成研究[J].燃料化学学报,2001,29:28-29.
    [104] Prokesova P, Mintova S, Cejka J, et al. Preparation of nanosizedmicro/mesoporous composites via simultaneous synthesis ofBeta/MCM-48phases [J]. Micro. Meso. Mater.,2003,64(1-3):165-174.
    [105] Goto Y, Fukushima Y, Ratu P, et al. Mesoporous material fromzeolite [J]. J. Porous Mater.,2002,9(1):43-48.
    [106] Tao Y S, Kanoh H, Kaneko K. ZSM-5monolith of uniformmesoporous channels [J]. J. Am. Chem. Soc.,2003,125(20):6044-6045.
    [107] Tao Y S, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Yusing carbon aerogel templating [J]. J. Phys. Chem. B,2003,107(40):10974-10976.
    [108] Tao Y, Hattori Y, Matumoto A, et al. Comparative study on porestructures of mesoporous ZSM-5from resorcinol-formaldehyde aerogeland carbon aerogel templating [J]. J. Phys. Chem. B,2005,109(1):194-199.
    [109] Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable aluminosilicatemesostructures assembled from zeolite type Y seeds [J]. J. Am. Chem.Soc.,2000,122(36):8791-8792.
    [110] Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable MSU-Saluminosilicate mesostructures assembled from zeolite ZSM-5andzeolite beta seeds [J]. Angew. Chem. Int. Ed.,2001,40(7):1255-1258.
    [111] Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable aluminosilicatemolecular sieves assembled from zeolite seeds [J]. J. Am. Chem. Soc.,2001,221: U374-U374.
    [112] Urbiztondo M A, Valera E, Trifonov T, et al. Development ofmicrostructured zeolite films as highly accessible catalytic coatings formicroreactors [J]. J. Catal.,2007,250(1):190-194.
    [113] Gardner T Q, Martinek J G, Falconer J L, et al. Enhanced fluxthrough double-sided zeolite membranes [J]. J. Membr. Sci.,2007,304(1-2):112-117.
    [114] Martinek J G, Gardner T Q, Noble R D, et al. Modeling transientpermeation of binary mixtures through zeolite membranes [J]. Ind. Eng.Chem. Res.,2006,45(17):6032-6043.
    [115] Li X, Roberts E P L, Holmes S M, et al. Functionalized zeoliteA-nafion composite membranes for direct methanol fuel cells [J]. SolidState Ionics,2007,178(19-20):1248-1255.
    [116] Van Grieken R, Sotelo J L, Menendez J M, et al. Anomalouscrystallization mechanism in the synthesis of nanocrystalline ZSM-5[J]. Micro. Meso. Mater.,2000,39(1-2):135-147.
    [117] Mohamed R M, Fouad O A, Ismail A A, et al. Influence ofcrystallization times on the synthesis of nanosized ZSM-5[J]. Mater.Lett.,2005,59(27):3441-3444.
    [118] Verduijn J P, WO93/08125[P], to Exxon Chemical Patents Inc.1997.
    [119] Jacobsen C J H, Madsen C, Janssens T V. W, et al. Zeolites byconfined space synthesis-characterization of the acid sites innanosized ZSM-5by ammonia desorption and Al-27/Si-29-MAS NMRspectroscopy [J]. Micro. Meso. Mater.,2000,39(1-2):393-401.
    [120] Dufour J, Gonzalez V, La Iglesia A. Synthesis of13X zeolite fromalkaline waste streams in the aluminum anodizing industry [J]. Ind.Eng. Chem. Res.,2001,40(4):1140-1145.
    [121] de Lucas A, Uguina M A, Covian I, et al. Use of Spanish naturalclays as additional silica sources to synthesize13X zeolite from kaolin[J]. Ind. Eng. Chem. Res.,1993,32(8):1645-1650.
    [122] de Lucas A, Uguina M A, Covian I, et al. Synthesis of13X zeolitefrom calcined kaolins and sodium silicate for use in detergents [J]. Ind.Eng. Chem. Res.,1992,31(9):2134-2140.
    [123] Caballero I, Colina F G, Costa J. Synthesis of X-type zeolite fromdealuminated kaolin by reaction with sulfuric acid at high temperature[J]. Ind. Eng. Chem. Res.,2007,46(4):1029-1038.
    [124] Li Q H, Creaser D, Sterte J. An investigation of thenucleation/crystallization kinetics of nanosized colloidal faujasitezeolites [J]. Chem. Mater.,2002,14(3):1319-1324.
    [125] Yang S Y, Navrotsky A, Phillips B L. An in situ calorimetric study ofthe synthesis of FAU zeolite [J]. Micro. Meso. Mater.,2001,46(2-3):137-151.
    [126] Holmberg B A, Wang H, Yan Y S. High silica zeolite Y nanocrystalsby dealumination and direct synthesis [J]. Micro. Meso. Mater.,2004,74(1-3):189-198.
    [127] Greer H, Wheatley P S, Ashbrook S E, et al. Early Stage ReversedCrystal Growth of Zeolite A and Its Phase Transformation to Sodalite[J]. J. Am. Chem. Soc.,2009,131(49):17986-17992.
    [128] Pan Y C, Yao J F, Zhang L X, et al. Preparation of Ultrafine ZeoliteA Crystals with Narrow Particle Size Distribution Using a Two-PhaseLiquid Segmented Microfluidic Reactor [J]. Ind. Eng. Chem. Res.,2009,48(18):8471-8477.
    [129] Bouizi Y, Paillaud J L, Simon L, et al. Seeded synthesis of very highsilica zeolite A [J]. Chem. Mater.,2007,19(4):652-654.
    [130] Vroon Z A E P, Keizer K, Burggraaf A J, et al. Preparation andcharacterization of thin zeolite MFI membranes on porous supports [J].J. Membr. Sci.,1998,144(1-2):65-76.
    [131] Caro J, Noack M. Zeolite membranes-Recent developments andprogress [J]. Micro. Meso. Mater.,2008,115(3):215-233.
    [132] Caro J, Noack M, Kolsch P. Zeolite membranes: From the laboratoryscale to technical applications [J]. Adsorpt.-J. Int. Adsorp. Soc.,2005,11(3-4):215-227.
    [133] Caro J, Noack M, Kolsch P, et al. Zeolite membranes-state of theirdevelopment and perspective [J]. Micro. Meso. Mater.,2000,38(1):3-24.
    [134] Caro J, Albrecht D, Noack M. Why is it so extremely difficult toprepare shape-selective Al-rich zeolite membranes like LTA and FAUfor gas separation [J]. Sep. Purif. Technol.,2009,66(1):143-147.
    [135] Mintova S, Radev D D, Valtchev V. Influence of the metal substrateproperties on zeolite film formation [J]. Metall,1998,52(7-8):447-450.
    [136] Balkus K J, Coutinho D, Washmon L. Preparation of oriented zeolitemembranes via pulsed laser ablation [J]. J. Am. Chem. Soc.,2001,221:U376-U376.
    [137] Balkus K J, Gbery G, Deng Z S. Preparation of partially orientedzeolite MCM-22membranes via pulsed laser deposition [J]. Micro.Meso. Mater.,2002,52(3):141-150.
    [138] Balkus K J, Munoz T, Gimon-Kinsel M E. Preparation of zeoliteUTD-1films by pulsed laser ablation: Evidence for oriented crystalgrowth [J]. Chem. Mater.,1998,10(2):464-466.
    [139] Balkus K J, Scott A S. Zeolite coatings on three-dimensional objectsvia laser ablation [J]. Chem. Mater.,1999,11(2):189-191.
    [140] Cho G, Lee J S, Glatzhofer D T, et al. Ultra-thin zeolite filmsthrough simple self-assembled processes [J]. Adv. Mater.,1999,11(6):497-499.
    [141] Cho G, Moon I S, Shul Y G, et al. Self-assembled process for thepreparation of ultra-thin zeolite films [J]. Chem. Lett.,1998,4:355-356.
    [142] The Future of Coal. An Interdisciplinary MIT Study [R],2007.
    [143] Bernstein L, Bosch P, Canziani O, et al. Climate Change2007[R].IPCC Assessment Report: Climate Change2007, Cambridge UniversityPress: Cambridge, U. K.,2007.
    [144] Merel J, Clausse M, Meunier F. Carbon dioxide capture by indirectthermal swing adsorption using13X zeolite [J]. Environ. Prog.,2006,25(4):327-333.
    [145] Ho M T, Allinson G W, Wiley D E. Reducing the cost of CO2capturefrom flue gases using membrane technology [J]. Ind. Eng. Chem. Res.,2008,47(5):1562-1568.
    [146] Ho M T, Allinson G W, Wiley D E. Reducing the cost of CO2capturefrom flue gases using pressure swing adsorption [J]. Ind. Eng. Chem.Res.,2008,47(14):4883-4890.
    [147] Sebastian V, Kumakiri I, Bredesen R, et al. Zeolite membrane forCO2removal: Operating at high pressure [J]. J. Membr. Sci.,2007,292(1-2):92-97.
    [148] Aaron D, Tsouris C. Separation of CO2from flue gas: A review [J].Sep. Sci. Technol.,2005,40(1-3):321-348.
    [149] Meisen A, Shuai X S. Research and development issues in CO2capture [J]. Energy Convers. Manage.,1997,38: S37-S42.
    [150] Wirawan S K, Creaser D. CO2adsorption on silicalite-1and cationexchanged ZSM-5zeolites using a step change response method [J].Micro. Meso. Mater.,2006,91(1-3):196-205.
    [151] Plaza M G, Pevida C, Arenillas A, et al. CO2capture by adsorptionwith nitrogen enriched carbons [J]. Fuel,2007,86(14):2204-2212.
    [152] Siriwardane R V, Robinson C, Shen M, et al. Novel regenerablesodium-based sorbents for CO2capture at warm gas temperatures [J].Energy Fuels,2007,21(4):2088-2097.
    [153] Jadhav P D, Chatti R V, Biniwale R B, et al. Monoethanol aminemodified zeolite13X for CO2adsorption at different temperatures [J].Energy Fuels,2007,21(6):3555-3559.
    [154] Siriwardane R V, Shen M S, Fisher E P, et al. Adsorption of CO2onmolecular sieves and activated carbon [J]. Energy Fuels,2001,15(2):279-284.
    [155] Li G, Xiao P, Webley P, et al. Capture of CO2from high humidityflue gas by vacuum swing adsorption with zeolite13X [J]. Adsorp.-J.Int. Adsorpt. Soc.,2008,14(2-3):415-422.
    [156] Stevens W J J, Meynen V, Bruijn E, et al. Mesoporous materialformed by acidic hydrothermal assembly of silicalite-1precursornanoparticles in the absence of meso-templates [J]. Micro. Meso.Mater.,2008,110(1):77-85.
    [157] Jacobsen C J H, Madsen C, Houzvicka J, et al. Mesoporous zeolitesingle crystals [J]. J. Am. Chem. Soc.,2000,122(29):7116-7117.
    [158] Egeblad K, Kustova M, Klitgaard S K, et al. Mesoporous zeolite andzeotype single crystals synthesized in fluoride media [J]. Micro. Meso.Mater.,2007,101(1-2):214-223.
    [159] Egeblad K, Christensen C H, Kustova M, et al. Templatingmesoporous zeolites [J]. Chem. Mater.,2008,20(3):946-960.
    [160] Schmidt I, Madsen C, Jacobsen C J H. Confined space synthesis. Anovel route to nanosized zeolites [J]. Inorg. Chem.,2000,39(11):2279-2283.
    [161] Valtchev V P, Faust A C, Lezervant J. Rapid synthesis of silicalite-1nanocrystals by conventional heating [J]. Micro. Meso. Mater.,2004,68(1-3):91-95.
    [162] Reding G, Maurer T, Kraushaar-Czarnetzki B. Comparing synthesisroutes to nano-crystalline zeolite ZSM-5[J]. Micro. Meso. Mater.,2003,57(1):83-92.
    [163] Mintova S, Olson N H, Valtchev V, et al. Mechanism of zeolite ananocrystal growth from colloids at room temperature [J]. Science,1999,283(5404):958-960.
    [164] Lew C M, Li Z J, Zones S I, et al. Control of size and yield ofpure-silica-zeolite MFI nanocrystals by addition of methylene blue tothe synthesis solution [J]. Micro. Meso. Mater.,2007,105(1-2):10-14.
    [165] Bonenfant D, Kharoune M, Niquette P, et al. Advances in principalfactors influencing carbon dioxide adsorption on zeolites [J]. Sci.Technol. Adv. Mater.,2008,9(1):1-7.
    [166] Martra G, Ocule R, Marchese L, et al. Alkali and alkaline-earthexchanged faujasites: strength of Lewis base and acid centres andcation site occupancy in Na-and BaY and Na-and BaX zeolites [J].Catal. Today,2002,73(1-2):83-93.
    [167] Tsuji H, Yagi F, Hattori H. Basic Sites on Alkali Ion-Added Zeolite[J]. Chem. Lett.,1991,11:1881-1884.
    [168] Samios S, Stubos A K, Papadopoulos G K, et al. The structure ofadsorbed CO2in slitlike micropores at low and high temperature andthe resulting micropore size distribution based on GCMC simulations[J]. J. Colloid Interface Sci.,2000,224(2):272-290.
    [169] Katoh M, Yoshikawa T, Tomonari T, et al. Adsorption characteristicsof ion-exchanged ZSM-5zeolites for CO2/N-2mixtures [J]. J. ColloidInterface Sci.,2000,226(1):145-150.
    [170] Brandani F, Rouse A, Brandani S, et al. Adsorption kinetics anddynamic behavior of a carbon monolith [J]. Adsorp.-J. Int. Adsorpt.Soc.,2004,10(2):99-109.
    [171] Hernandez-Huesca R, Diaz L, Aguilar-Armenta G. Adsorptionequilibria and kinetics of CO2,CH4and N-2in natural zeolites [J]. Sep.Purif. Technol.,1999,15(2):163-173.
    [172] Pakseresht S, Kazemeini M, Akbarnejad M M. Equilibriumisotherms for CO, CO2, CH4and C2H4on the5A molecular sieve by asimple volumetric apparatus [J]. Sep. Purif. Technol.,2002,28(1):53-60.
    [173] Huang H Y, Yang R T, Chinn D, et al. Amine-grafted MCM-48andsilica xerogel as superior sorbents for acidic gas removal from naturalgas [J]. Ind. Eng. Chem. Res.,2003,42(12):2427-2433.
    [174] Fryxell G E, Wu H, Lin Y H, et al. Lanthanide selective sorbents:self-assembled monolayers on mesoporous supports (SAMMS)[J]. J.Mater. Chem.,2004,14(22):3356-3363.
    [175] Huh S, Wiench J W, Trewyn B G, et al. Tuning of particlemorphology and pore properties in mesoporous silicas with multipleorganic functional groups [J]. Chem. Commun.,2003,18:2364-2365.
    [176] Turkevich J, Stevenson P C, Hillier J. A Study of the Nucleation andGrowth Processes in the Synthesis of Colloidal Gold [J]. Discuss.Faraday Soc.,1951,11:55-75.
    [177] David I, Welch A J E. The Oxidation of Magnetite and RelatedSpinels-Constitution of Gamma Ferric Oxide [J]. Transact. FaradaySoc.,1956,52(12):1642-1650.
    [178] Anuwattana R, Balkus K J, Asavapsit S, et al. Conventional andmicrowave hydrothermal synthesis of zeolite ZSM-5from the cupolaslag [J]. Micro. Meso. Mater.,2008,111(1-3):260-266.
    [179] Buhl J C, Lons J. Synthesis and crystal structure of nitrateenclathrated sodalite Na-8[AlSiO4](6)(NO3)(2)[J]. J. Alloys Compd.,1996,235(1):41-47.
    [180] Hua J, Han Y. One-Step Preparation of Zeolite Silicalite-1Microspheres with Adjustable Macroporosity [J]. Chem. Mater.,2009,21(12):2344-2348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700