有序介孔炭及其复合材料的合成和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有序介孔炭(ordered mesoporous carbon,OMC)不仅具有规则有序的介孔孔道、狭窄的孔径分布和高的比表面积,而且具有疏水性、化学惰性、高机械强度和高导电性,在吸附分离、催化、储能、电子电工等方面具有广泛应用前景,成为目前材料领域的研究前沿之一。
     针对目前普遍使用的硬模板法制备工艺繁琐、耗时长、重复性差和需要除去昂贵的表面活性剂等不足,本论文主要研究和开发了有序介孔炭的两种简单高效的合成方法,并考察了OMC的双电层电容器性能。在此基础上,制备了有序介孔炭/聚苯胺和有序介孔炭/纳米镍复合材料,分别考察了它们的超级电容器性能和磁性能。利用XRD、SEM、TEM、HRTEM、TG/DSC、FT-IR等现代分析手段研究了材料的形态结构,并与合成参数及其应用性能相关联,揭示材料制备、结构和应用性能的关系,阐明形成机理,获得系列基础研究数据。主要研究结果如下:
     发明有序介孔炭的两种制备方法。其一,首次通过将硫酸交联的硅/三嵌段共聚物/蔗糖复合物直接经炭化和脱硅处理成功合成出孔道排列高度有序的介孔炭。其中,三嵌段共聚物P123与蔗糖不仅作为模板剂而且共同作为碳前驱体,有效提高了炭化收率。当蔗糖:P123为1:4、晶化温度和炭化温度分别为100℃和850℃时合成了高度有序的介孔炭C-S,其最可几孔径为3.0 nm、BET比表面积为610 m~2/g、总孔体积为0.66cm~3/g。热重分析表明P123和蔗糖之间存在相互作用,C-S大约是由27wt.%的蔗糖炭和73 wt.%的P123炭组成。其二,以三种三嵌段共聚物F108、F127和P123为模板剂,采用间苯二酚/甲醛树脂为碳前驱体,首次将非水溶剂快速挥发诱导自组装技术从酸性体系发展到碱性介质中合成有序介孔炭。通过对合成条件的优化得出,当碱、F108和间苯二酚的质量比在0.3~0.5:1.5~2.5:1范围内调变时合成的介孔炭长程有序性最高。此路线从根本上摈弃了硬模板法固有的除硅过程,是目前最简便、快捷、易于大量合成的有序介孔炭的制备方法。
     采用恒流充放电、循环伏安和交流阻抗等电化学测试方法详细研究了具有不同孔结构的有序介孔炭与其组成的双电层电容器性能间的关系。结果表明:OMC材料均显示出理想的双电层电容行为。最可几孔径为3.6nm、比表面积为720 m~2/g的有序介孔炭C-P具有最低的阻抗和高达179F/g的比容量。尤其值得指出的是,有序介孔炭的大电流和大频率行为均好于常规活性炭,这与其具有的大而规则的孔径和高介孔率紧密相关。
     分别以有序介孔炭及其前驱体炭/硅复合物为基体材料,采用化学氧化法在溶液中原位合成出OMC/聚苯胺复合材料,并与物理混合法制备的复合材料在形态、结构和超级电容器性能方面开展对比研究,揭示复合材料中聚苯胺担载量、界面结合及孔结构等因素对其电容行为的影响规律。结果表明:三种复合材料的电容均由双电层电容和赝电容两部分组成。有序介孔炭与苯胺的质量比为30:70时制备的OMC/聚苯胺复合材料显示出最高的比容量(值为895 F/g);当有序介孔炭所占比例提高到50%时,电容器的大电流和循环稳定性能达到最佳。
     最后,采用非水溶剂快速挥发诱导自组装技术,设计了以三嵌段共聚物F127为模板剂、六水合硝酸镍为镍前驱体,在碱性乙醇体系中原位合成OMC/纳米镍复合材料的技术路线。初步研究表明:当六水合硝酸镍与F127的质量比从0.25:2加大到0.6:2时,OMC/镍复合材料中镍粒子的粒径更均一,炭的有序性更高;当两者的质量比为0.25:2时制备的复合材料兼具铁磁和顺磁特征。
Ordered mesoporous carbon (OMC) materials have attracted considerable attention for their regular mesopore arrangement, narrow pore size distribution, high specific surface area, chemical inertness and high conductivity, which may result in wide applications in the fields of adsorption, separation, catalysis, energy storage and so on.
     Hard template approach which was widely used to prepare OMCs has many shortages, such as a long and complicated multi-step synthetic procedure and the waste of the expensive surfactants. Therefore, in this thesis we focused on exploring the synthesis of OMCs via two simple and effective methods, and investigating the electrochemical performance of OMCs as electrode materials for supercapacitors. Besides these, two types of OMC composites (OMC/Ni and OMC/Polyaniline (PANI)) were successfully prepared, and their magnetism and supercapacitor performance were investigated, respectively. The morphologies and structures of these materials were characterized by XRD, FE-SEM, TEM, HRTEM and FT-IR measurements. The relationship among synthesis methods, structures of the derived materials and the application performances was founded, and the formation mechanism was elucidated. The main results are as follows.
     Two novel synthesis routes of OMCs were developed. Firstly, mesoporous carbons with highly ordered structures were successfully synthesized by the carbonization of sulfuric-acid-treated silica/triblock copolymer/sucrose composites and subsequent removal of silica. During the synthesis, triblock copolymer P123 and sucrose were employed as both template agents and carbon precursors in order to improve the carbon yield. When the mass ratio of sucrose to P123 was 1:4, crystallization temperature was 100℃and carbonization temperature was 850℃, highly ordered mesoporous carbon (C-S) with the mean pore size of 3 nm, BET specific surface area of 610 m~2/g and pore volume of 0.66 cm~3/g was synthesized. Thermogravimetric analysis revealed that C-S consisted of ca. 27 wt.% sucrose carbon and ca. 73 wt.% P123 carbon, and there was noticeable interaction between sucrose and P123. Secondly, the evaporation-induced self-assembly (EISA) technique was developed to synthesize a series of OMCs in alkali media by use of triblock copolymers F108, F127 or P123 as template agent and resorcin/formaldehyde resin (RFR) as carbon precursor. By optimizing the synthesis conditions, it was concluded that mesoporous carbons with highly ordered pores were prepared when the mass ratio of alkali, F108 and resorcin was in the range of 0.3~0.5:1.5~2.5:1. This route, avoiding the use of hard silica template, possesses the advantages of simplicity, effectivity and low cost, and will be a most promising approach for the large-scale synthesis of OMCs.
     The relationship between electrochemical performance of OMCs as electrode materials for electric double-layer capacitors and their pore characteristics was elucidated by using galvanostatic charge-discharge test, cyclic voltammetry and impedance spectroscopy. It was found that all of OMCs exhibited the ideal double-layer capacitance behaviors. The material C-P exhibited the lowest resistance and highest specific capacitance value of 179 F/g, which can be attributed to its high specific surface area of 720 m~2/g and pore size distribution centered at 3.6 nm. In addition, the noteworthy is that the capacitance maintenance at high current load and high-frequency capacitive performance of OMCs were better than those of the general activated carbons, wherein larger mesopores and high mesopore fraction played important roles.
     OMC or its precursor (carbon/silica composite) was used as body material to prepare OMC/PANI composites via in-situ polymerization method. Compared with OMC/PANI composites prepared via physical mixing method, the researches on the materials' configurations, structures and supercapacitor performances were developed, and the influence of the content of PANI, interface combination and pore structure on capacitance behaviors was deduced. It is inferred that, regardless of the synthesis method, composites' capacitances consisted of double layer capacitance and redox capacitance. When the mass ratio of OMC to aniline was 30:70, the OMC/PANI composite prepared by in-situ polymerization method exhibited highest special capacitance of 895 F/g. When their mass ratio was increased to 50:50, the outstanding high rate capability was obtained.
     Finally, EISA was developed to synthesize OMC/Ni composite in alkali ethanol by using F127 as template agent and Ni(NO_3)_2·6H_2O as nickel source. It is deduced that the nickel particles in composite prepared by increasing the mass ratio of Ni(NO_3)_2·6H_2O and F127 from 0.25:2 to 0.6:2 were dispersed more uniformly and the pores of carbon were more ordered. When their mass ratio was 0.25:2, the composites exhibited the combined characteristics of ferromagnetism and paramagnetism.
引文
[1] Everett D H. IUPAC manual of symbols and terminology [J]. Pure Appl. Chem., 1972, 31:578-638
    [2] McBain J W. The sorption of gases and vapours by solids [M]. London: G. Rutledge, 1932
    [3] 张震东.非离子表面活性剂导向下新型多孔分子筛材料的合成与表征[D].上海:复旦大学.2004
    [4] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359:710-712
    [5] 陈航榕,施剑林,禹剑,等.非硅组成有序介孔材料合成及应用[J].硅酸盐学报,2000,28:259-263
    [6] Lu A, Schüth F. Nanocasting pathways to create ordered mesoporous solids [J]. C. R. Chimie,2005, 8:609-620
    [7] Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy [J]. J. Mater. Chem., 2005, 15:1217-1231
    [8] Schüth F.Endo- and exotemplating to create high-surface-area inorganic materials [J]. Angew. Chem. Int. Ed., 2003, 42:3604-3622
    [9] Huo Q, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials [J]. Chem. Mater., 1996, 8:1147-1160
    [10] Wu C G, Bein T. Microwave synthesis of molecular sieve MCM-41 [J]. Chem. Commun.,1996:925-926
    [11] Lin W, Chen J, Sun Y, et al. Binodal mesopore distribution in a silica preparation by calcining a wet surfactant-containing silicate gel [J]. Chem. Commun., 1995:2367-2368
    [12] Fyfe C A, Fu G, Structure organization of silicate polyanions with surfactants: A new approach to the syntheses, structure transformations and formation mechanisms of mesostructural material [J]. J. Am. Chem. Soc., 1995, 117:9709-9714
    [13] Lu Y F, Ganguli R, Drewien C A, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating [J]. Nature, 1997, 389:364-368
    [14] Palmqvist A E C. Synthesis of ordered mesoporous materials using surfactant liquid crystals or mieellar solutions [J]. Curr. Opin. Coll. Interface Sci., 2003, 8:145-155
    [15] Antonelli D M, Nakahira A, Ying J Y. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves [J]. Inorg. Chem., 1996, 35:3126-3136
    [16] Antonelli D M, Ying J Y. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism [J]. Angew. Chem. Int. Ed. Engl., 1996, 35:426-430
    [17] Yang P, Zhao D, Margolese D I, et al. Generalized synthesis of large-pore mesoporous metal oxides with semierystalline frameworks [J]. Nature, 1998, 396:152-155
    [18] Che S, Garcia-Bennett A E, Yokoi T, et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure [J]. Nature Mater., 2003, 2:801-805
    [19] Yokoi T, Yoshitake H, Tatsumi T. Synthesis of anionic-surfactant-templated mesoporous silica using organoalkoxysilane-eontaining amino groups [J]. Chem. Mater., 2003, 15:4536-4538
    [20] Che S, Liu Z, Ohsuna T, et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature, 2004, 429:281-284
    [21] Wu X, Jin H, Liu Z., et al. Racemic helical mesoporous silica formation by achiral anionic surfactant [J]. Chem. Mater., 2006, 18:241-243
    [22] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114:10834-10843
    [23] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves [J].Science, 1995, 267:865-867
    [24] 徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004
    [25] Huo Q, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem. Mater., 1994, 6:1176-1191
    [26] Huo Q, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant inorganic composite materials [J]. Nature, 1994, 368:317-321
    [27] Tanev P T, Chibwe M, Pinnavaia T J, et al. Tianium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994, 368:321-323
    [28] Tanev P T, Pinnavaia T J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies [J]. Science, 1996, 271:1267-1269
    [29] Antonelli D M, Ying J Y. Synthesis and characterization of hexagonally packed mesoporous tantalum oxide molecular sieves [J]. Chem. Mater., 1996, 8:874-881
    [30] 邸岩.非离子半氟表面活性剂导向下新型介孔或超微孔材料的合成与表征[D].吉林:吉林大学,2006
    [31] Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications [J]. Chem. Mater., 1994, 6:2317-2326
    [32] Vartuli J C, Kresge C T, Leonowicz M E, et al. Synthesis of mesoporous materials:Liquid-crystal templating versus intercalation of layered silicates [J]. Chem. Mater., 1994, 6:2070-2077
    [33] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279:548-552
    [34] Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinum films from lyotropic liquid crystalline phase [J]. Science, 1997, 278:838-840
    [35] Firouzi A, Atef F, Oertli A G, et al. Alkaline lyotropic silicate-surfactant liquid crystals [J]. J.Am. Chem. Soc., 1997, 119:3596-3610
    [36] Huo Q, Leon R, Petroff P M, et al. Mesostructure design with Gemini surfactants: Supercage formation in a three-dimensional hexagonal array [J]. Science, 1995, 268:1324-1327
    [37] Chen C, Li H, Davis M E. Studies on mesoporons materials. Ⅰ. Synthesis and characterization of MCM-41 [J]. Microporous Mater., 1993, 2:17-26
    [38] Chen C, Burkett S L, Li H, et al. Studies on mesoporous materials. Ⅱ. Synthesis mechanism of MCM-41 [J]. Microporous Mater., 1993, 2:27-34
    [39] Monnier A, Schüth T F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science, 1993, 261: 1299-1303
    [40] Steel A, Carr S W, Anderson M W.~(14)N-NMR study of surfactant mesophases in the synthesis of mesoporous silicates [J]. Chem. Commun., 1994:1571-1572
    [41] Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science, 1995, 267:1138-1143
    [42] Frasch J, Zana R, Soulard M, et al. Fluorescence probing investigations of the mechanism of formation of organized mesoporous silica [J]. Langmuir, 1999, 15:2603-2606
    [43] Frasch J, Lebeau B, Soulard M, et al. In situ investigations on cetyltrimethylammonium surfactant/silicate systems, precursors of organized mesoporous MCM-41-type siliceous materials [J]. Langmuir, 2000, 16:9049-9057
    [44] Sakamoto Y H, Kaneda M, Terasaki O, et al. Direct imaging of the pores and cages of three-dimensional mesoporous materials [J]. Nature, 2000, 408:449-453
    [45] Liu X, Tian B, Yu C, et al. Room temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry [J]. Angew. Chem. Int.Ed., 2002, 41:3876-3878
    [46] Zhao D, Huo Q, Feng J, et al. Nonionie triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J].J. Am. Chem. Soc., 1998, 120:6024-6036
    [47] Finnefrock A C, Ulrich R, Chesne A D, et al. Metal oxide containing mesoporous silica with bicontinuous "plumber's nightmare" morphology from a block copolymer-hybrid mesophase [J]. Angew. Chem. Int. Ed., 2001, 40:1207-1211
    [48] Matos J R, Krik M, Mercuri L P, et al. Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time [J]. J. Am. Chem. Soc., 2003, 125:821-829
    [49] Fan J, Yu C, Gao F, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angew. Chem. Int. Ed., 2003, 42:3146-3150
    [50] Sakamoto Y, Diaz I, Terasaki O, et al. Three-dimensional cubic mesoporous structures of SBA-12 and related materials by electron crystallography [J]. J. Phys. Chem. B, 2002, 106:3118-3123
    [51] Zhao L, Zhu G, Zhang D, et al. Synthesis and structural identification of a highly ordered mesoporous organosilica with large cagelike pores [J]. J. Phys. Chem. B, 2005, 109:764-768
    [52] Kim S S, Pauly T R, Pinnavaia T J. Non-ionic surfactant assembly of wormhole silica molecular sieves from water soluble silicates [J]. Chem. Commun., 2000:835-836
    [53] Liu Y, Karkamkar A, Pinnavaia T J. Redirecting the assembly of hexagonal MCM-41 into MCM-48 from sodium silicate without the use of an organic structure modifier [J]. Chem. Commun., 2001: 1822-1823
    [54] Kim J M, Sakamoto Y, Hwang Y K, et al. Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers [J]. J. Phys. Chem. B, 2002, 106:2552-2558
    [55] Song Y, Qiao W, Yoon S, H, et al. Toluene adsorption on various activated carbons with different pore structures [J]. New Carbon Materials, 2005, 20:294-298
    [56] 赵江红,刘振宇.载体炭对CuO/AC(F)催化-吸附剂干法催化氧化苯酚的影响[J].新型炭材料,2005,20:115-121
    [57] Yuan R, Zheng J, Guan R, et al. Immobilization of TiO2 on microporous activated carbon fibers and their photodegradation performance for phenol [J]. New Carbon Materials, 2005, 20:45-50
    [58] 詹亮,张睿,王艳莉,等.Pd在超级活性炭上的负载对其储氢性能的影响[J].新型炭材料,2005,20:33-38
    [59] 朱春野,曹高萍.纳米门炭及纳米门电容器[J].新型炭材料,2005,20:380-381
    [60] 周鹏伟,李宝华,康飞宇,等.椰壳活性炭基超级电容器的研究与开发[J].新型炭材料, 2006.21:125-131
    [61] Lu A, Smatt J H, Lindén M, et al. Synthesis of carbon monoliths with a multi-modal pore system by a one step impregnation technique [J]. New Carbon Materials, 2003, 18:265-270
    [62] 解强,张香兰,李兰廷,等.活性炭孔结构调节:理论、方法与实践[J].新型炭材料,2005,20:183-190
    [63] Qiao W, Song Y, Yoon S, et al. Modification of commercial activated carbon through gasification by impregnated metal salts to develop mesoporous structures [J]. New Carbon Materials, 2005, 2:198-204
    [64] Sun X, Zha Q, Guo Y, et al. Structure modification of ultra activated carbon from petroleum coke [J]. New Carbon Materials, 2005, 20:240-244
    [65] Ryoo R, Joo S H, Jun S J. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys. Chem. B, 1999, 103:7743-7746
    [66] 李青,曾昌凤,张利雄,等.模板法制备丰富中孔炭材料的研究进展[J].化工进展,2003,22:1269-1273
    [67] Fuertes A B, Nevskaia D M. Control of mesoporous structure of carbon synthesized using a mesostructured silica as template [J]. Micropor. Mesopor. Mater., 2003, 62:177-190
    [68] 沈曾民.新型碳材料[M].北京:化学工业出版社,2003
    [69] Zhang W H, Liang C, Sun H, et al. Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition [J]. Adv. Mater., 2002, 14:1776-1778
    [70] 日本炭素材料学会编.新·炭素材料入口[M].日本炭素材料学会编.中国金属学会炭素材料专业委员会编译,1999
    [71] 杨骏兵.酚醛树脂基球形活性炭的制备、结构及性能[D].山西:中国科学院山西煤化研究所,1999
    [72] Barata-Rodringues P M. Development and studies of templated porous carbon [D]. England: University of Cambridge, 2002
    [73] 曹明礼,曹明贺.非金属纳米矿物材料[M].北京:化学工业出版社,2006
    [74] 章小鸽.硅及其氧化物的电化学-表面反应、结构和微加工[M].北京:化学工业出版社,2004
    [75] Kaneda M, Tsubakiyama T, Carlsson A, et al. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography [J]. J. Phy. Chem. B, 2002, 106:1256-1266
    [76] Kruk M, Jaroniec M, Ryoo R, et al. Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure [J]. Chem. Mater., 2000, 12:1414-1421
    [77] Yoon S B, Kim J Y, Yu J S. Synthesis of highly ordered nanoporons cabon molecular sieves from silylated MCM-48 using divinylbenzene as precursor [J]. Chem. Commun., 2001:559-560
    [78] Yoon S B, Kim J Y, Yu J S. A direct template synthesis of nanoporons carbons with high mechanical stability using as-synthesized MCM-48 hosts [J]. Chem. Commun., 2002:1536-1537
    [79] Ryoo R, Joo S H, Kruk M. Ordered mesoporous carbons [J]. Adv. Mater., 2001, 13:677-681
    [80] Kruk M, Jaroniec M, Kim T W, et al. Synthesis and characterization of hexagonally ordered carbon nanopipes [J]. Chem. Mater., 2003, 15:2815-2823
    [81] Lu A, Li W, Schmidt W, et al. Easy synthesis of an ordered mesoporous carbon with a hexagonally packed tubular structure [J]. Carbon, 2004,.42:2939-2948
    [82] Shin H J, Ryoo R, Kruk M, et al. Modification of SBA-15 pore connectivity by high-temperature ynthesized investigated by carbon inverse replication [J]. Chem. Commun., 2001: 349-350
    [83] Wu G G, Bein T. Conducting carbon wires in ordered nanometer-sized channels [J]. Science,1994, 266:1013-1014
    [84] Lee J, Yoon S, Oh S M, et al. Development of a new mesoporous carbon using an HMS aluminosilicate template [J]. Adv. Mater., 2000, 12:359-362
    [85] Sevilla M, Alvarez S, Fuertes A B. Synthesis and characterization of mesoporous carbons of large textural porosity and tunable pore size by templating mesostructured HMS silica materials [J]. Micropor. Mesopor. Mater., 2004, 74:49-58
    [86] Kim S S, Pinnavaia T J. A low cost route to hexagonal mesostructured carbon molecular sieves [J]. Chem. Commun., 2001: 2418-2419
    [87] Wang T, Liu X, Zhao D, et al. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon [J]. Chemical Physics Letters,2004, 389:327-331
    [88] Lee J S, Joo S H, Ryoo R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters [J]. J. Am.Chem. Soc., 2002, 124:1156-1157
    [89] Parmentier J, Saadhallah S, Reda M, et al. New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes[J]. J. Phys. Chem. Solids, 2004, 65:139-146
    [90] Vix-Guterl C, Saadhallah S, Jurewicz K, et al. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure [J]. Mat. Sci. Eng. B, 2004, 108:148-155
    [91] Fuertes A B, Alvarez S. Graphitic mesoporous carbon synthesized through mesostructured silica templates [J]. Carbon, 2004, 42:3049-3055
    [92] Kim J, Lee J, Hyeon T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites [J]. Carbon, 2004, 42:2711-2719
    [93] Pang J, Hu Q, Wu Z, et al. Direct synthesis of unimodal and bimodal nanoporous carbon [J]. Micropor. Mesopor. Mater., 2004, 74:73-78
    [94] Han S, Kim M, Hyeon T, et al. Direct fabrication of mesoporous carbons using in-situ polymerized silica gel networks as a template [J]. Carbon, 2003, 41:1525-1532
    [95] 侯朝辉,李新海,刘恩辉,等.同步合成模板炭化法制备双电层电容器电极用中孔炭材料的研究[J].新型炭材料,2004,19:11-15
    [96] Li L, Song H, Chen X. Ordered mesoporous carbons from the carbonization of sulfuric-acid-treated silica/triblock copolymer/sucrose composites [J]. Micropor. Mesopor.Mater., 2006, 94:9-14
    [97] Tanaka S, Nishiyama N, Egashira Y, et al. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite [J]. Chem. Commun., 2005:2125-2127
    [98] Meng Y, Gu D, Zhang F, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation [J]. Angew. Chem.Int. Ed., 2005, 44:2-8
    [99] Liang C, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction [J]. J. Am. Chem. Soc., 2006, 128:5316-5317
    [100] Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage [J]. J. Electrochem. Soc., 1991, 138:1539-1548
    [101] 侯朝辉.高比表面积中孔炭材料的制备及其双电层电容性能研究[D].长沙:中南大学,2004
    [102] 杨娇萍.超级电容器用多孔活性炭材料的研究[D].北京:北京化工大学,2005
    [103] Yoshida A. Surface technology for electric double-layer capacitors [J]. J. Jpn. Surf. Technol.,1997, 48:1163-1168
    [104] Nishino A. Capacitor: operating principles, current market and technical trends [J]. J. Power Sources, 1996, 60:137-147
    [105] 张娜,张宏宝.电化学超级电容器研究进展[J].电池,2003,33:330-332
    [106] Yoon S, Lee J, Hyeon T, et al. Electric double-layer capacitor performance of a new mesoporous carbon [J]. J. Electrochem. Soc., 2000, 147:2507-2512
    [107] Zhou H, Zhu S, Hibino M, et al. Electrochemical capacitance of self-ordered mesoporous carbon [J]. J. Power Sources, 2003, 122:219-223
    [108] Trasatti S, Buzzanca G, Ruthenium dioxide: a new interesting electrode material, solid state structure and electrochemical behavior [J]. J. Electroanal. Chem., 1971, 29:1-5
    [109] Arbizzani C, Catellani M, Mastragostino M, et al. N-and P-doped polydithieno[3,4-B:3'4'-D] thiophene: a narrow band gap polymer for redox supercapacitors [J]. Electrochim. Acta, 1995,40:1871-1876
    [110] Lee J, Yoon S, Hyeon T. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J]. Chem. Comm., 1999:2177-2178
    [111] Vix-Guterl C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials [J]. Carbon, 2005, 43:1293-1302
    [112] Wang Y, Li H, Xia Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance [J]. Adv. Mater., 2006, 18:2619-2623
    [113] Joo S H, Chol S J, Oh L, et al. Ordered nanoporous arrays of carbon supporting high dispersion of platinum nanoparties [J]. Nature, 2001, 412:169-172
    [114] Minchev C, Huwe H, Tsoncheva T, et al. Iron oxide modified mesoporous carbons: Physicochemical and catalytic study [J]. Micropor. Mesopor. Mater., 2005, 81:333-341
    [115] Kim J Y, Yoon S B, Yu J S. Template synthesis of a new mesostructured silica from highly ordered mesoporous carbon molecular sieves [J]. Chem. Mater., 2003, 15:1932-1934
    [116] Yang Z, Xia Y, Mokaya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template [J]. Adv. Mater., 2004, 16:727-732
    [117] Dong A, Ren N, Tang Y, et al. General synthesis of mesoporous spheres of metal oxides and phosphates [J]. J. Am. Chem. Soc., 2003, 125:4976-4977
    [118] Kruk M, Jaroniec M, Joo S H, et al. Characterization of regular and plugged SBA-15 silicas by using adsorption and inverse carbon replication and explanation of the plug formation mechanism [J]. J. Phy. Chem. B, 2003, 107:2205-2213
    [119] Zhou H, Zhu S, Honma I, et al. Methane gas storage in self-ordered mesoporous carbon (CMK-3) [J]. Chemical Physics Letters, 2004, 396:252-255
    [120] Xing W, Bai P, Li Z, et al. Synthesis of ordered mesoporous carbon and its application in Li-ion battery [J]. Electrochim. Acta, 2006, 51: 4626-4633
    [121] Fang B, Zhou H, Honma I. Ordered porous carbon with tailored pore size for electrochemical hydrogen storage application [J]. J. Phys. Chem. B, 2006, 110:4875-4880
    [1] Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy [J]. J. Mater.Chem., 2005, 15:1217-1231
    [2] Kim J, Lee J, Hyeon T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites [J]. Carbon, 2004, 42:2711-2719
    [3] 徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004
    [4] 梁长海.炭气凝胶及其研究进展[J].材料科学与工程,1998,16:13-18
    [5] 秦国彤,门薇薇,魏微,等.气凝胶研究进展[J].材料科学与工程学报,2005,23:293-296
    [6] 阳范文,唐建斌.导电聚苯胺的微乳液聚合[J].桂林工学院学报,2000,3:264-266
    [7] 沙兆林,苏广均,施磊,等.导电聚苯胺的合成[J].南通工学院学报,2000,16:25-27
    [8] Macdiarmid A G, Chiang J C, Richter A F, et al. Polyaniline: a new concept in conducting polymers [J]. Synth. Met., 1987, 18:285-290
    [9] 邱道益。X射线衍射仪技术[M].成都:四川科学技术出版社,1994
    [10] Gai P L, Calvino J J. Electron microscopy in the catalysis of alkane oxidation, environmental control, and alternative energy sources [J]. Annu. Rev. Mater. Res., 2005, 35:465-504
    [11] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279:548-552
    [12] 刘贵阳.以非金属多孔矿物为模板所制备炭的表征及在EDLC中的应用研究[D].北京:清华大学.2005
    [13] Hu Z H, Srinvasan M, Ni Y M. Preparation of mesoporous high-surface-area activated carbon [J]. Adv. Mater., 2000, 12:62-65
    [14] 陆安慧,Smatt J H,Lindén M,et aL.一步浸渍合成具有多重孔隙的铸型炭体[J].新型炭材料,2003,18:265-270
    [15] Stoeckli F, Centeno T A. On the characterization of microporous carbons by immersion calorimetry alone [J]. Carbon, 1997, 35:1097-1100
    [16] Graef M D. Introduction to conventional Transmission Electron Microscopy [M]. Cambridge: Cambridge Press, 2003
    [1] Yoon S B, Kim J Y, Yu J S. A direct template synthesis of nanoporous carbons with high mechanical stability using as-synthesized MCM-48 hosts [J]. Chem. Commun., 2002:1536-1537
    [2] Kim J, Lee J, Hyeon T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica-triblock copolymer nanocomposites [J]. Carbon, 2004,42:2711-2719
    [3] Zhu S, Zhou H, Hibino M, et al. Characterization of the dependence on temperature of the formation of carbon film on the internal surfaces of SBA-15 silica [J]. Mater. Chem. Phys.,2004, 88:202-206
    [4] Moriguchi I, Koga Y, Matsukura R, et al. Novel synthesis of polymer and carbonaceous nanomaterials via a micelle/silicate nanostructured precursor [J]. Chem. Commun., 2002:1844-1845
    [5] Lee J, Kim J, Lee Y, et al. Simple synthesis of uniform mesoporous carbons with diverse structures from mesostructured polymer/silica nanocomposites [J]. Chem. Mater., 2004, 16:3323-3330
    [6] Lin H, Chang-Chien C Y, Tang C, et al. Synthesis of p6mm hexagonal mesoporous carbons and silicas using pulronic F127-PF resin polymer blends [J]. Micropor. Mesopor. Mater., 2006, 93:344-348
    [7] Liu X, Chang F, Xu L, et al. Preparation of ordered carbon/silica hybrid mesoporous materials with specific pore size expansion [J]. Micropor. Mesopor. Mater., 2005, 79:269-273
    [8] Liu X, Chang F, Xu L, et al. Synthesis and characterization of a new nanoporous carbon material with a bimodal pore system [J]. Carbon, 2006, 44:184-187
    [9] Yu J S, Yoon S B, Chai G S. Ordered uniform porous carbon by carbonization of sugars [J].Carbon, 2001, 39:1442-1446
    [10] Spatz J P, Roescher A, Sheiko S, et al. Noble metal loaded block ionomers: micelle organization, adsorption of free chains and formation of thin films [J]. Adv. Mater., 1995, 7:731-735
    [11] Kuo S W, Lin C L, Chang F C. Phase behavior and hydrogen bonding in ternary polymer blends of phenolic resin/poly(ethylene oxide)/poly(ε-caprolactone) [J]. Macromolecules, 2002,35:278-285
    [12] Galarnean A, Cambon H, Renzo F D, et al. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis [J]. New J. Chem.,2003, 27:73-79
    [13] Kruk M, Jaroniec M, Ko C H. Characterization of the porous structure of SBA-15 [J]. Chem.Mater., 2000, 12:1961-1968
    [14] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279:548-552
    [15] 张震东.非离子表面活性剂导向下新型多孔分子筛材料的合成与表征[D].上海:复旦大学,2004
    [16] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269:1242-1244
    [17] Fan J, Yu C, Lei J, et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores [J]. J. Am. Chem. Soc., 2005, 127:10794-10795
    [18] Fuertes A B. Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials [J]. Micropor. Mesopor. Mater., 2004, 67:273-281
    [19] 李青.新型有序中孔炭分子筛的制备[D].南京:南京工业大学,2004
    [20] Su F, Zhao X S, Wang Y, et al. Hollow carbon spheres with a controllable shell structure [J]. J. Mater. Chem., 2006, 16:4413-4419
    [21] Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chem. Mater., 2001, 13:3169-3183
    [22] Ohkubo T, Miyawaki J, Kaneko K, et al. Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane--experiment and GCMC simulation [J]. J. Phys. Chem. B, 2002, 106:6523-6528
    [23] Fuertes A B, Nevskaia D M. Control of mesoporous structure of carbons synthesized using a mesostructured silica as template [J]. Micropor. Mesopor. Mater, 2003, 62:177-190
    [24] Yang C, Weidenthaler C, Spliethoff B. Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor [J]. Chem. Mater., 2005, 17:355-358
    [25] Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J].J. Am. Chem. Soc., 1998, 120:6024-6036
    [26] Kresege C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves [J]. Nature, 1992, 359:710-712
    [27] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J. Am. Chem. Soc., 2000, 122:10712-10713
    [28] Alba M D, Luan Z, Klinowski J. Titanosilicate mesoporous molecular sieve MCM-41: synthesis and characterization [J]. J. Phys. Chem., 1996, 100:2178-2182
    [29] Kim S S, Pinnavaia T J. A low cost route to hexagonal mesostructured carbon molecular sieve [J]. Chem. Commun., 2001: 2418-2419
    [30] Pang L S K, Saxby J D, Chatfield S P. Thermogravimetric analysis of carbon nanotubes and nanoparticles [J]. J. Phys. Chem., 1993, 97:6941-6942
    [31] Dillon A C, Gennett T, Jones K M, et al. A simple and complete purification of single-walled carbon nanotube materials [J]. Adv. Mater., 1999, 11:1354-1358
    [1] Tanaka S, Nishiyama N, Egashira Y, et al. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite [J]. Chem. Commun., 2005:2125-2127
    [2] Meng Y, Gu D, Zhang F, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation [J]. Angew. Chem. Int. Ed., 2005, 44:2-8
    [3] Meng Y, Gu D, Zhang F, et al. [J]. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly [J]. Chem. Mater., 2006, 18:4447-4464
    [4] Zhang F, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure [J]. J. Am. Chem.Soc., 2005, 127:13508-13509
    [5] Zhang F, Meng Y, Gu D, et al. An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology [J]. Chem. Mater., 2006, 18:5279-5288
    [6] Brinker C J, Lu Y F, Sellinger A, et al. Evaporation-induced self-assembly: nanostructures made easy [J]. Adv. Mater., 1999, 11:579-585
    [7] Soler-Illia G, Crepaldi E L, Grosso D, et al. Block copolymer-templated mesoporous oxides [J]. Curr. Opin. Colloid Interface Sci., 2003, 8:109-127
    [8] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114:10834-10843
    [9] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279:548-552
    [10] Liang C, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction [J]. J. Am. Chem. Soc., 2006, 128:5316-5317
    [11] Chu P P, Wu H D. Solid state NMR studies of hydrogen bonding network formation of novolac type phenolic resin and poly(ethylene oxide) blend [J]. Polymer, 2000, 41:101-109
    [12] Kosonen H, Ruokolainen J, Torkkeli M, et al. Micro- and macrophase separation in phenolic resol resin/PEO-PPO-PEO block copolymer blends: effect of hydrogen-bonded PEO length [J]. Macromol. Chem. Phys., 2002, 203:388-392
    [13] Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc., 1998,120:6024-6036
    [14] Matos J R, Kruk M, Mercuri L P, et al. Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time [J]. J. Am. Chem. Soc., 2003, 125:821-829
    [15] 张震东.非离子表面活性剂导向下新型多孔分子筛材料的合成与表征[D].上海:复旦大学,2004
    [16] Tiemann M, Froba M, Rapp G, et al. Nonaqueous synthesis of mesostructured aluminophosphate/surfactant composites: synthesis, characterization, and in-situ SAXS studies [J]. Chem. Mater., 2000, 12:1342-1348
    [1] 王爱平,康飞宇,郭占成,等.铸型炭化法制备多孔炭材料的研究进展[J].化工进展,2006.25:254-258
    [2] Conway B E. Electrochemical supercapacitors: scientific fundamentals and technological applications [M]. New York: Kluwer Academic/Plenum; 1999
    [3] Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon, 2001, 39:937-950
    [4] Ryoo R, Joo S H, Jun S J. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys. Chem. B, 1999, 103:7743-7746
    [5] Fuertes A B, Lota G, Centeno T A, et al. Templated mesoporous carbons for supercapacitor application [J]. Electrochim. Acta, 2005, 50:2799-2805
    [6] Vix-Guterl C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials [J]. Carbon, 2005, 43:1293-1302
    [7] Fuertes A B, Pico F, Rojo J M. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons [J]. J. Power Sources, 2004, 133:329-336
    [8] Gryglewicz G, Machnikowski J, Lorenc-Grabowska E, et al. Effect of pore size distribution of coal-based activated carbons on double layer capacitance [J]. Electrochim. Acta, 2005, 50:1197-1206
    [9] Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage [J]. J. Electrochem. Soc., 1991, 138:1539-1548
    [10] Lin C, Ritter J A, Popov B N. Correlation of the double-layer capacitance with the pore structure of sol-gel derived carbon xerogels [J]. J. Electrochem. Soc., 1999, 146:3639-3643
    [11] Tamai H, Kouzu M, Morita M, et al. Highly mesoporous carbon electrodes for electric double-layer capacitors [J]. Electrochem. Solid-State Lett., 2003, 6:A214-A217
    [12] Alvarez S, Blanco-Lopez M C, Miranda-Ordieres A J, et al. Electrochemical capacitor performance of mesoporous carbons obtained by templating technique [J]. Carbon, 2005, 43:866-870
    [13] 左晓希,李伟善.超级电容器用活性炭电极的制备及电化学性能研究[J].华南师范大学学报,2005,1:77-81
    [14] 王晓峰,王大志,梁吉,等.碳基电化学双层电容器的研制[J].电源技术,2002,26:225-227
    [15] Li J, Wang X, Huang Q, et al. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor [J]. J. Power Sources, 2006, 158:784-788
    [16] Lewandowski A, Zajder M, Frackowiak E, et al. Supercapacitor based on activated carbon and polyethylene oxide-KOH-H_2O polymer electrolyte [J]. Electrochim. Acta, 2001, 46:2777-2780
    [17] Lufrano F, Staiti P, Minutoli M. Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy [J]. J. Power Sources, 2003, 124:314-320
    [1] 张丹丹,姚宗干.大容量高储能密度电化学电容器的研究进展[J].电子原件与材料,2000,19:34-37
    [2] Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors [J]. Carbon, 2005, 43:1303-1310
    [3] Lee J, Yoon S, Oh S M, et al. Development of a new mesoporous carbon using an HMS aluminosilicate template [J]. Adv. Mater., 2000, 12, 359-362
    [4] Liu H Y, Wang K P, Teng H. A simplified preparation of mesoporous carbon and the examination of the carbon accessiblility for electric double layer formation [J]. Carbon, 2005,43:559-566
    [5] Arbizzani C, Catellani M, Mastragostino M, et al. N- and P-doped polydithieno[3,4-B:3'4'-D] thiophene: a narrow band gap polymer for redox supercapacitors [J]. Electrochim. Acta, 1995,40:1871-1876
    [6] Frackowiak E, Khomenko V, Jurewicz K, et al. Supercapacitors based on conducting polymers/nanotubes composites [J]. J. Power Sources, 2006, 153:413-418
    [7] Sarangapani S, Tilak B V, Chen C P. Materials for electrochemical capacitors—theoretical and experimental constraints [J]. J. Electrochem. Soc., 1996, 143:3791-3799
    [8] Rajendra Prasad K, Munichandraiah N. Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance polyaniline coated, stainless-steel electrodes [J]. J. Power Sources, 2002, 112:443.451
    [9] Chen W, Wen T. Electrochemical and capacitive properties of polyaniline-implated porous carbon electrode for supercapacitors [J]. J. Power Sources, 2003, 117:273-282
    [10] Wu M, Snook G A, Gupta V, et al. Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline [J]. J. Mater. Chem., 2005, 15:2297-2303
    [11] Jang J, Bae J, Choi M, et al. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor [J]. Carbon, 2005, 43:2730-2736
    [12] Wang Y, Li H, Xia Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance [J]. Adv. Mater., 2006,18:2619-2623
    [13] Trchovq M, Stejskal J, Proks J. Infrared spectroscopic study of solid-state protonation and oxidation of polyaniline [J]. Synth. Met., 1999, 101: 840-841
    [14] Segal E, Aviel O, Narkis M. Polymerization of anilinium/DBSA in the presence of clay particles: Catalysis and encapsulation [J]. Polymer Engineering & Science, 2004, 40:1915-1920
    [15] 邹勇,刘吉平.聚苯胺纳米管的制备及其导电性研究[J].北京理工大学学报,2005,25:454-457
    [16] Kim B H, Jung J H, Hong S H, et al. Nanocomposite of polyaniline and Na~+-montmorillonite clay [J]. Macromolecules, 2002, 35:1419-1423
    [17] Lee D, Lee S H, Char K, et al. Expansion distribution of basal spacing of the silicate layers in polyaniline/Na~+ -montmorillonite nanocomposites monitored with X-ray diffraction [J]. Macromol. Rapid Commun., 2000, 21: 1136-1139
    [18] Lee D, Char K, Lee S W, et al. Structural changes of polyaniline/montmorillonite nanocomposites and their effects on physical properties [J]. J. Mater. Chem., 2003, 13:2942-2947
    [19] 罗根祥,刘春生,秦永航,等.分子筛孔道内聚苯胺的微波合成[J].石油化工高等学校学报.2000.13:5-8
    [20] Su F, Zhao X S, Wang Y, et al. Bridging mesoporous carbon particles with carbon nanotubes [J]. Micropor. Mesopor. Mater., 2007, 98:323-329
    [21] 吴伯荣,田艳红,马志新,等.乙炔黑吸附聚合法制备聚苯胺的研究[J].高分子材料科学与工程,1996,12:41-44
    [22] 井新利,赵卫兵,郑茂盛.掺杂态聚苯胺的性能研究[J].石化技术与应用,2001,19:225-228
    [23] Benito A M, Maser W K, Martínez M T. Carbon nanotubes: from production to functional composites [J]. Int. J. Nanotechnology, 2005, 2:71-89
    [24] Paul R K, Vijayanathan V, Pillai C K. Melt/solution processable conducting polyaniline: doping studies with a novel phosphoric acid ester [J]. Synth. Met., 1999, 104:189-195
    [25] 任斌,黄河,刘少琼,等.原位聚合法制备聚苯胺/聚乙烯醇导电材料的研究[J].华南师范大学学报,2003,2:58-61
    [26] 丛文博,张宝宏,喻应霞.聚苯胺修饰碳电极电容性能研究[J].哈尔滨工程大学学报,2004,25:809-813
    [27] Mondal S K, Barai K, Munichandraiah N. High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate [J]. Electrochim. Acta, 2007, 52:3258-3264
    [28] Gupta V, Miura N. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites [J]. J. Power Sources, 2006, 157:616-620
    [29] 张庆武,周啸.聚苯胺混杂型电化学电容器研究[J].电子元件与材料,2005,24:35-40
    [30] Park J H, Park O O. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes [J]. J. Power Sources, 2002, 111: 185-190
    [31] Innis P C, Mazurkiewicz J, Nguyen T, et al. Enhanced electrochemical stability of polyaniline in ionic liquids [J]. Current Appl. Phys., 2004, 4:389-393
    [1] Saito Y. Nanoparticles and filled nanocapsules [J]. Carbon, 1995, 33:979-988
    [2] Qiu J, Li Y, Wang Y. Preparation of carbon-coated magnetic iron nanoparticles from composite rods made from coal and iron powders [J]. Fuel Process. Technol., 2004, 86:267-274
    [3] Zhan S, Zhang Z, Yu G. Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor [J]. Carbon, 2003, 41: 247-251
    [4] 陈学刚,宋怀河,陈晓红.纳米Fe/C复合材料的原位合成[J].材料研究学报,2002,16:46-50
    [5] Song H, Chen X. Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene [J]. Chem. Phys. Lett., 2003, 374:400-404
    [6] Huo J, Song H, Chen X. Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene [J]. Carbon, 2004, 42:3177-3182
    [7] Wang Z H, Zhang Z D, Choi C J. Strucutre and magnetic properties of Fe Ⅰ and Co Ⅰ nanocapsules prepared by chemical vapor condensation [J]. J. Alloy. Compd., 2003, 361:289-293
    [8] Ryoo R, Joo S H, Jun S J. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys. Chem. B, 1999, 103:7743-7746
    [9] Lee J, Jin S, Hwang Y, et al. Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods [J]. Carbon, 2005, 43:2536-2543
    [10] Park I S, Choi M, Kim T K, et al. Synthesis of magnetically separable ordered mesoporous carbons using furfuryl alcohol and cobalt nitrate in a silica template [J]. J. Mater. Chem., 2006,3409-3416
    [11] Celik o, Dag o. A new lyotropic liquid crystalline system: oligo(ethylene oxide) surfactants with [M(H_2O)_n]X_m transition metal complexes [J], Angew. Chem. Int. Ed., 2001, 40:3799-3803
    [12] Lingaiah N, Uddin M A, Muto A. Vapour phase catalytic hydrodechlorination of chlorobenzene over Ni-carbon composite catalysts [J]. J. Mol. Catal. A: Chem., 2000, 161: 157-162
    [13] Gong W, Li H, Zhao Z. Ultrafine particles of Fe, Co and Ni ferromagnetic metals [J]. J. Appl. Phys., 1991, 69:5119-5121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700