MCM-41负载芳基肟钯催化剂的制备与催化Suzuki芳基偶联反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳基卤代烃与苯基硼酸的Suzuki偶联反应是构建联苯单元的重要方法,已在发光材料制备、药物合成等方面得到了应用。均相Suzuki偶联反应催化剂尽管反应活性高,但在反应完成后,难于回收和循环使用,并可能对产品产生污染,制备高活性、可循环使用的固载型钯催化剂,对Suzuki偶联反应的应用非常重要。
     采用硅烷偶联剂γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)修饰MCM-41表面的方法,合成了MCM-41@KH56表面富含环氧官能团载体,再将活性组分4-羟基苯乙酮环肟钯与MCM-41@KH560表面的端位环氧基团反应,制备出MCM-41负载4-羟基苯乙酮肟环钯催化剂;将4-羟基-3-甲氧基-苯乙酮肟与MCM-41@KH560表面的端位环氧基团作用,再通过负载钯制备出MCM-41负载4-羟基-3-甲氧基-苯乙酮肟环钯催化剂。
     采用热重TG、傅立叶红外FT-IR、扫描电镜SEM、N_2物理吸附BET、电感耦合等离子体原子发射光谱ICP-AES等分析表征方法,对制备的负载型钯配体催化剂制备过程的结构特征和热学稳定性能进行了表征。证实了合成的钯配体催化剂是通过化学接枝的方法固载到MCM-41分子筛表面,同时保留了分子筛的部分孔结构特征,测得了钯负载量。
     选择了不同取代基的芳基卤代烃与苯硼酸,对制备的催化剂催化Suzuki偶联反应进行了研究,并对溶剂体系、碱以及催化剂用量等反应参数进行了优化,确定了最适宜的Suzuki偶联反应的催化反应体系,考察了负载型钯配体催化剂循环使用情况。实验结果表明,MCM-41负载肟环钯催化剂具有很好的催化活性,MCM-41负载4-羟基苯乙酮肟环钯催化剂的最佳催化体系是碳酸钾为碱,异丙醇-水(5:1)为溶剂,反应温度40℃。在最佳的体系中可有效催化芳基溴苯与苯硼酸的Suzuki偶联反应。
Suzuki coupling reaction which aryl halogenated react with phenyl boronic acid is an important method to construct biphenyl unit, has been used to prepare the light-emitting materials, drug synthesis and other aspects. Although homogeneous catalysts have high activity in Suzuki coupling reaction, but it is very difficult to recovery or recycles after the reaction over, at the same time, product may be contaminated from catalyst .So, preparing highly active, reusable and immobilized palladium catalyst is mainly topic in Suzuki coupling reaction.
     MCM-41 loading 4-hydroxyacetophonene oxime cyclopalladium catalyst is prepared by the method of modifying MCM-41 surface with KH560 reagent. The catalysts are characterized by Thermo gravimetric Analysis (TG), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), N_2 Absorp- tion (BET), inductively coupled plasma Atomic Emission Spectrometry (AES-ICP). These analysis methods shows that the synthesized MCM-41 covering oxime ligand cyclopalladium catalyst is joined chemical grafting immobilization into the surface of MCM-41, while retaining some of the molecular sieve pore structure characteristics, at same time, the prepared catalyst had been measured the amount of palladium.
     For studying the catalysts activity, different subsistent aryl halogenated are selected as the substrate with phenylboronic acid in Suzuki coupling reaction. The effects of solvents, bases and the amount of catalyst are tested as the mainly parameters. For the MCM-41 loading 4-hydroxyacetophonene oxime cyclopalladium catalyst, Suzuki coupling reaction condition were optimized to determine the most appropriate reaction system, the results shows that K_2CO_3 is the most appropriate base,ethanol-H_2O(5:1) is the most appropriate solvent and 40℃is the most appropriate temperature.
引文
[1] Tsuji J.Transition Metal Reagents and Catalysts [M]. 2000.
    [2] Nicolaou K C, Bulger P G, Sarlah D. Palladium-Catalyzed Cross-coupling Reactions in Total Synthesis[J]. Angewandte Chemie-International Edition, 2005. 44(29): 4442-4489.
    [3] Lamblin M, Hierso J C, Fouquet E. Recyclable Heterogeneous Palladium Catalysts in Pure Water: Sustainable Developments in Suzuki, Heck, Sonogashira and Tsuji-Trost Reactions [J]. Advanced Synthesis & Catalysis, 2010. 352(1): 33-79.
    [4] Milstein D, Stille J K. A General, Selective, and Facile Method for Ketone Synthesis from Acid Chlorides and Organotin Compounds Catalyzed by Palladium [J]. Journal of the American Chemical Society, 1978. 100(11): 3636-3638.
    [5] King A O, Okukado N, Negishi E I. Highly General Stereo-selective, Regio- selective Synthesis of Terminal and Internal Conjugated Enynes by Pd- Catalysted Reaction of Alkynylzinc Reagents with Alkenyl Halides[J]. Journal of the Chemical Society-Chemical Communications, 1977.19: 683-684.
    [6] Negishi E, Hu Q, Wang G W. Palladium-catalyzed Alkenylation by the Negishi Coupling[J]. Aldrichimica Act, 2005. 38(3): 71-88.
    [7] Hatanaka Y, Hiyama T. Cross-coupling of Organosilanes with Organic Halides Mediated by Palladium Catalyst and Tris(diethylamino)sulfonium Difluoro- trimethylsilicate[J]. Journal of Organic Chemistry, 1988.53(4):918-920.
    [8] Tamao K, Sumitani K, Kumada M. Selective Carbon-carbon Bond Formation by Cross-coupling of Grignard Reagents with Organic Halides. Catalysis by Nickel- phosphine Complexes[J]. Journal of the American Chemical Society, 1972.94(12): 4374-4376.
    [9] Corriu R J P, Masse J P. Activation of Grignard Reagents by Transition-metal Complexes:A New and Simple Synthesis of Trans-stilbenes and Polyphenyls[J]. Journal of the Chemical Society, Chemical Communications, 1972(3):144a-144a.
    [10] Mizoroki T, Mori K, Ozaki A. Arylation of Olefin with Aryliodide Catalyzed by Palladium[J]. Bulletin of the Chemical Society of Japan, 1971. 44(2): 581.
    [11] Heck R F, Nolley J P. Palladium-catalyzed Vinylic Hydrogen Substitution Reactionswith aryl, benzyl, and styryl halides[J]. The Journal of Organic Chemistry, 1972. 37(14): 2320-2322.
    [12] Miyaura N, Yamada K, Suzuki A. New Stereospecific Cross-coupling by the Palladium-catalyzed Reaction of 1-Alkenylboranes with 1-alkenyl or 1-Alkynyl Halides[J]. Tetrahedron Letters, 1979. 20(36): 3437-3440.
    [13] Miyaura N, Yanagi T, Suzuki A. The Palladium-catalyzed Cross-coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases[J]. Synthetic Communications, 1981. 11(7): 513-519.
    [14] Davis J, Hanyu Y. Mechanistic Studies of AFM Probe-driven Suzuki and Heck Molecular coupling[J]. Nanotechnology, 2010. 21(26): 9.
    [15] Espinet P. On the Configuration Resulting from Oxidative Addition of RX to Pd(PPh3)4 and the Mechanism of the Cis-to-trans Isomerization of [PdRX(PPh3)2] [J]. Organometallics, 1998.17(5): 954-959.
    [16] Ridgway B H, Woerpel K A. Transmetalation of Alkylboranes to Palladium in the Suzuki Coupling Reaction Proceeds with Retention of Stereochemistry[J]. The Journal of Organic Chemistry, 1998. 63(3): 458-460.
    [17] Smith G B, Dezeny G C, King A O, et al. Mechanistic Studies of the Suzuki Cross-Coupling Reaction[J]. The Journal of Organic Chemistry, 1994.59(26): 151- 8156.
    [18] Bellina F, Carpita A, Rossi R. Palladium Catalysts for the Suzuki Cross-coupling Reaction: An overview of Recent Advances [J]. Synthesis-Stuttgart, 2004(15): 419- 2440.
    [19] Zhang W, Chen C H, Lu Y, et al. A Highly Efficient Microwave-Assisted Suzuki Coupling Reaction of Aryl Perfluorooctylsulfonates with Boronic Acids[J]. Organic Letters, 2004. 6(9): 1473-1476.
    [20] Nguyen H N, Huang X, Buchwald S L, et al. The First General Palladium Catalyst for the Suzuki-Miyaura and Carbonyl Enolate Coupling of Aryl Arenesulfonates[J]. Journal of the American Chemical Society, 2003.125(39):11818-11819.
    [21]卢刚. Pd/C催化、四芳基硼盐参与的Suzuki反应及其在药物合成中的应用[C]. 2005,沈阳药科大学.
    [22] LeBlond C R, Andrews A T, Sun Y, et al. Activation of Aryl Chlorides for Suzuki Cross-Coupling by Ligandless, Heterogeneous Palladium[J]. Organic Letters, 2001. 3(10): 1555-1557.
    [23] Lamblin M, Hierso J C, Fouquet E, et al. Recyclable Heterogeneous Palladium Catalysts in Pure Water: Sustainable Developments in Suzuki, Heck, Sonogashira and Tsuji–Trost Reactions[J]. Advanced Synthesis & Catalysis, 2010.352(1): 33-79.
    [24] Anderson J C, Namli H. Ambient-temperature Unsymmetrical Biaryl Synthesis Using Suzuki Methodology[J]. Singlet, 1995(7):765-766.
    [25] Kantam M L. Polyaniline Supported Palladium Catalyzed Suzuki-Miyaura Cross- coupling of Bromo- and Chloroarenes in Water[J]. Tetrahedron, 2007.63(33): 8002- 8009.
    [26]安忠维.侧向氟代四环类液晶单体的合成[J].化学世界, 2009. 09.
    [27] Bermejo A. C2-Symmetric Bis-Hydrazones as Ligands in the Asymmetric Suzuki- Miyaura Cross-Coupling[J]. Journal of the American Chemical Society, 2008. 30(47): 15798- 15799.
    [28] Gala D, Stamford A, Jenkins J, et al. One-Step Synthesis of Biphenylacetic Acids via Pd/C-Catalyzed Arylation[J]. Organic Process Research & Development, 1997. 1(2): 163-164.
    [29] Richardson T I, Clarke C A, Yee Y K, et al. Novel 3-Aryl Indoles as Progesterone Receptor Antagonists for Uterine Fibroids[J]. ACS Medicinal Chemistry Letters, 2011. 2(2): 148-153.
    [30] Shuttleworth S J , Allin S M, Wilson R D, et al. Functionalised Polymers in Organic Chemistry: Part 2[J]. Synthesis-Stuttgart, 2000(8): 1035-1074.
    [31] Felpin F X, Ayad T, Mitra S. Pd/C: An Old Catalyst for New Applications - Its Use for the Suzuki-Miyaura Reaction[J]. European Journal of Organic Chemistry, 2006(12): 2679-2690.
    [32] Marck G, Villiger A, Buchecker R. Aryl Couplings with Heterogeneous Palladium Catalysts[J]. Tetrahedron Letters, 1994. 35(20): 3277-3280.
    [33] Corma A, Garcia H, Leyva A. Catalytic activity of Palladium Supported on Single Wall Carbon Nanotubes Compared to Palladium Supported on Activated CarbonStudy of the Heck and Suzuki Couplings, Aerobic Alcohol Oxidation and Selective Hydrogenation[J]. Journal of Molecular Catalysis a-Chemical, 2005.230(1-2): 97-105.
    [34] Villemin D, Caillot F. Microwave Mediated Palladium-catalysed Reactions on Potassium Fluoride/alumina without Use of Solvent[J]. Tetrahedron Letters, 2001. 42(4):639-642.
    [35] Kantam M L, Chakravarti R, Pal U, et al. Nanocrystalline Magnesium Oxide- Stabilized Palladium(0): An Efficient and Reusable Catalyst for Selective Reduction of Nitro Compounds[J]. Advanced Synthesis & Catalysis, 2008. 350(6): 822-827.
    [36] Taber A, Kirn J B, Jung J Y, et al. Highly Active and Magnetically Recoverable Pd-NHC Catalyst Immobilized on Fe3O4 Nanoparticle-Ionic Liquid Matrix for Suzuki Reaction in Water[J]. Synlett, 2009(15): 2477-2482.
    [37] Corma A, Garcia H, Leyva A. Bifunctional palladium-basic zeolites as Catalyst for Suzuki Reaction[J]. Applied Catalysis a-General, 2002. 236(1-2): 179-185.
    [38] Durgun G, Aksin O, Artok L. Pd-loaded NaY Zeolite as a Highly Active Catalyst for Ligandless Suzuki-Miyaura Reactions of Aryl Halides at Low Pd Loadings under Aerobic Conditions[J]. Journal of Molecular Catalysis a-Chemical, 2007.278(1-2): 189-199.
    [39] Yang Q, Ma S M, Li J X, et al. A Water-compatible, Highly Active and Reusable PEG-coated Mesoporous Silica-supported Palladium Complex and its Application in Suzuki Coupling Reactions[J]. Chemical Communications ,2006(23):2495-2497.
    [40] Baleizao C, Corma A, Garcia H, et al. Oxime Carbapalladacycle Covalently Anchored to High Surface Area Inorganic Supports or Polymers as Heterogeneous Green Catalysts for the Suzuki Reaction in Water[J]. Journal of Organic Chemistry, 2004. 69(2): 439-446.
    [41] Corma A, Das D, Leyva A, et al. A Periodic Mesoporous Organosilica Containing a Carbapalladacycle Complex as Heterogeneous Catalyst for Suzuki Cross- coupling[J], Journal of Catalysis. 2005. 229(2): 322-331.
    [42] Bai L, Wang J X. Reusable, Polymer-supported, Palladium-catalyzed, Atom- efficient Coupling Reaction of Aryl Halides with Sodium Tetraphenylborate inWater by Focused Microwave Irradiation[J]. Advanced Synthesis & Catalysis. 2008, 350(2): 315-320.
    [43] Yi S S , Lee D H, Sin E, et al. Chitosan-supported Palladium(0) Catalyst for Microwave-prompted Suzuki Cross-coupling Reaction in Water[J]. Tetrahedron Letters, 2007.48(38): 6771-6775.
    [44] Robert M W, Ernest L, Charles F. Organic Syntheses, 1959. 39: 3.
    [45] Tao B, Boykin D W. Simple Amine/Pd(OAc)2-Catalyzed Suzuki Coupling Reactions of Aryl Bromides under Mild Aerobic Conditions[J]. The Journal of Organic Chemistry, 2004. 69(13): 4330-4335.
    [46] Han W, Liu C, Jin Z L. In situ Generation of Palladium Nanoparticles: A Simple and Highly Active Protocol for Oxygen-Promoted Ligand-Free Suzuki Coupling Reaction of Aryl Chlorides[J]. Organic Letters, 2007. 9(20): 4005-4007.
    [47] Wu L, Li B L, Huang Y Y, Zhou H F, et al. Phoshine Dendrimer-Stabilized Palladium Nanoparticles, a Highly Active and Recyclable Catalyst for the Suzuki-Miyaura Reaction and Hydrogenation[J]. Organic Letters, 2006.8(16): 3065-3608.
    [48] Liu D, Gao W Z, Zhang X M, et al. Triazlole-Based MonoPhoshines for Suzuki- Miyaura Coupling and Amination Reactions of Aryl Chloride[J]. Organic Letters, 2005.7(22): 4907-4910.
    [49] Weng Z Q, Koh L L, Hor T S. Suzuki Cross-coupling in Aqueous Media Catalyzed by a 1,1'-N-substituted Ferrocenediyl Pd(II) Complex[J]. Journal of Organometallic Chemistry, 2004. 689(1): 18-24.
    [50] Alonso D A, Najera C. Oxime-derived Palladacycles as Source of Palladium Nanoparticles[J]. Chemical Society Reviews, 2010. 39(8): 2891-2902.
    [51]周强,龚大春.对羟基苯乙酮肟的合成研究[J].湖北化工, 1998(05).
    [52] Hiroshi O, Kyoji M, Kunio N. Aromatic Metalation Reactions by Palladium(II) and Platinum(II) on Aromatic Aldoximes and Ketoximes[J]. Bulletin of the Chemical Society of Japan, 1970. 43: 3480-3485.
    [53] Buck J S. Organic Syntheses [J].1935. 2: 622.
    [54]徐光宪.配位化学—原理与应用[M].化学工业出版社: 2008.
    [55] Baleizao C, Corma A, Garcia H, et al. An Oxime-carbapalladacycle Complex Covalently Anchored to Silica as an Active and Reusable Heterogeneous Catalyst for Suzuki Cross-coupling in Water[J]. Chemical Communications, 2003(5): 606- 607.
    [56] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism[J]. Nature, 1992. 359(6397): 710-712.
    [57] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis[J]. Chemical Reviews, 1997. 97(6): 2373-2420.
    [58]张一平,周春晖,王学杰.有机功能化介孔氧化硅的制备和表征[J].化学进展, 2008. 20(1): 33-41.
    [59]李惠云,王绍梅,刘立新.全硅介孔分子筛MCM-41的表面修饰及其疏水性[J].化学世界, 2009(9): 517-520.
    [60]辛勤主编.固体催化剂研究方法[M].科学出版社.北京: 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700