半导体纳晶ATO&TiO_2多孔电极制备及电色性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分别对采用回流胶溶法、液相共沉淀法制备TiO_2粉体与ATO纳米粉体;采用非均匀成核法制备ATO/TiO_2包覆粉体以及采用印刷法制备了ATO,TiO_2涂层电极和ATO/TiO_2包覆粉体多孔涂层电极进行了研究。通过XRD、SEM、TEM、XPS、粉体电阻测试及电化学测试等分析手段,研究了ATO、TiO_2粉、ATO/TiO_2包覆粉体及其电极的相关物理性能和电致变色特性。
     对ATO、TiO_2粉和ATO/TiO_2包覆粉体的制备及表征研究发现:采用回流胶溶法,通过反应温度、胶溶时间等参数的控制可以在液相中一步合成粒径从20-400nm的晶态的TiO_2超微粉体;采用液相共沉淀法制备ATO纳米粉体可以实现Sb在ATO中40-50%(mol)掺杂量,解决了溶胶-凝胶方法中Sb达不到高浓度掺杂的问题;采用非均匀成核法及回流胶溶法的结合可以在同一体系中一步合成包覆型ATO/TiO_2复合粉体,其壳层ATO的粒径可以达到10nm左右,渴望赋予该材料更好的电色响应速度和电荷的存储能力。
     对ATO、TiO_2电极和ATO/TiO_2包覆粉体多孔电极的制备及性能测试表明:采用印刷法可以获得多孔微结构特征的电极涂层。TiO_2涂层的离子存储能力最佳值为2~3mC/cm~2,且锐钛矿TiO_2的离子存储性能较金红石为好。ATO涂层电极的离子存储性能的最佳值为3~4mC/cm~2。ATO/TiO_2包覆粉体,当40%Sb掺杂、ATO含
    
     ABSTRACT
    量为 60%、其芯核卫。粒度为 100urn的锐钛矿 TIOZ核的 ATO/TIO。包覆粉体电致变
    色效果较好,其电极高于存储能力最佳值可以达到 16~18 mC/cm已
     初步探讨了ATO电极及ATO/TIO。包覆型粉体电极的电致变色及离于存储性能
    的本质。研究认为:因n。和 SnO。两者的折射率差导致的对光的散射作用增强,使
    得电极在电荷注入时电色效应明显,宏观上变色效果更显著:二者的能级结构的匹配
    使壳层ATO纳米粉体成为电于富集区,从而提高了复合粉体的导电性能,赋予该电色
    器件更优越的性能:F*u吵**n模型及能带理论初步分析认为该种材料的电致变色是由
    于离于和电子共注入时,Sb离于的价态发生从Sb’“向Sb’“的还原过程,同时伴随着
    Li”的注入,大量电子的注入使得材料的费密能级提高,能级分裂产生较多的局域能级,
    同时有人量界面志共同贡献于对光于的吸收,从而使材料表现出颜色的变化。
TiO2 powder and ATO nanopowder were prepared respectively using the method of peptizing the amorphous Ti(OH)4 in aqueous solutions and liquid phase-hydrolysis; ATO-coated TiO2 powder was synthesized by heterogeneous nucleation method; ATO, TiOj and ATO-coated TiO2 powder coating electrode were prepared by printing method. The preparation process , interrelated physical properties and electrochromic characterization of ATO, TiO2 and ATO-coated TiO2 powder coating were tested and analyzed by means of XRD, SEM, TEM, XPS, resistance and electrochemical of powder. The main results and innovation aspects are as follows:
    The preparation and analysis of ATO, TiO2 and ATO-coated TiO2 powder show that: The TiO2 crystals that granularity scope from 20nm to 400nm was directly prepared in liquid system without anatase-to-rutile transformation by the peptizing method and the control of reaction temperature and peptizing time. The problem of Sb high content doped in ATO nanopowder was successfully solved by liquid phase co-deposition, and its content can reach 40-50%(mol). Using the TiO2 powder prepared by peptizing method as the raw materials, the ATO-coated TiO2 powder, whose granularity of ATO shell less than 10nm, was directly prepared in the same liquid system by heterogeneous nucleation method. The
    
    
    coated powder was expected to obtain a better responding speed and the capability of charge storage.
    The preparation and interrelated property analysis of ATO, TiO2 and ATO/TiO2 porous electrode show that: The porous coating electrode of ATO, TiO2 and ATO/TiO2 can be prepared easily using the printing method. The greatest charge storage capability of TiO2 coating is 2~3mC / cm2. Meanwhile, Anatase is superior to Rutile of TiO2 in its electrochromic performance . The greatest charge storage capability of ATO coating is 3~4mC /cm2. As far as ATO-coated TiO2 powder concerned, when the Sb doped rate reaches 40%(mol), ATO% in ATO/TiO2 reaches 60%, and the granularity of TiO2core reach 100nm, the ATO-coated Anatase TiO2 powder has a better electrochromic property, and the greatest charge storage capability reaches 16-18 mC / cm2.
    The nature of electrochromic and ion storage of ATO electrode and ATO/TiO2 coated powder electrode were studied primarily. The possible results may be inferred. The increase of light dispersion function, which results from the distinction of the refractive index of TiO2 and SnO2, contributes to a higher contrast ratio when the Li+ and e" enter into the materials, and reveals a better electrochromic effect in macro-cosmic. The matching of band structure of TiO2 and SnO2 makes the shell of ATO being the region of e" enrichment and thus reduce the resistance of ATO-coated TiO2 powder, and a better electrochromic performance can be provided. Faughnan model and bandstructure theory can be used to analyzed the nature of electrochromic property of ATO material, it is believed that the electrochromic effect lie in the valence transformation of Sb5+and Sb3+; With a large amount of Li+ ions and electrons are inserted, the Fermi energy level of SnO2 is moved upwards; Meanwhile, the splitting of energy band give rise to
     a lot of local energy level and a great deal of interface state, which lead to the photonic absorption and electrochromic effect.
引文
[1] Ursa Opara Krasovec, Angela Surca Vuk, Boris Orel. Comparative studies of "all solgel" electrochromic windows employing various counter-electrodes. Solar Energy Materials &Solar Cells. 2002, 73: 21-37
    [2] Josik Portier, Guy Campet, Armel Poquet. Degenerate semiconductors in the light of electronegativity and chemical hardness. International Journal of Inorganic Materials. 2001, 3: 1039-1043
    [3] A. Rougier, A. Blyr, J. Garcia, etc,. Electrochromic W -M-O (M=V, Nb)sol-gel thin films: a way to neutral colour. Solar Energy Materials &Solar Cells. 2002, 71: 343-357
    [4] Roberto Palombari, Michele Ranchella, Cesare Rol. Oxidative photoelectrochemical technology with Ti/TiO2 anodes. Solar Energy Materials &Solar Cells. 2002, 71: 359-368
    [5] Nakanishi, Katsuhisa Tanaka, Kazuyuki Hirao. Preparation of macroporous titania films
    
    by a sol-gel dip-coating method from the system containing poly(ethylene glycol). Journal of the American Ceramic Society. 1998, 81: 2670-2681
    [6] L. H. M. Krings, W. Talen. Wet chemical preparation and characterization of electrochromic WO_3. Solar Energy Materials and Solar Cells. 1998, 54: 27-37
    [7] Enrique Barrera, Tomas Viveros, Ascencion Montoya. Titanium-tin oxide protective films on a black cobalt photothermal absorber. Solar Energy Materials & Solar Cells. 1999, 57: 127-140
    [8] Harlan J. Byker. Electrochromics and polymers. Electrochimica Acta. 2001, 46: 2015-2022
    [9] C. Bechinger, S. Ferrere, A. Zaban, etc,. Photoeletrochromic windows and displays. Letters to Nature. 1996, 283(17): 608-610
    [10] Kuo-Chuan Ho. The inβuence of charge capacity ratio on the performance of a complementary electrochromic system. Solar Energy Materials & Solar Cells. 1999, 56: 271-280
    [11] R. David Rauh. Electrochromic windows: an overview. Electrochimica Acta. 1999, 44: 3165-3176
    [12] P. S. Patil, P. R. Patil, S. S. Kamble, ect,. Thickness-dependent electrochromic properties of solution thermolyzed tungsten oxide films. Solar Energy Materials & Solar Cells. 2000, 60: 143-153
    [13] Jingyue Liu, James P. Coleman, Nanostructured metal oxides for printed electrochromic displays, Materials Science and Engineering A, 2000(268), 144~148
    [14] S. F. Cogan, E. J. Andersson, T. D. Plante, and R. D. Rauh. Appi Opt, 24, 2282(1985)
    [15] P. Olivi, E. C. Pereira, E. Longo, J. Varelly, and L. O. Bulhoes J. Electrochem. Soc., 140, L81(1993)
    [16] B. Orel, etc, Electrochemical and structural properties of SnO_2 and Sb:SnO_2 transparent
    
    electrodes with mixed electronically conductive and ion-storage characteristics, J. Electrochem. Soc., 1994, Vol. 141, No. 9, 127~130
    [17] U. Opara Krasover, B. Orel, S. Hocevar, and I. Musevic. Electrochemical and Spectroelectrochemical Properties of SnO_2 and SnO_2/Mo Transparent Electrodes with High Ion-Storage Capacity. J. Electrochem. Soc., Vol. 144, No. 10, October 1997
    [18] J. P. Coleman, Anne T. Lynch, etc. Antimony-doped tin oxide powders: Electrochromic materials for printed displays, Solar Energy Materials & Solar Cells, 1999(56), 375~394
    [19] C. Marcel, M. S. Hegde, etc, Electrochromic properties of antimony tin oxide(ATO)thin films synthesized by pulsed laser deposition, Electrochimica Acta, 2001(46), 2097~2104
    [20] A. Rougier, A. Blyr, A. Quede. Electrochromism of Mixed Tungsten-Vanadium Oxide Thin Films Grown by Pulsed Laster Deposition. Journal of The Electrochmical Socity. 2001, 148(2): H7-H12
    [21] 孙宁,赵灵芝,张玉杰.电致变色薄膜研究进展.中国陶瓷.1998,34(5):34-38
    [22] Wang J Q, Beiijm, Skryabinil. The kinetic behaviour of ion transportion WO_3 based films produced by sputter and sol-gel deposition: pattl, the simulation model. Solar Energy Materials &Solar Cells. 1999, 59: 167-183
    [23] G. Vaivars, A. Azens, C. G. Granqvist. Proton conducting polymer composites for electrochromic devices. Solid State Ionics. 1999, 119: 269-273
    [24] Junichi Nagai, Graham D, McMeeking. Modeling of electrochromic processes. Electrochimica Acta. 1999, 44: 3177-3184
    [25] 林永钟,林坚.混合氧化物电致变色器件.光电子·激光.2001,21(5):457-460
    [26] 张征林,王怡红等,电致变色材料及应用,电子元件与材料,1999,18(1):32~36
    [27] C. G. Granqcist, A. Azens, etc, Recent Advances in Electrochromics for Smart Windows
    
    Applications, Solar Energy, 1998(63), 199~216
    [28] Janez Kr, Marko Topi, Franc Smole. Three-state regulator for electrochromic windows. Solar Energy Materials &Solar Cells. 2002, 71: 387- 395
    [29] E. S. Lee, D. L. Dibartolomeo. Application issues for large-area electrochromic windows in commercial buildings. Solar Energy Materials &Solar Cells. 2002, 71: 465-491
    [30] W. J. Aibery, P. N. Bartlett, J. Electrochem. Soc., 1984, [30]: 131, 315
    [31] Peer Lobmann, Rainer Jahn, Susanne Seifert, etc. Inorganic Thin Films Prepared from Soluble Powders and Their Applications. Journal of Sol-Gel Science and Technology. 2000, 19: 473-477
    [31] C. J. Barbee, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Graetzel. J. Am. Ceram. Soc., 1997, 80: 3157-3161
    [32] K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto, and S. Murasawa. J. Electroanal. Chem., 1995, 396, 27
    [33] Tennakone, K Dye-Sensitized Solid-State Photovoltaic Cells: Suppression of Electron-Hole Recombination by Deposition of the Dye on a Thin Insulating Film in Contact with a Semiconductor. Journal of Electronic Materials. 2001, (30): 992-997
    [34] 仲维卓,华素坤 著.晶体生长形态学.北京:科学出版社,1999,94—100
    [35] 邓希敏,郭进,黄津梨.掺V_2O_5对SnO_2气敏性能的影响.材料研究学报,1995,9(5):438-442
    [36] 王建红,王化章等.功能材料.1992:23(5):284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700