生物模板法构筑多级多孔结构电极材料及其储锂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池作为一种最有希望的绿色储能技术,已被广泛应用于各种电子设备和混合动力交通工具。然而,在实际应用中,锂离子电池通常存在电极材料比容量低、循环衰减快、倍率性能不佳等问题。本论文针对上述问题,以正极材料LiFePO4和单质S,负极材料NiO和MnO为研究对象,设计多级多孔微/纳复合结构模型,通过将生物模板引入电极材料制备过程,探索生物模板对电极材料结构调控的影响因素,系统研究了基于生物模板的多级多孔微/纳复合结构对电极材料的电化学性能影响。主要研究内容如下:
     (1)首次利用一种简便的水热合成工艺制备出纺锤形多级多孔LiFePO4材料。通过调控反应时间和pH值,研究了水热合成条件对LiFePO4晶体形貌和微结构的影响。研究结果表明:反应时间为20小时,前驱体溶液pH值为10时,可成功合成多级多孔微/纳复合结构的LiFePO4纺锤体颗粒,并提出“形核-团聚-自组装排列-熟化”生长机制。通过树脂包埋技术对LiFePO4纺锤体颗粒切片剪薄,利用透射电镜(TEM)研究了颗粒内部晶粒之间的生长取向关系和组装方式。电化学性能研究表明,这种多级多孔微/纳结构不仅具有优异的结构稳定性,可确保材料在服役过程中不会出现崩塌、脱落现象,同时其较高的比表面积,可为电极材料和电解液提供更大的接触面积,增强锂离子的扩散能力。在0.1C(1C=170mA/g)倍率下,经过50次循环,该材料放电容量仍可保持在157mAh/g以上;即使在5C高倍率条件下,其可逆容量仍高达110mAh/g以上,充分显示出多级多孔微/纳复合结构具有优异的循环稳定性和倍率性能。
     (2)首次将活体螺旋藻同时作为生物模板和碳源原位引入LiFePO4的水热制备过程,成功合成出螺旋形多级多孔结构LiFePO4/C复合材料。研究结果表明,利用藻类生物对金属离子具有诱导吸附特性,可将前驱体粒子均匀吸附在藻类表面,从而实现生物模板形貌和结构的精确复制。通过X射线衍射(XRD)、高分辨投射电镜(HRTEM)和拉曼光谱(Raman)等微结构表征手段发现,这种复合材料是由LiFePO4纳米晶粒有序堆积并通过外层“碳网”形成多级结构,牢牢地依附在螺旋形“碳骨架”表面构成。这种特殊结构具有多重优势:一方面可以增加LiFePO4材料的比表面积;另一方面,同时保证了复合材料具有良好的离子和电子导电性。因此,该复合材料具有较高的可逆比容量(在0.1C倍率下50次循环后,可逆容量大于140mAh/g),优异的循环稳定性能(容量保持率接近100%),以及较好的倍率性能(5C倍率下,可逆容量仍可保持在100mAh/g以上)。
     (3)首次将生物模板法与化学浴沉积法(CBD)相结合,成功在预碳化后花粉表面构建多级多孔NiO薄片,获得中空球形多级多孔NiO/C复合电极材料。通过与无模板合成的多孔NiO粉体对比,该复合材料显示出巨大结构优势,如比表面积高、孔径分布丰富和导电性好。电化学测试表明,基于花粉为模板的NiO/C复合电极材料首次循环产生的不可逆容量仅为284mAh/g,库伦效率高达74.5%,远优于多孔NiO负极材料。在循环和倍率测试中,经过80次倍率充放电测试后,以花粉为模板的NiO/C复合电极材料仍能给出高达618mAh/g的可逆放电比容量。如此优异的电化学性能可以归因于以下几方面原因。首先,NiO纳米薄片可有效缩短锂离子迁移距离,便于锂的快速嵌入和脱出。其次,多孔结构可以帮助电解液更好的润湿材料,提供更大的反应面积,并可调节由反复充放电引起的体积膨胀所导致的应力;第三,NiO纳米薄片直接生长在导电多孔碳基底表面可以形成牢固的连接,有利于增强NiO和碳之间的电接触,减小反应电阻。
     (4)通过将生物模板法和液相浸渍法结合,发展了一种简便制备中空球形MnO/C复合材料的新方法。利用XRD、TEM、HRTEM和STEM等先进材料表征手段系统研究了中空球形MnO/C复合材料的微结构,结果表明:大量MnO纳米颗粒被牢固钉扎在泡沫状多孔碳基体内形成一个具有渗透性的多级多孔外壳,并且该MnO/C复合微球还具有典型的中空结构特征。研究发现采用微绿球藻作为生物模板,其扮演了多个角色:一方面它可以通过自身生物活性,利用细胞膜的静电力作用吸附前驱体离子;另一方面,由于它本身含有机物可作为可再生“绿色”碳源,在高温分解过程中可形成多孔碳。作为锂离子电池负极,该复合材料在0.1A/g倍率下,经循环50次后,容量保持率大于94%,可逆容量高达700mAh/g。同时在3A/g高倍率下,其可逆容量高于230mAh/g。MnO/C复合材料优异的电化学性能主要来自于以下几个方面:MnO纳米颗粒可缩短锂离子的扩散路径,提高锂离子扩散迁移能力;多孔结构可使电极材料更容易被电解液润湿,增大的电化学反应面积;同时,导电碳基底不仅可以防止MnO颗粒膨胀、团聚和脱落,也能为MnO提供高速电子转移通道;而中空结构可有效缓解材料在充放电中产生的剧烈体积变化。
     (5)首次采用裂壶藻作为生物模板和绿色碳源合成中空多孔碳微球,并结合一种新颖的溶剂热储硫工艺,成功制备出中空多孔S/C复合电极材料。研究表明:裂壶藻通过碳化处理后,可完整保持其原有形貌和尺寸,并形成一个独特的中空多孔碳微球。该碳微球不仅具有较好的结构稳定性,同时也具有优异的电导性,因此是一种理想的储硫载体材料。与硫复合后,S/C复合电极材料的形态并未发生明显改变,但硫元素以小硫分子的形式高度均匀地分散在碳微球载体的孔隙和石墨插层中,与碳形成了较强的结合力。通过组装扣式电池发现,S/C复合材料具有优异的电化学性能。在0.1A/g电流密度下循环50次后,该复合材料的可逆容量为697.2mAh/g,容量保持率高于95%,循环稳定性突出。此外,即使在高倍率循环条件下,如5A/g, S/C复合材料仍可提供452.8mAh/g可逆放电容量,显示出较好的倍率性能。
Lithium-ion batteries (LIBs) are considered as the most promising rechargeable energy storage technology, which can be applied in electronic devices and hybrid electric vehicles. However, the practical application of LIBs is still hampered by the poor electrochemical performance of the electrode materials, such as the low specific capacity, poor cycling stability and rate capability. In these researches, LiFePO4and S (cathode materials), NiO and MnO (anode materials) are selected as research objects, we designed the hierarchical porous micro-/nanostructure as an ideal model for electrode materials, and used novel strategies by using various biomaterials as both templates and carbon sources to fabricate electrode materials. We have made great efforts to understand the key factors of using biotemplates to tune the microstructure and morphology of electrode materials. Moreover, the relationships between the hierarchical porous micro-/nanostructure and electrochemical performances also have been studied. The main contents and results are as follows:
     1. A new kind of hierarchical spindle-like LiFePO4was successfully synthesized by a facile hydrothermal method for the first time. Reaction time and pH value played multifold roles in controlling the microstructure of LiFePO4. Spindle-like LiFePO4particles with a hierarchical porous structure can be obtained after20h reaction with pH=10. A growth model of "Nucleation-Aggregation-Self-assembly&Rearrangment-Further growth" was proposed to illustrate the formation of spindle-like LiFePO4samples. In order to investigate the growth orientations and grain boundaries of these nanocrystals, spindle-like LiFePO4sample was prepared by slicing it embedded in expoxy, and studied by transmission electron microscopy (TEM). The electrochemical performances clearly demonstrated that this hierarchical porous structure has the good structural stability, and also can increase the reaction surface between the electrolyte and the electrode materials and promote lithium ion diffusion. At a0.1C rate, the initial discharge capacity was163.57mAh/g, and it could remain157.32mAh/g after50cycles, suggesting the excellent cycling stability; Even at a5C rate, the reversible capacity was still as high as110mAh/g, implying the good rate capability.
     2. The live spirulina was used as both the biotemplate and carbon source for the fabrication of spiral hierarchical porous LiFePO4/C. Owing to the biological activities of algae, spirulina can adsorb and take up metal ions. Therefore, we can precisely replicate the morphology and microstructure of spirulina. The X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Raman results show that the obtained LiFePO4/C sample was composed of abundant LiFePO4grains connected and wrapped with "carbon networks", and attached at the surface of the spiral "carbon backbone". Such unique microstructure could enhance the reaction area, and is also beneficial to increase the electronic/ionic conductivity. As a result, spirulina-templated LiFePO4/C sample exhibited high reversible capacity (at a0.1C, the specific capacity was over140mAh/g after50cycles), excellent cycling performance (the capacity retention rate is nearly100%), good rate capability (at a5C rate, the reversible capacity was over100mAh/g).
     3. The facile strategy was developed for the fabrication of hierarchical hollow porous NiO/C microspheres deriving from the pollen grains by combining the biotemplating technique with a chemical bath deposition (CBD) method. The structural analysis revealed that NiO nanowalls directly grew on the surfaces of pollen grains and formed a hierarchical porous structure. Compared with porous NiO particles without biotemplates, pollen-templated NiO/C sample has a large specific surface area, multiple pore size distribution and good electronic conductivity. The initial irreversible capacity loss was only284mAh/g with a high coulombic efficiency of74.5%, which was much smaller than pure NiO sample with porous structure. After80cycles with the multiple-rate test, the pollen-templated NiO/C sample still delivered a high reversible capacity of618mAh/g. These enhanced electrochemical performances can be attributed to the following reasons. Firstly, NiO nanowalls can provide short pathways for fast lithium ions intercalation/de-intercalation. Secondly, the multiple porous structures can provide a larger surface area and allow better penetration of the electrolyte, as well as accommodate the strain induced by the volume changes during the charge/discharge cycling process. Thirdly, NiO nanowalls grew directly on the surface of the porous carbon support can form good adhesion and better electrical contact between NiO and carbon, which is beneficial for reducing charge transfer resistance.
     4. A facile and general approach combined the biotemplating technique with the immersion method was used to synthesize a unique microstructure of MnO/C microspheres. Morphology and microstructure of the hollow porous MnO/C microspheres have been investigated by XRD, TEM, HRTEM and STEM. The results demonstrate that MnO nanoparticles were tightly embedded into the porous carbon matrix and formed penetrative shells, suggesting a hollow feature. It was found that the biotemplates of Nannochloropsis oculata (N. oculata) played multiple roles, which acted as biologic templates to adsorb and take up metal ions via the electrostatic interaction, as well as carbon sources to form porous carbon matrices by the decomposition of carbonaceous organics in cells. As the anode materials in lithium ion batteries, N. oculata-templated MnO/C composites can not only deliver a high reversible capacity of700mAh/g at a low current density of0.1A/g, but also exhibit remarkable rate performance (over230mAh/g at3A/g). Such outstanding morphology and microstructure have the following advantages for achieving excellent electrochemical performance. Firstly, nano-sized MnO particles can effectively reduce the length of Li+solid state transport paths to give high Li+diffusion rate. Secondly, the pores in the MnO/C composite can well contact with the electrolyte, and achieve large reaction area. Thirdly, the amorphous carbon matrix can keep the structural integrity of the electrode, and provide good electronic contacts to reduce the contact resistance between MnO nanocrystals and electrolyte. Fourthly, hollow structure can enlarge the reaction surface area, and reversibly accommodate the drastic volume variation during the charge/discharge cycling process.
     5. Hollow porous carbon microspheres were synthesized by using Schizochytrium sp. cells as both biotempates and carbon sources. Combined with a facile and novel solvothermal methode, a new sulfur-carbon (S/C) composite was fabricated by confining sulfur in the as-prepared hollow porous carbon microspheres. The microstructure and morphology characterizations demonstrate that Schizochytrium sp. could remain its original morphology and size during the carbonization process. The as-prepared carbon microspheres have a unique hollow porous structure with a diameter of1-2μm, and possess excellent structural stability and good electronic conductivity, which can be considered as an ideal carbon support material for sulfur-carbon electrodes. After the solvothermal reaction, the elemental sulfur was highly dispersed inside the interior void space and micropores of carbon microspheres, and formed strong bondings between S and C. When evaluated as a cathode material for Li-S batteries, hollow porous S/C composites show remarkable electrochemical performances with high specific capacity, good cycling stability, and superior rate capability. In particular, S/C composite electrodes exhibit a high reversible capacity of697.2mAh/g with the capacity retention of95%after50cycles at a current density of0.1A/g. Moreover, even at a high current density of5A/g, the S/C composite still can deliver fascinating capacity of452.8mAh/g.
引文
[1]Steele, B.C.H., Fast Ion Transport in Solids [J]. New York:North-Holland,1973, 103-109.
    [2]Armand, M.B., Fast Ion Transport in Solids [J]. New York:North-Holland,1973, 665-673.
    [3]Whittingham, M.S., Electrochemical energy storage and intercalation chemistry [J]. Science,1976,192:1226.
    [4]Armand, M.B., Materials for Advanced Batteries [J]. New York:Plenum,1980, 145-161.
    [5]吴宇平,戴晓兵,马军旗,程预江,铿离子电池应用与实践[M].北京:化学工业出版社,2004,
    [6]吴宇平.万春荣,姜长印,铿离子二次电池[M].北京:化学工业出版社,2002,
    [7]吴宇平,张汉平,吴峰,李朝晖,聚合物铿离子电池[M].北京:化学工业出版社,2007,
    [8]Mizushima, K., Jones, P. C, Wiseman, P. J.& Goodenough, J. B., LixCoO2 (0    [9]Thackeray, M.M., David, W. I. F., Bruce, P. G.& Goodenough, J. B., Lithium insertion into manganese spinels [J]. Mat. Res. Bull.,1983,18:461-472.
    [10]Cheng, F.Y., Liang, J., Tao, Z.L., et al., Functional Materials for Rechargeable Batteries [J]. Advanced Materials,2011,23(15):1695-1715.
    [11]Measuring the Information Society 2010, Report from the International Telecommunication Union,2010.
    [12]Annual Energy Outlook 2010, http://www.eia.doe.gov/oiaf/aeo/, accessed May 2010.
    [13]Liu, J. and Pan, Q.M., MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries [J]. Electrochemical and Solid State Letters,2010, 13(10):A139-A142.
    [14]Nishi, Y, The development of lithium ion secondary batteries [J]. Chemical Record,2001,1(5):406-413.
    [15]Xu, Y.A., Song, D.W., Li, J., et al., Electrochemical properties of LiCoO2+x%S mixture as anode material for alkaline secondary battery [J]. Electrochimica Acta, 2012,85:352-357.
    [16]Zuo, X.X., Fan, C.J., Xiao, X., et al., High-voltage performance of LiCoO2/graphite batteries with methylene methanedisulfonate as electrolyte additive [J]. Journal of Power Sources,2012,219:94-99.
    [17]Liu, C., Nan, J.M., Zuo, X.X., et al., Synthesis and Electrochemical Characteristics of an Orthorhombic LiMnO2 Cathode Material Modified With Poly(Vinyl-Pyrrolidone) for Lithium Ion Batteries [J]. International Journal of Electrochemical Science,2012,7(8):7152-7164.
    [18]Lv, Y.Y., Mei, T., Gong, H.X., et al., Synthesis of LiMnO2 porous microsphere and its electrochemical behaviour as cathode material in lithium-ion batteries [J]. Micro & Nano Letters,2012,7(5):439-442.
    [19]Lee, S. and Park, S.S., Atomistic Simulation Study of Monoclinic Li3V2(PO4)3 as a Cathode Material for Lithium Ion Battery:Structure, Defect Chemistry, Lithium Ion Transport Pathway, and Dynamics [J]. Journal of Physical Chemistry C,2012,116(48):25190-25197.
    [20]Lim, A.H., Shim, H.W., Seo, S.D., et al., Biomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes [J]. Nanoscale 2012,4:4694-4701.
    [21]Sun, X.R., Li, J.J., Shi, C.S., et al., Enhanced electrochemical performance of LiFePO4 cathode with in-situ chemical vapor deposition synthesized carbon nanotubes as conductor [J]. Journal of Power Sources,2012,220:264-268.
    [22]Sun, Y., Lu, X., Xiao, R.J., et al., Kinetically Controlled Lithium-Staging in Delithiated LiFePO4 Driven by the Fe Center Mediated Interlayer Li-Li Interactions [J]. Chemistry of Materials,2012,24(24):4693-4703.
    [23]吴国良,锂离子电池负极材料的现状与发展[J].电池,2001,31(2):54-57.
    [24]Nacimiento, F., Lavela, P., Tirado, J.L., et al., A facile carbothermal preparation of Sn-Co-C composite electrodes for Li-ion batteries using low-cost carbons [J]. Journal of Solid State Electrochemistry,2012,16(3):953-962.
    [25]Nam, D.H., Kim, R.H., Han, D.W., et al., Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries [J]. Electrochimica Acta,2012,66:126-132.
    [26]Nam, D.H., Kim, R.H., Lee, C.L., et al., Highly Reversible Sn-Co Alloy Anode Using Porous Cu Foam Substrate for Li-Ion Batteries [J]. Journal of the Electrochemical Society,2012,159(11):A1822-A1826.
    [27]Wang, B., Luo, B., Li, X.L., et al., The dimensionality of Sn anodes in Li-ion batteries [J]. Materials Today,2012,15(12):544-552.
    [28]Choi, I., Lee, M.J., Oh, S.M., et al., Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries:Dynamics and component analysis by TEM [J]. Electrochimica Acta, 2012,85:369-376.
    [29]Han, Z.J., Yabuuchi, N., Shimomura, K., et al., High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries [J]. Energy & Environmental Science,2012,5(10):9014-9020.
    [30]Huang, X.H., Tu, J.P., Xia, X.H., et al., Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries [J]. Electrochemistry Communications,2008,10(9):1288-1290.
    [31]Huang, Y., Huang, X.L., Lian, J.S., et al., Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage [J]. Journal of Materials Chemistry,2012,22(7):2844-2847.
    [32]Ji, L.W., Tan, Z.K., Kuykendall, T.R., et al., Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells [J]. Physical Chemistry Chemical Physics,2011,13(15):7139-7146.
    [33]Xue, X.Y., Yuan, S.A., Xing, L.L., et al., Porous CO3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes [J]. Chemical Communications,2011,47(16): 4718-4720.
    [34]Yoon, T., Chae, C., Sun, Y.K., et al., Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes [J]. Journal of Materials Chemistry,2011,21(43):17325-17330.
    [35]Fahmi, E.M., Ahmad, A., Nazeri, N.N.M., et al., Effect of LiBF4 Salt Concentration on the Properties of Poly(Ethylene Oxide)-Based Composite Polymer Electrolyte [J]. International Journal of Electrochemical Science,2012, 7(7):5798-5804.
    [36]Yarmolenko, O.V., Khatmullina, K.G, Tulibaeva, G.Z., et al., Towards the mechanism of Li+ ion transfer in the net solid polymer electrolyte based on polyethylene glycol diacrylate-LiC104 [J]. Journal of Solid State Electrochemistry,2012,16(10):3371-3381.
    [37]Zinigrad, E., Larush-Asraf, L., Gnanaraj, J.S., et al., On the thermal stability of LiPF6 [J]. Thermochimica Acta,2005,438(1-2):184-191.
    [38]郑洪河,锂离子电池电解质[M].北京:化学工业出版社,2007.
    [39]Tarascon, J.M. and Armand, M., Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414(6861):359-367.
    [40]Winter, M. and Brodd, R.J., What are batteries, fuel cells, and supercapacitors? [J]. Chemical Reviews,2004,104(10):4245-4269.
    [41]郭炳馄,徐徽,王先友,肖立新,锂离子电池[M].长沙:中南大学出版社,2002.
    [42]Chung, S.Y., Bloking, J.T. and Chiang, Y.M., Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials,2002,1(2): 123-128.
    [43]Herle, P.S., Ellis, B., Coombs, N., et al., Nano-network electronic conduction in iron and nickel olivine phosphates [J]. Nature Materials,2004,3(3):147-152.
    [44]Huang, Y.H. and Goodenough, J.B., High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers [J]. Chemistry of Materials,2008,20(23):7237-7241.
    [45]Padhi, A.K., Nanjundaswamy, K.S. and Goodenough, J.B., Phospho-olivines as positive electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [46]Cao, S.H., Wang, Z.X., Li, X.H., et al., Comparative study on electrochemical behavior of Li(Ni05Mn0.5)(i-x)MxO2 (M=Ti, Al; x=0,0.02) cathode materials [J]. Chinese Journal of Inorganic Chemistry,2006,22(8):1540-1544.
    [47]Kajiyama, A., Takada, K., Inada, T., et al., Synthesis and electrochemical properties of LixCoo.5Mn0.5O2 [J]. Solid State Ionics,2002,149(1-2):39-45.
    [48]Nobili, E, Dsoke, S., Croce, F., et al., An ac impedance spectroscopic study of Mg-doped LiCoO2 at different temperatures:electronic and ionic transport properties [J]. Electrochimica Acta,2005,50(11):2307-2313.
    [49]Senaris-Rodriguez, M.A., Castro-Garcia, S., Castro-Couceiro, A., et al., Magnetic clusters in LiNi1-yCoyO2 nanomaterials used as cathodes in lithium-ion batteries [J]. Nanotechnology,2003,14(2):277-282.
    [50]Wang, G.X., Horvat, J., Bradhurst, D.H., et al., Structural, physical and electrochemical characterisation of LiNixCo1-xO2 solid solutions [J]. Journal of Power Sources,2000,85(2):279-283.
    [51]Jin, Y., Lin, P. and Chen, C.H., An investigation of silicon-doped LiCoO2 as cathode in lithium-ion secondary batteries [J]. Solid State Ionics,2006,177(3-4): 317-322.
    [52]Mladenov, M., Stoyanova, R., Zhecheva, E., et al., Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes [J]. Electrochemistry Communications,2001,3(8):410-416.
    [53]Imanishi, N., Fujii, M., Hirano, A., et al., Synthesis and characterization of nonstoichiometric LiCoO2 [J]. Journal of Power Sources,2001,97-8:287-289.
    [54]Cho, J., Kim, C.S. and Yoo, S.I., Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2 [J]. Electrochemical and Solid State Letters,2000,3(8):362-365.
    [55]Cho, J., Kim, Y.J., Kim, T.J., et al., Zero-strain intercalation cathode for rechargeable Li-ion cell [J]. Angewandte Chemie-International Edition,2001, 40(18):3367-3369.
    [56]Oh, S., Lee, J.K., Byun, D., et al., Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries [J]. Journal of Power Sources,2004,132(1-2):249-255.
    [57]Han, C.H., Hong, Y.S., Hong, H.S., et al., Electrochemical properties of iodine-containing lithium manganese oxide spinel [J]. Journal of Power Sources, 2002,111(1):176-180.
    [58]Kopec, M., Lisovytskiy, D., Marzantowicz, M., et al., X-ray diffraction and impedance spectroscopy studies of lithium manganese oxide spinel [J]. Journal of Power Sources,2006,159(1):412-419.
    [59]F. Capitaine, P.G., C. Delmas. A new variety of LiMnO2 with a layered structure [J]. Solid State Ionics,1996,89:197-202.
    [60]Aurbach, D., Levi, M.D., Gamulski, K., et al., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques [J]. Journal of Power Sources,1999,81:472-479.
    [61]Shin, Y.J. and Manthiram, A., Factors influencing the capacity fade of spinel lithium manganese oxides [J]. Journal of the Electrochemical Society,2004, 151(2):A204-A208.
    [62]Lim, S. and Cho, J., PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates [J]. Electrochemistry Communications,2008,10(10):1478-1481.
    [63]Yang, Z.X., Yang, W.S., Evans, D.G., et al., The effect of a Co-Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material [J]. Journal of Power Sources,2009,189(2):1147-1153.
    [64]Yoshio, M., Todorov, Y, Yamato, K., et al., Preparation of LiyMnxNi1-xO2 as a cathode for lithium-ion batteries [J]. Journal of Power Sources,1998,74(1): 46-53.
    [65]Armstrong, A.R., Robertson, A.D. and Bruce, P.G, Structural transformation on cycling layered Li(Mn1-yCoy)O2 cathode materials [J]. Electrochimica Acta,1999, 45(1-2):285-294.
    [66]Yang, X.Q., McBreen, J., Yoon, W.S., et al., Crystal structure changes of LiMno.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD [J]. Electrochemistry Communications,2002, 4(8):649-654.
    [67]Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C, et al., Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates [J]. Journal of the Electrochemical Society,1997,144(5):1609-1613.
    [68]Shim, J. and Striebel, K.A., Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4 [J]. Journal of Power Sources,2003, 119:955-958.
    [69]Dominko, R., Bele, M, Goupil, J.M., et al., Wired porous cathode materials:A novel concept for synthesis of LiFePO4 [J]. Chemistry of Materials,2007,19(12): 2960-2969.
    [70]Wang, Y.G., Wang, Y.R., Hosono, E.J., et al., The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method [J]. Angewandte Chemie-International Edition, 2008,47(39):7461-7465.
    [71]Wang, Y.Q., Wang, J.L., Yang, J., et al., High-rate LiFePO4 electrode material synthesized by a novel route from FePO4 center dot 4H2O [J]. Advanced Functional Materials,2006,16(16):2135-2140.
    [72]Yang, S.F., Zavalij, P.Y. and Whittingham, M.S., Hydrothermal synthesis of lithium iron phosphate cathodes [J]. Electrochemistry Communications,2001, 3(9):505-508.
    [73]Ravet, N., Chouinard, Y, Magnan, J.F., et al., Electroactivity of natural and synthetic triphylite [J]. Journal of Power Sources,2001,97(8):503-507.
    [74]Cho, Y.D., Fey, G.T.K. and Kao, H.M., Physical and electrochemical properties of La-doped LiFePO4/C composites as cathode materials for lithium-ion batteries [J]. Journal of Solid State Electrochemistry,2008,12(7-8):815-823.
    [75]Delacourt, C., Wurm, C., Laffont, L., et al., Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites [J]. Solid State Ionics, 2006,177(3-4):333-341.
    [76]Lu, Y, Shi, J.C., Guo, Z.P., et al., Synthesis of LiFe1-xNixPO4C composites and their electrochemical performance [J]. Journal of Power Sources,2009,194(2): 786-793.
    [77]Shanmukaraj, D., Wang, G.X., Murugan, R., et al., Electrochemical studies on LiFe1-xCoxPO4/carbon composite cathode materials synthesized by citrate gel technique for lithium-ion batteries [J]. Materials Science and Engineering B: Advanced Functional Solid-State Materials,2008,149(1):93-98.
    [78]Shin, H.C., Bin Park, S., Jang, H., et al., Rate performance and structural change of Cr-doped LiFePO4/C during cycling [J]. Electrochimica Acta,2008,53(27): 7946-7951.
    [79]Wang, G, Cheng, Y, Yan, M.M., et al., Li0.99Ti0.01FePO4/C composite as cathode material for lithium ion battery [J]. Journal of Solid State Electrochemistry,2007, 11(4):457-462.
    [80]Yang, R., Song, X.P., Zhao, M.S., et al., Characteristics of Li0.98Cu0.01FePO4 prepared from improved co-precipitation [J]. Journal of Alloys and Compounds, 2009,468(1-2):365-369.
    [81]Arnold, G, Garche, J., Hemmer, R., et al., Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. Journal of Power Sources,2003,119:247-251.
    [82]Choi, D. and Kumta, P.N., Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J]. Journal of Power Sources,2007, 163(2):1064-1069.
    [83]Delacourt, C, Poizot, P., Levasseur, S., et al., Size effects on carbon-free LiFePO4 powders [J]. Electrochemical and Solid State Letters,2006,9(7): A352-A355.
    [84]Dokko, K., Koizumi, S., Nakano, H., et al., Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J]. Journal of Materials Chemistry,2007,17(45): 4803-4810.
    [85]Ellis, B., Kan, W.H., Makahnouk, W.R.M., et al., Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4 [J]. Journal of Materials Chemistry,2007,17(30):3248-3254.
    [86]Kuwahara, A., Suzuki, S. and Miyayama, M., Hydrothermal synthesis of LiFePO4 with small particle size and its electrochemical properties [J]. Journal of Electroceramics,2010,24(2):69-75.
    [87]Muraliganth, T., Murugan, A.V. and Manthiram, A., Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries [J]. Journal of Materials Chemistry,2008, 18(46):5661-5668.
    [88]Wang, B.F., Qiu, Y.L. and Ni, S.Y., Ultrafine LiFePO4 cathode materials synthesized by chemical reduction and lithiation method in alcohol solution [J]. Solid State Ionics,2007,178(11-12):843-847.
    [89]Andersson, A.S. and Thomas, J.O., The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources,2001,97(8):498-502.
    [90]Yang, H., Wu, X.L., Cao, M.H., et al., Solvothermal Synthesis of LiFePO4 Hierarchically Dumbbell-Like Microstructures by Nanoplate Self-Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries [J]. Journal of Physical Chemistry C,2009,113(8):3345-3351.
    [91]Qian, J.F., Zhou, M., Cao, Y.L., et al., Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries [J]. Journal of Physical Chemistry C,2010,114(8): 3477-3482.
    [92]李春鸿,锂离子二次电池用负极材料[J],电池,1998,28:132-134.
    [93]Kohs, W., Santner, H.J., Hofer, F., et al., A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase [J]. Journal of Power Sources,2003,119:528-537.
    [94]Buqa, H., Golob, P., Winter, M., et al., Modified carbons for improved anodes in lithium ion cells [J]. Journal of Power Sources,2001,97(8):122-125.
    [95]Kuribayashi, I., Yokoyama, M. and Yamashita, M., Battery Characteristics with Various Carbonaceous Materials [J]. Journal of Power Sources,1995,54(1):1-5.
    [96]Shi, L.H., Wang, Q., Li, H., et al., Electrochemical performance of Ni-deposited graphite anodes for lithium secondary batteries [J]. Journal of Power Sources, 2001,102(1-2):60-67.
    [97]杨瑞枝,以酚醛树脂热解炭包覆天然鳞片石墨的复合材料作为锂离子二次电池负极活性材料的研究[J].炭素,1:43-48.
    [98]周向阳,胡国荣,李庆余等.化学镀鳞片石墨作锂离子电池负极活性材料[J].电池,2002,32(5):255-257.
    [99]Tossici, R., Berrettoni, M., Nalimova, V., et al., A high-rate carbon electrode for rechargeable lithium-ion batteries [J]. Journal of the Electrochemical Society, 1996,143(3):L64-L67.
    [100]Dahn, J.R., Zheng, T., Liu, Y.H., et al., Mechanisms for Lithium Insertion in Carbonaceous Materials [J]. Science,1995,270(5236):590-593.
    [101]Xue, J.S. and Dahn, J.R., Dramatic Effect of Oxidation on Lithium Insertion in Carbons Made from Epoxy-Resins [J]. Journal of the Electrochemical Society, 1995,142(11):3668-3677.
    [102]Yoo, E., Kim, J., Hosono, E., et al., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Letters, 2008,8(8):2277-2282.
    [103]Guo, P., Song, H.H. and Chen, X.H., Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries [J]. Electrochemistry Communications,2009,11(6):1320-1324.
    [104]Pan, D.Y., Wang, S., Zhao, B., et al., Li Storage Properties of Disordered Graphene Nanosheets [J]. Chemistry of Materials,2009,21(14):3136-3142.
    [105]Wang, G.X., Shen, X.P., Yao, J., et al., Graphene nanosheets for enhanced lithium storage in lithium ion batteries [J]. Carbon,2009,47(8):2049-2053.
    [106]Huggins, R.A., Lithium alloy negative electrodes formed from convertible oxides [J]. Solid State Ionics,1998,113:57-67.
    [107]Kaskhedikar, N.A. and Maier, J., Lithium Storage ion Carbon Nanostructures [J]. Advanced Materials,2009,21(25-26):2664-2680.
    [108]Derrien, G., Hassoun, J., Panero, S., et al., Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J]. Advanced Materials,2007,19(17):2336-2340.
    [109]Hassoun, J., Panero, S., Simon, P., et al., High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries [J]. Advanced Materials,2007, 19(12):1632-1635.
    [110]Li, N.C. and Martin, C.R., A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis [J]. Journal of the Electrochemical Society,2001,148(2):A164-A170.
    [Ill]Yang, J., Wachtler, M., Winter, M., et al., Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries [J]. Electrochemical and Solid State Letters,1999,2(4):161-163.
    [112]Dimov, N., Kugino, S. and Yoshio, M., Carbon-coated silicon as anode material for lithium ion batteries:advantages and limitations [J]. Electrochimica Acta, 2003,48(11):1579-1587.
    [113]Hatchard, T.D. and Dahn, J.R., In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon [J]. Journal of the Electrochemical Society,2004,151(6):A838-A842.
    [114]Kasavajjula, U., Wang, C.S. and Appleby, A.J., Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J]. Journal of Power Sources, 2007,163(2):1003-1039.
    [115]Li, H., Huang, X.J., Chen, L.Q., et al., A high capacity nano-Si composite anode material for lithium rechargeable batteries [J]. Electrochemical and Solid State Letters,1999,2(11):547-549.
    [116]Courtney, I.A. and Dahn, J.R., Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites [J]. Journal of the Electrochemical Society,1997,144(6):2045-2052.
    [117]Lou, X.W., Deng, D., Lee, J.Y., et al., Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties [J]. Chemistry of Materials,2008,20(20):6562-6566.
    [118]Wang, Y., Lee, J.Y. and Zeng, H.C., Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application [J]. Chemistry of Materials,2005,17(15):3899-3903.
    [119]Park, M.S., Wang, G.X., Kang, Y.M., et al., Preparation and electrochemical properties of SnO2 nano wires for application in lithium-ion batteries [J]. Angewandte Chemie-International Edition,2007,46(5):750-753.
    [120]Wang, Y. and Lee, J.Y., Molten salt synthesis of tin oxide nanorods: Morphological and electrochemical features [J]. Journal of Physical Chemistry B, 2004,108(46):17832-17837.
    [121]Kim, C, Noh, M., Choi, M., et al., Critical size of a nano SnO2 electrode for Li-secondary battery [J]. Chemistry of Materials,2005,17(12):3297-3301.
    [122]Poizot, P., Laruelle, S., Grugeon, S., et al., Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J]. Nature,2000, 407(6803):496-499.
    [123]Chaudhari, S. and Srinivasan, M., 1D hollow alpha-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries [J]. Journal of Materials Chemistry,2012,22(43):23049-23056.
    [124]Chiu, K.F., Chang, C.Y. and Lin, C.M., The electrochemical performance of bias-sputter-deposited nanocrystalline nickel oxide thin films toward lithium [J]. Journal of the Electrochemical Society,2005,152(6):A1188-A1192.
    [125]Ding, Y., Yang, Y.F. and Shao, H.X., Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery [J]. Solid State Ionics,2012,217:27-33.
    [126]Grugeon, S., Laruelle, S., Herrera-Urbina, R., et al., Particle size effects on the electrochemical performance of copper oxides toward lithium [J]. Journal of the Electrochemical Society,2001,148(4):A285-A292.
    [127]Jiao, F., Bao, J.L. and Bruce, P.G, Factors influencing the rate of Fe2O3 conversion reaction [J]. Electrochemical and Solid State Letters,2007,10(12): A264-A266.
    [128]Kang, Y.M., Song, M.S., Kim, J.H., et al., A study on the charge-discharge mechanism of CO3O4 as an anode for the Li ion secondary battery [J]. Electrochimica Acta,2005,50(18):3667-3673.
    [129]Mai, Y.J., Zhang, D., Qiao, Y.Q., et al., MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance [J]. Journal of Power Sources,2012,216:201-207.
    [130]Su, D.W., Ford, M. and Wang, G.X., Mesoporous NiO crystals with dominantly exposed{110} reactive facets for ultrafast lithium storage [J]. Scientific Reports, 2012,2:924.
    [131]Taberna, L., Mitra, S., Poizot, P., et al., High rate capabilities Fe3O4 based Cu nanoarchitectured electrodes for lithium-ion battery applications [J]. Nature Materials,2006,5(7):567-573.
    [132]Tian, L., Zou, H.L., Fu, J.X., et al., Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance [J]. Advanced Functional Materials,2010,20(4):617-623.
    [133]Wang, L.M., Liu, B., Ran, S.H., et al., Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries [J]. Journal of Materials Chemistry,2012,22(44):23541-23546.
    [134]Xia, H., Zhu, D.D., Fu, Y.S., et al., CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries [J]. Electrochimica Acta, 2012,83:166-174.
    [135]Chen, W.M., Qie, L., Shao, Q.G, et al., Controllable Synthesis of Hollow Bipyramid beta-MnO2 and Its High Electrochemical Performance for Lithium Storage [J]. Acs Applied Materials & Interfaces,2012,4(6):3047-3053.
    [136]Piao, Y.Z., Kim, H.S., Sung, Y.E., et al., Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries [J]. Chemical Communications,2010,46(1):118-120.
    [137]Zhang, W.M., Wu, X.L., Hu, J.S., et al., Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries [J]. Advanced Functional Materials,2008,18(24):3941-3946.
    [138]He, Y., Huang, L., Cai, J.S., et al., Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries [J]. Electrochimica Acta,2010,55(3):1140-1144.
    [139]Zhang, K.J., Han, P.X., Gu, L., et al., Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries [J]. Acs Applied Materials & Interfaces,2012,4(2):658-664.
    [140]Yoon, T., Chae, C., Sun, Y.K., et al., Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes [J]. Journal of Materials Chemistry,2011,21(43):17325-17330.
    [141]Li, B.J., Cao, H.Q., Shao, J., et al., Enhanced anode performances of the Fe3O4-Carbon-rGO three dimensional composite in lithium ion batteries [J]. Chemical Communications,2011,47(37):10374-10376.
    [142]Hu, Y.S., Kienle, L., Guo, Y.G., et al., High lithium electroactivity of nanometer-sized rutile TiO2 [J]. Advanced Materials,2006,18(11):1421-1426.
    [143]Lou, X.W., Archer, L.A. and Yang, Z.C., Hollow Micro-/Nanostructures: Synthesis and Applications [J]. Advanced Materials,2008,20(21):3987-4019.
    [144]Zhang, H.L., Zhang, Y, Zhang, X.G, et al., Urchin-like nano/micro hybrid anode materials for lithium ion battery [J]. Carbon,2006,44(13):2778-2784.
    [145]Deng, Y.F., Li, Z.N., Shi, Z.C., et al., Porous Mn2O3 microsphere as a superior anode material for lithium ion batteries [J]. Rsc Advances,2012,2(11): 4645-4647.
    [146]Liu, C., Li, F., Ma, L.P., et al., Advanced Materials for Energy Storage [J]. Advanced Materials,2010,22(8):E28-E62.
    [147]Du, N., Zhang, H., Chen, B., et al., Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:A highly efficient material for Li-battery applications [J]. Advanced Materials,2007,19(24):4505-4509.
    [148]Yu, Y, Chen, C.H. and Shi, Y, A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries [J]. Advanced Materials,2007,19(7):993-997.
    [149]Li, B.X., Rong, G.X., Xie, Y, et al., Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries [J]. Inorganic Chemistry,2006,45(16):6404-6410.
    [150]Lee, K.T., Lytle, J.C., Ergang, N.S., et al., Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries [J]. Advanced Functional Materials,2005,15(4):547-556.
    [151]Wang, Z.Y., Li, F., Ergang, N.S., et al., Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites [J]. Chemistry of Materials,2006,18(23): 5543-5553.
    [152]Guo, Y.G, Hu, Y.S., Sigle, W., et al., Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks [J]. Advanced Materials,2007,19(16):2087-2091.
    [153]Deng, D. and Lee, J.Y., Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage [J]. Chemistry of Materials,2008,20(5):1841-1846.
    [154]Fan, J., Wang, T., Yu, C.Z., et al., Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries [J]. Advanced Materials,2004,16(16):1432-1436.
    [155]Wang, Y, Su, F.B., Lee, J.Y., et al., Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage [J]. Chemistry of Materials,2006,18(5):1347-1353.
    [156]Seeman, N.C., DNA in a material world [J]. Nature,2003,421(6921):427-431.
    [157]McMillan, R.A., Paavola, C.D., Howard, J., et al., Ordered nanoparticle arrays formed on engineered chaperonin protein templates [J]. Nature Materials,2002, 1(4):247-252.
    [158]Gao, X.Y. and Matsui, H., Peptide based nanotubes and their applications in bionanotechnology [J]. Advanced Materials,2005,17(17):2037-2050.
    [159]Nam, K.T., Kim, D.W., Yoo, P.J., et al., Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes [J]. Science,2006,312(5775): 885-888.
    [160]Bigall, N.C., Reitzig, M., Naumann, W., et al., Fungal templates for noble-metal nanoparticles and their application in catalysis [J]. Angewandte Chemie-International Edition,2008,47(41):7876-7879.
    [161]Lim, A.H., Shim, H.W., Seo, S.D., et al., Biomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes [J]. Nanoscale,2012,4(15): 4694-4701.
    [162]Zhou, H., Fan, T.X., Han, T., et al., Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties [J]. Nanotechnology,2009,20(8):085603
    [163]Payne, E.K., Rosi, N.L., Xue, C., et al., Sacrificial biological templates for the formation of nanostructured metallic microshells [J]. Angewandte Chemie-International Edition,2005,44(32):5064-5067.
    [164]Hall, S.R., Bolger, H. and Mann, S., Morphosynthesis of complex inorganic forms using pollen grain templates [J]. Chemical Communications,2003,22: 2784-2785.
    [165]Chia, S.Y., Urano, J., Tamanoi, F., et al., Patterned hexagonal arrays of living cells in sol-gel silica films [J]. Journal of the American Chemical Society,2000, 122(27):6488-6489.
    [166]He, J.H., Kunitake, T. and Nakao, A., Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers [J]. Chemistry of Materials,2003,15(23): 4401-4406.
    [167]Tao, X.Y., Dong, L.X., Wang, X.N., et al., B4C Nanowires/Carbon Microfiber Hybrid Structures and Composites from Cotton T-shirts [J]. Advanced Materials, 2010,22(18):2055-2059.
    [168]Huang, J.Y., Wang, X.D. and Wang, Z.L., Controlled replication of butterfly wings for achieving tunable photonic properties [J]. Nano Letters,2006,6(10): 2325-2331.
    [169]Seshadri, R. and Meldrum, F.C., Bioskeletons as templates for ordered, macroporous structures [J]. Advanced Materials,2000,12(15):1149-1151.
    [170]Yang, D., Qi, L.M. and Ma, J.M., Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes [J]. Advanced Materials,2002,14(21):1543-1546.
    [171]Tao, X.Y., Du, J., Li, Y.P., et al., TaC Nanowire/Activated Carbon Microfiber Hybrid Structures from Bamboo Fibers [J]. Advanced Energy Materials,2011, 1(4):534-539.
    [172]Tao, X.Y., Li, Y.P., Du, J., et al., A generic bamboo-based carbothermal method for preparing carbide (SiC, B4C, TiC, TaC, NbC, TixNb1-xC, and TaxNb1-xC) nanowires [J]. Journal of Materials Chemistry,2011,21(25):9095-9102.
    [173]Shim, H.W., Jin, Y.H., Seo, S.D., et al., Highly Reversible Lithium Storage in Bacillus subtilis-Directed Porous Co3O4 Nanostructures [J]. Acs Nano,2011, 5(1):443-449.
    [174]Lee, Y.J., Lee, Y., Oh, D., et al., Biologically Activated Noble Metal Alloys at the Nanoscale:For Lithium Ion Battery Anodes [J]. Nano Letters,2010,10(7): 2433-2440.
    [175]Lee, Y.J., Yi, H., Kim, W.J., et al., Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes [J]. Science, 2009,324(5930):1051-1055.
    [176]Nam, K.T., Wartena, R., Yoo, P.J., et al., Stamped microbattery electrodes based on self-assembled M13 viruses [J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(45):17227-17231.
    [177]Wei, S.C., Zhang, H., Huang, Y.Q., et al., Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries [J]. Energy & Environmental Science,2011,4(3):736-740.
    [178]Murugan, A.V., Muraliganth, T. and Manthiram, A., Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries [J]. Electrochemistry Communications,2008,10(6):903-906.
    [179]Yang, S.F., Song, Y.N., Zavalij, P.Y., et al., Reactivity, stability and electrochemical behavior of lithium iron phosphates [J]. Electrochemistry Communications,2002,4(3):239-244.
    [180]Oh, S.W., Myung, S.T., Oh, S.M., et al., Double Carbon Coating of LiFePO4 as High Rate Electrode for Rechargeable Lithium Batteries [J]. Advanced Materials, 2010,22(43):4842-4845.
    [181]Zhang, W.K., Zhou, X.Z., Tao, X.Y., et al., In situ construction of carbon nano-interconnects between the LiFePO4 grains using ultra low-cost asphalt [J]. Electrochimica Acta,2010,55(8):2592-2596.
    [182]Liu, H., Cao, Q., Fu, L.J., et al., Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications,2006, 8(10):1553-1557.
    [183]Ou, X.Q., Liang, G.C., Wang, L., et al., Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route [J]. Journal of Power Sources,2008,184(2):543-547.
    [184]Wagemaker, M., Ellis, B.L., Luetzenkirchen-Hecht, D., et al., Proof of Supervalent Doping in Olivine LiFePO4 [J]. Chemistry of Materials,2008, 20(20):6313-6315.
    [185]Wu, Z.J., Yue, H.F., Li, L.S., et al., Synthesis and electrochemical properties of multi-doped LiFePO4/C prepared from the steel slag [J]. Journal of Power Sources,2010,195(9):2888-2893.
    [186]Bauer, E.M., Bellitto, C., Righini, G, et al., A versatile method of preparation of carbon-rich LiFePO4: A promising cathode material for Li-ion batteries [J]. Journal of Power Sources,2005,146(1-2):544-549.
    [187]Xia, Y.G, Yoshio, M. and Noguchi, H., Improved electrochemical performance of LiFePO4 by increasing its specific surface area [J]. Electrochimica Acta,2006, 52(1):240-245.
    [188]Zaghib, K., Charest, P., Dontigny, M., et al., LiFePO4:From molten ingot to nanoparticles with high-rate performance in Li-ion batteries [J]. Journal of Power Sources,2010,195(24):8280-8288.
    [189]Kim, D.H. and Kim, J., Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties [J]. Electrochemical and Solid State Letters, 2006,9(9):A439-A442.
    [190]Konarova, M. and Taniguchi, I., Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries [J]. Journal of Power Sources,2010,195(11):3661-3667.
    [191]Sides, C.R., Croce, F., Young, V.Y., et al., A high-rate, nanocomposite LiFePO4/carbon cathode [J]. Electrochemical and Solid State Letters,2005,8(9): A484-A487.
    [192]Franger, S., Le Cras, F., Bourbon, C, et al., Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J]. Journal of Power Sources,2003,119:252-257.
    [193]Kim, J.K., Cheruvally, G, Choi, J.W., et al., Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material [J]. Journal of Power Sources,2007,166(1):211-218.
    [194]Shin, H.C., Cho, W.I. and Jang, H., Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries [J]. Journal of Power Sources,2006,159(2):1383-1388.
    [195]Kim, J.K., Choi, J.W., Cheruvally, G, et al., A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries [J]. Materials Letters,2007,61(18):3822-3825.
    [196]Murugan, A.V., Muraliganth, T. and Manthiram, A., Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries [J]. Journal of Physical Chemistry C,2008, 112(37):14665-14671.
    [197]Ni, J.F., Morishita, M., Kawabe, Y., et al., Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid [J]. Journal of Power Sources,2010, 195(9):2877-2882.
    [198]Yang, G, Ji, H.M., Liu, H.D., et al., Fast Preparation of LiFePO4 Nanoparticles for Lithium Batteries by Microwave-Assisted Hydrothermal Method [J]. Journal of Nanoscience and Nanotechnology,2010,10(2):980-986.
    [199]Saravanan, K., Reddy, M.V., Balaya, P., et al., Storage performance of LiFePO4 nanoplates [J]. Journal of Materials Chemistry,2009,19(5):605-610.
    [200]Uchiyama, H. and Imai, H., Preparation of LiFePO4 Mesocrystals Consisting of Nanorods through Organic-Mediated Parallel Growth from a Precursor Phase [J]. Crystal Growth & Design,2010,10(4):1777-1781.
    [201]Rangappa, D., Sone, K., Kudo, T., et al., Directed growth of nanoarchitectured LiFePO4 electrode by solvothermal synthesis and their cathode properties [J]. Journal of Power Sources,2010,195(18):6167-6171.
    [202]Teng, F., Santhanagopalan, S., Asthana, A., et al., Self-assembly of LiFePO4 nanodendrites in a novel system of ethylene glycol-water [J]. Journal of Crystal Growth,2010,312(23):3493-3502.
    [203]Cho, Y.D., Fey, GT.K. and Kao, H.M., The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes [J]. Journal of Power Sources, 2009,189(1):256-262.
    [204]Wang, Z.L., Su, S.R., Yu, C.Y., et al., Synthesises, characterizations and electrochemical properties of spherical-like LiFePO4 by hydrothermal method [J]. Journal of Power Sources,2008,184(2):633-636.
    [205]Yu, F., Zhang, J.J., Yang, Y.F., et al., Porous micro-spherical aggregates of LiFePO4/C nanocomposites:A novel and simple template-free concept and synthesis via sol-gel-spray drying method [J]. Journal of Power Sources,2010, 195(19):6873-6878.
    [206]Han, M., Tanaka, M., Takeguchi, M., et al., High-resolution transmission electron microscopy study of interface structure and strain in epitaxial beta-FeSi2 on Si (111) substrate [J]. Journal of Crystal Growth,2003,255(1-2):93-101.
    [207]Li, Y.Y., Liu, J.P., Huang, X.T., et al., Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres [J]. Crystal Growth & Design,2007,7(7): 1350-1355.
    [208]Yu, J.G., Guo, H.T., Davis, S.A., et al., Fabrication of hollow inorganic microspheres by chemically induced self-transformation [J]. Advanced Functional Materials,2006,16(15):2035-2041.
    [209]Zhao, Y.F., Wei, M., Lu, J., et al., Biotemplated Hierarchical Nanostructure of Layered Double Hydroxides with Improved Photocatalysis Performance [J]. Acs Nano,2009,3(12):4009-4016.
    [210]Hall, S.R., Swinerd, V.M., Newby, F.N., et al., Fabrication of porous titania (brookite) microparticles with complex morphology by sol-gel replication of pollen grains [J]. Chemistry of Materials,2006,18(3):598-600.
    [211]Balci, S., Bittner, A.M., Schirra, M., et al., Catalytic coating of virus particles with zinc oxide [J]. Electrochimica Acta,2009,54(22):5149-5154.
    [212]Song, P., Wang, Q., Zhang, Z., et al., Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton [J]. Sensors and Actuators B-Chemical,2010,147(1):248-254.
    [213]Schnepp, Z., Yang, W, Antonietti, M., et al., Biotemplating of Metal Carbide Microstructures:The Magnetic Leaf [J]. Angewandte Chemie-International Edition,2010,49(37):6564-6566.
    [214]Bromley, K.M., Patil, A.J., Perriman, A.W., et al., Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles [J]. Journal of Materials Chemistry,2008,18(40):4796-4801.
    [215]Kobayashi, M., Onodera, K., Watanabe, Y, et al., Fabrication of 3-nm Platinum Wires Using a Tobacco Mosaic Virus Template [J]. Chemistry Letters,2010, 39(6):616-618.
    [216]Sugunan, A., Melin, P., Schnurer, J., et al., Nutrition-driven assembly of colloidal nanoparticles:Growing fungi assemble gold nanoparticles as microwires [J]. Advanced Materials,2007,19(1):77-81.
    [217]Cao, F. and Li, D.X., Biotemplate synthesis of monodispersed iron phosphate hollow microspheres [J]. Bioinspiration& Biomimetics,2010,5:016005.
    [218]Yu, F., Zhang, J.J., Yang, Y.F., et al., Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites [J]. Journal of Materials Chemistry,2009,19(48):9121-9125.
    [219]Yang, S.L., Zhou, X.F., Zhang, J.G., et al., Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries [J]. Journal of Materials Chemistry,2010,20(37):8086-8091.
    [220]Liu, L., Li, Y, Yuan, S.M., et al., Nanosheet-Based NiO Microspheres: Controlled Solvothermal Synthesis and Lithium Storage Performances [J]. Journal of Physical Chemistry C,2010,114(1):251-255.
    [221]Kang, B. and Ceder, G, Battery materials for ultrafast charging and discharging [J]. Nature,2009,458(7235):190-193.
    [222]Belharouak, I., Johnson, C. and Amine, K., Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4 [J]. Electrochemistry Communications,2005,7(10):983-988.
    [223]Cao, Y.L., Yu, L.H., Li, T., et al., Synthesis and electrochemical characterization of carbon-coated nanocrystalline LiFePO4 prepared by polyacrylates-pyrolysis route [J]. Journal of Power Sources,2007,172(2):913-918.
    [224]Govindaraju, K., Basha, S.K., Kumar, V.G., et al., Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler [J]. Journal of Materials Science,2008,43(15):5115-5122.
    [225]Zhou, W.J., He, W., Li, Z.M., et al., Biosynthesis and electrochemical characteristics of LiFePO4/C by microwave processing [J]. Journal of Solid State Electrochemistry,2009,13(12):1819-1823.
    [226]Wong, E.M., Bonevich, J.E. and Searson, P.C., Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions [J]. Journal of Physical Chemistry B,1998,102(40):7770-7775.
    [227]Varghese, B., Reddy, M.V., Yanwu, Z., et al., Fabrication of NiO nanowall electrodes for high performance lithium ion battery [J]. Chemistry of Materials, 2008,20(10):3360-3367.
    [228]Wang, C, Wang, D.L., Wang, Q.M., et al., Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery [J]. Journal of Power Sources,2010,195(21):7432-7437.
    [229]Yuan, Y.F., Xia, X.H., Wu, J.B., et al., Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries [J]. Electrochemistry Communications,2010,12(7):890-893.
    [230]Liu, H., Wang, GX., Liu, J., et al., Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance [J]. Journal of Materials Chemistry,2011,21(9):3046-3052.
    [231]Lou, X.W., Deng, D., Lee, J.Y., et al., Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes [J]. Advanced Materials,2008,20(2):258-262.
    [232]Shim, H.W., Jin, Y.H., Seo, S.D., et al., Highly Reversible Lithium Storage in Bacillus subtilis-Directed Porous CO3O4 Nanostructures [J]. Acs Nano,2011, 5(1):443-449.
    [233]Jin, S.L., Deng, H.G, Long, D.H., et al., Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes [J]. Journal of Power Sources,2011,196(8):3887-3893.
    [234]Rahman, M.M., Chou, S.L., Zhong, C, et al., Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention [J]. Solid State Ionics,2010,180(40):1646-1651.
    [235]Wang, X.H., Yang, Z.B., Sun, X.L., et al., NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries [J]. Journal of Materials Chemistry,2011,21(27):9988-9990.
    [236]Zou, Y.Q. and Wang, Y., NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries [J]. Nanoscale,2011,3(6): 2615-2620.
    [237]Tao, X.Y., Dong, L.X., Wang, X.N., et al., B4C-Nanowires/Carbon-Microfiber Hybrid Structures and Composites from Cotton T-shirts [J]. Advanced Materials, 2010,22(18):2055-2059.
    [238]Liu, H.J., Wang, X.M., Cui, W.J., et al., Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells [J]. Journal of Materials Chemistry,2010,20(20): 4223-4230.
    [239]Shim, H.W., Lim, A.H., Min, K.M., et al., Synthesis of manganese oxide nanostructures using bacterial soft templates [J]. Crystengcomm,2011,13(22): 6747-6752.
    [240]Zhou, H., Fan, T., Zhang, D., et al., Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures [J]. Chemistry of Materials,2007,19(9):2144-2146.
    [241]Wang, Y, Liu, Z.M., Han, B.X., et al., Carbon microspheres with supported silver nanoparticles prepared from pollen grains [J]. Langmuir,2005,21(23): 10846-10849.
    [242]Xia, X.H., Tu, J.P., Wang, X.L., et al., Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material [J]. Journal of Materials Chemistry,2011,21(3): 671-679.
    [243]Xia, Y, Zhang, W.K., Huang, H., et al., Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures[J]. Journal of Materials Chemistry,2011,21(18):6498-6501.
    [244]Mironova-Ulmane, N., Kuzmin, A., Sildos, I., et al., Polarisation dependent Raman study of single-crystal nickel oxide [J]. Central European Journal of Physics,2011,9(4):1096-1099.
    [245]Kottegoda, I.R.M., Idris, N.H., Lu, L., et al., Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge-discharge application [J]. Electrochimica Acta,2011,56(16):5815-5822.
    [246]Mai, Y.J., Tu, J.P., Xia, X.H., et al., Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries [J]. Journal of Power Sources, 2011,196(15):6388-6393.
    [247]Zhu, X.J., Hu, J., Dai, H.L., et al., Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium ion battery [J]. Electrochimica Acta,2012,64:23-28.
    [248]Arico, A.S., Bruce, P., Scrosati, B., et al., Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials,2005,4(5): 366-377.
    [249]Laruelle, S., Grugeon, S., Poizot, P., et al., On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential [J]. Journal of the Electrochemical Society,2002,149(5):A627-A634.
    [250]Ding, Y.L., Wu, C.Y., Yu, H.M., et al., Coaxial MnO/C nanotubes as anodes for lithium-ion batteries [J]. Electrochimica Acta,2011,56(16):5844-5848.
    [251]Li, X.W., Li, D., Qiao, L., et al., Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes [J]. Journal of Materials Chemistry, 2012,22(18):9189-9194.
    [252]Liu, Y.M., Zhao, X. Y, Li, F., et al., Facile synthesis of MnO/C anode materials for lithium-ion batteries [J]. Electrochimica Acta,2011,56(18):6448-6452.
    [253]Sun, B., Chen, Z.X., Kim, H.S., et al., MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries [J]. Journal of Power Sources, 2011,196(6):3346-3349.
    [254]Zhong, K.F., Zhang, B., Luo, S.H., et al., Investigation on porous MnO microsphere anode for lithium ion batteries[J]. Journal of Power Sources,2011, 196(16):6802-6808.
    [255]Fang, X.P., Lu, X., Guo, X.W., et al., Electrode reactions of manganese oxides for secondary lithium batteries [J]. Electrochemistry Communications,2010, 12(11):1520-1523.
    [256]Guo, C.X., Wang, M., Chen, T., et al., A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High-Performance Lithium Ion Batteries [J]. Advanced Energy Materials,2011,1(5):736-741.
    [257]Yu, A.P., Park, H.W., Davies, A., et al., Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries [J]. Journal of Physical Chemistry Letters,2011,2(15):1855-1860.
    [258]Qiu, Y.C., Xu, G.L., Yan, K.Y., et al., Morphology-conserved transformation: synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties [J]. Journal of Materials Chemistry,2011,21(17):6346-6353.
    [259]Gao, J., Lowe, M.A. and Abruna, H.D., Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries [J]. Chemistry of Materials,2011,23(13):3223-3227.
    [260]Wang, C.B., Yin, L.W., Xiang, D., et al., Uniform Carbon Layer Coated Mn3O4 Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries [J]. Acs Applied Materials & Interfaces,2012,4(3): 1636-1642.
    [261]Hao, Q., Xu, L.Q., Li, GD., et al., Synthesis of MnO/C composites through a solid state reaction and their transformation into MnO2 nanorods [J]. Journal of Alloys and Compounds,2011,509(21):6217-6221.
    [262]Kim, S.W., Han, T.H., Kim, J., et al., Fabrication and Electrochemical Characterization of TiO2 Three-Dimensional Nanonetwork Based on Peptide Assembly [J]. Acs Nano,2009,3(5):1085-1090.
    [263]Zhou, H., Fan, T.X. and Zhang, D., Biotemplated Materials for Sustainable Energy and Environment:Current Status and Challenges [J]. Chemsuschem, 2011,4(10):1344-1387.
    [264]Pomerantseva, E., Gerasopoulos, K., Chen, X.Y., et al., Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries [J]. Journal of Power Sources,2012,206:282-287.
    [265]Xia, Y, Zhang, W.K., Xiao, Z., et al., Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries [J]. Journal of Materials Chemistry,2012,22(18):9209-9215.
    [266]Zhou, H., Fan, T.X. and Zhang, D., Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates [J]. Microporous and Mesoporous Materials,2007,100(1-3):322-327.
    [267]Zhou, H., Li, X.F., Fan, T.X., et al., Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural Photosynthesis [J]. Advanced Materials,2010,22(9):951-956.
    [268]Shin, Y.S., Wang, C.M. and Exarhos, GL., Synthesis of SiC ceramics by the carbothermal reduction of mineralized wood with silica [J]. Advanced Materials, 2005,17(1):73-77.
    [269]Guo, J.L., Wang, X.L., Liao, X.P., et al., Skin Collagen Fiber-Biotemplated Synthesis of Size-Tunable Silver Nanoparticle-Embedded Hierarchical Intertextures with Lightweight and Highly Efficient Microwave Absorption Properties [J]. Journal of Physical Chemistry C,2012,116(14):8188-8195.
    [270]Kamata, K., Suzuki, S., Ohtsuka, M., et al., Fabrication of Left-Handed Metal Microcoil from Spiral Vessel of Vascular Plant [J]. Advanced Materials,2011, 23(46):5509-5513.
    [271]Zahr, O.K. and Blum, A.S., Solution Phase Gold Nanorings on a Viral Protein Template [J]. Nano Letters,2012,12(2):629-633.
    [272]Li, X., Chen, S.Y., Hu, W.L., et al., In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers [J]. Carbohydrate Polymers,2009,76(4):509-512.
    [273]Bansal, V, Poddar, P., Ahmad, A., et al., Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles [J]. Journal of the American Chemical Society,2006,128(36):11958-11963.
    [274]Nuraje, N., Dang, X.N., Qi, J.F., et al., Biotemplated Synthesis of Perovskite Nanomaterials for Solar Energy Conversion [J]. Advanced Materials,2012, 24(21):2885-2889.
    [275]Huang, M.J. and Wang, Y.J., Synthesis of calcium phosphate microcapsules using yeast-based biotemplate [J]. Journal of Materials Chemistry,2012,22(2): 626-630.
    [276]Xia, Y., Zhang, W.K., Huang, H., et al., Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures [J]. Journal of Materials Chemistry,2011,21(18):6498-6501.
    [277]Lam, M.K. and Lee, K.T., Microalgae biofuels:A critical review of issues, problems and the way forward [J]. Biotechnology Advances,2012,30(3): 673-690.
    [278]Zaki, M.I., Hasan, M.A., Pasupulety, L., et al., Thermochemistry of manganese oxides in reactive gas atmospheres:Probing redox compositions in the decomposition course MnO2->MnO [J]. Thermochimica Acta,1997,303(2): 171-181.
    [279]Rusakova, I., Ould-Ely, T., Hofinann, C., et al., Nanoparticle shape conservation in the conversion of MnO nanocrosses into Mn3O4 [J]. Chemistry of Materials, 2007,19(6):1369-1375.
    [280]Langell, M.A., Hutchings, C.W., Carson, G.A., et al., High resolution electron energy loss spectroscopy of MnO(100) and oxidized MnO(100) [J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1996,14(3): 1656-1661.
    [281]Varade, A. and Shivashankar, S.A., Large negative magnetoresistance and metal-insulator transition observed in MnO/C composite coatings grown on ceramic alumina by metalorganic chemical vapor deposition [J]. Carbon,2011, 49(4):1401-1407.
    [282]Li, H., Balaya, P. and Maier, J., Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides [J]. Journal of the Electrochemical Society,2004,151(11):A1878-A1885.
    [283]Huang, X.H., Tu, J.P., Zhang, C.Q., et al., Net-structured NiO-C nanocomposite as Li-intercalation electrode material [J]. Electrochemistry Communications, 2007,9(5):1180-1184.
    [284]Xiang, J.Y., Tu, J.P., Zhang, L., et al., Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries [J]. Journal of Power Sources,2010,195(1):313-319.
    [285]Liu, S.Y., Xie, J., Zheng, Y.X., et al., Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties [J]. Electrochimica Acta,2012,66:271-278.
    [286]Wang, J.L., Yang, J., Xie, J.Y., et al., A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries [J]. Advanced Materials,2002,14:963-965.
    [287]Ji, X.L., Lee, K.T. and Nazar, L.F., A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries [J]. Nature Materials,2009, 8:500-506.
    [288]Elazari, R., Salitra, G, Garsuch, A., et al., Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J]. Advanced Materials,2011,23:5641-5644.
    [289]Ji, L.W., Rao, M.M., Zheng, H.M., et al., Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells [J]. Journal of the American Chemical Society,2011,133:18522-18525.
    [290]Ji, X.L., Evers, S., Black, R., et al., Stabilizing lithium-sulphur cathodes using poly sulphide reservoirs [J]. Nature Communications,2011,2:325.
    [291]Bruce, P.G.,Freunberger, S.A., Hardwick, L.J., et al., Li-O2 and Li-S batteries with high energy storage [J]. Nature Materials,2012,11:19-29.
    [292]Fang, X.P., Guo, X.W., Mao, Y., et al., Mechanism of Lithium Storage in MoS2 and the Feasibility of Using Li2S/Mo Nanocomposites as Cathode Materials for Lithium-Sulfur Batteries [J]. Chemistry-an Asian Journal,2012,7:1013-1017.
    [293]Lee, K.T., Black, R., Yim, T., et al., Surface-Initiated Growth of Thin Oxide Coatings for Li-Sulfur Battery Cathodes [J]. Advanced Energy Materials,2012,2: 1490-1496.
    [294]Li, G.C., Li, GR., Ye, S.H., et al., A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries [J]. Advanced Energy Materials,2012,2:1238-1245.
    [295]Seh, Z.W., Li, W.Y., Cha, J.J., et al., Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries [J]. Nature Communications,2012,4:1331.
    [296]Su, Y.S. and Manthiram, A., Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer [J]. Nature Communications,2012,3: 1166.
    [297]Wang, L., He, X.M., Li, J.J., et al., Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries [J]. Journal of Materials Chemistry,2012,22:22077-22081.
    [298]Xiao, L.F., Cao, Y.L., Xiao, J., et al., A Soft Approach to Encapsulate Sulfur: Poly aniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life [J]. Advanced Materials,2012,24:1176-1181.
    [299]Xin, S., Gu, L., Zhao, N.H., et al., Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries [J]. Journal of the American Chemical Society,2012, 134:18510-18513.
    [300]Zhang, C.F., Wu, H.B., Yuan, C.Z., et al., Confining Sulfur in Double-Shelled Hollow Carbon Spheres for Lithium-Sulfur Batteries [J]. Angewandte Chemie-International Edition,2012,51:9592-9595.
    [301]Zhao, M.Q., Liu, X.F., Zhang, Q., et al., Graphene/Single-Walled Carbon Nanotube Hybrids:One-Step Catalytic Growth and Applications for High-Rate Li-S Batteries [J]. Acs Nano,2012,6:10759-10769.
    [302]Zhou, G.M., Wang, D.W., Li, F., et al., A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries [J]. Energy & Environmental Science,2012,5:8901-8906.
    [303]Lin, F.J., Wang, J.L., Jia, H., et al., Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials [J]. Journal of Power Sources,2013,223:18-22.
    [304]Wang, C., Wan, W., Chen, J.T., et al., Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries [J]. Journal of Materials Chemistry A 2013,1:1716-1723.
    [305]Tominaka, S., Tsujimoto, Y., Matsushita, Y., et al., Synthesis of Nanostructured Reduced Titanium Oxide:Crystal Structure Transformation Maintaining Nanomorphology [J]. Angewandte Chemie-International Edition,2012,50: 7418-7421.
    [306]Wei, S.C., Zhang, H., Huang, Y.Q., et al., Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries [J]. Energy & Environmental Science,2011,4:736-740.
    [307]Zheng, G.Y., Yang, Y., Cha, J.J., et al., Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries [J]. Nano Letters,2011,11(10):4462-4467.
    [308]Wang, J., Chew, S.Y., Zhao, Z.W., et al., Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries [J]. Carbon,2008,46(2):229-235.
    [309]Wang, J.L., Liu, L., Ling, Z.J., et al., Polymer lithium cells with sulfur composites as cathode materials [J]. Electrochimica Acta,2003,48(13): 1861-1867.
    [310]Wang, J.L., Yang, J., Xie, J.Y., et al., Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte [J]. Electrochemistry Communications,2002,4(6):499-502.
    [311]Zheng, W., Liu, Y.W., Hu, X.G., et al., Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries [J]. Electrochimica Acta,2006,51(7):1330-1335.
    [312]Ji, X.L., Evers, S., Lee, K.T., et al., Agitation induced loading of sulfur into carbon CMK-3 nanotubes:efficient scavenging of noble metals from aqueous solution [J]. Chemical Communications,2010,46(10):1658-1660.
    [313]Lai, C, Gao, X.P., Zhang, B., et al., Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites [J]. Journal of Physical Chemistry C,2009,113(11):4712-4716.
    [314]陈永主编.多孔材料制备及表征[M].中国科学技术大学出版社,2010,
    [315]Jayaprakash, N., Shen, J., Moganty, S.S., et al., Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries [J]. Angewandte Chemie-International Edition,2011,50(26):5904-5908.
    [316]Ryu, H.S., Guo, Z.P., Ann, H.J., et al., Investigation of discharge reaction mechanism of lithium vertical bar liquid electrolyte vertical bar sulfur battery [J]. Journal of Power Sources,2009,189(2):1179-1183.
    [317]Zhang, B., Qin, X., Li, GR., et al., Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres [J]. Energy & Environmental Science,2010,3(10):1531-1537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700