基于碳骨架的多孔医用金属材料制备与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医用多孔金属材料,由于独特的孔隙结构可以在避免应力遮挡效应的同时,实现生物固定,近年来受到人们的关注,并取得了较好的临床结果,但是它们具有一些与生俱来的局限,比如低的孔隙度和相对高的弹性模量。金属钯和金属银具有优异的耐蚀性和良好生物相容性,在医学领域的应用越来越受到重视。银还有独特的抑菌性能,被作为抗菌剂广泛应用于医疗保健和疾病治疗。但是,目前尚未见多孔钯和多孔银的研究报导。
     本文设计了具有三维贯通孔隙结构的多孔碳骨架,通过化学镀、电镀的方法在其上制备金属钯(银)层,通过对化学镀和电镀工艺参数的优化和调整,最终获得孔隙结构可调的多孔钯(银)的新型多孔金属材料,并对多孔钯(银)的孔隙结构、物相组成、压缩行为和生物相容性进行表征,此外还研究了多孔银的抗菌性能。
     研究结果表明,以不同孔径的聚氨酯海绵为基体,经过酚醛树脂处理及固化,制得的固化泡沫在1100oC真空条件下热解,成功制备了类似泡沫状结构,孔径尺寸287~2020μm的多孔碳骨架,制得的多孔碳骨架是一种典型的短程有序的非石墨化玻璃炭材料。1100oC热解使固化泡沫在轴向和径向尺寸产生14~15%的收缩,两个方向上的收缩是同步的,总体收缩量基本保持相等。孔径55ppi的聚氨酯海绵经酚醛树脂处理固化后1100oC真空热解,所得的多孔碳骨架孔隙率高达95%,孔隙贯通,平均孔径为602±93μm,可作为后期化学镀、电镀的多孔基体材料。制得的多孔碳骨架具有较低的细胞毒性,显示了优良的生物安全性能。
     以多孔碳骨架为基体,通过化学镀钯、电镀钯工艺成功制得多孔钯。通过对各工艺参数的研究,确定优化制备工艺为:化学镀钯PdCl22g/L,N2H_410ml/L,EDTA60g/L,NH_4OH340ml/L,pH11,Ce添加剂1.5g/L;电镀钯电流密度1.5A/g,pH值9.0,温度50oC、糖精添加剂2.5g/L。使用优化制备工艺通过调整电镀时间制得了孔隙度82.9%~63.5%,表观密度91.7~319.6mg/cm~3,孔径尺寸500~600μm的高度贯通类似松质骨的多孔钯,制备的钯镀层为面心立方钯单质。多孔钯的孔隙度、表观密度和平均孔径尺寸,均与天然松质骨接近。多孔钯的弹性模量为11.5~67.6MPa,与股骨和脊柱部位的松质骨的弹性模量相匹配。多孔钯在模拟体液条件下离子溶出量较低,显示了较低的细胞毒性。制备的多孔钯可作为潜在的植入器械表面多孔涂层应用于齿科种植体或人工关节植入器械中。
     以多孔碳骨架为基体,通过化学镀银、电镀银工艺成功制得多孔银。通过对各工艺参数的研究,确定优化制备工艺为:化学镀银AgNO316g/L,NH3H2O80ml/L,NaOH12g/L,C_6H_(12)O_621g/L,C2H5OH75ml/L;电镀银4A/g,pH值9.0,温度25oC。使用优化制备工艺,通过不同的电镀时间,成功获得孔隙度68%~81%,表观密度13.1~97mg/cm~3,平均孔径387~575μm的多孔银。制备的多孔银为面心立方银单质,具有高度贯通类似松质骨的孔隙结构;孔隙度、表观密度和平均孔径尺寸,均与天然松质骨接近。不同孔隙度多孔银的弹性模量为1.94~49.3MPa,股骨部位的松质骨的弹性模量相近,并且多孔银的压缩行为可以用Gibson-Ashby提出的松质骨力学模型解释。此外,多孔银在模拟体液条件下离子溶出率较低,显示了可以接受的细胞毒性,和优异的抑菌性能。热处理使电镀多孔银镀层致密,提高了多孔银的力学性能,但是影响了多孔银在SBF中的离子溶出行为,降低了生物安全性。
Since biomedical porous metal has unique structure which could avoid stress shieldeffect and achieve biomedical fixation, it appears more attention in recent years. Owing toPalladium’s and Silver’s excellent corrosion resistance, low toxicity, good ductility andbiocompatibility, they appear wide applications in medical field. Moreover, silver, which hasparticular bacteriostatic properties, have been wide used as antibacterial agent for healthcareand diseases cure. However, there is no study about porous palladium and porous silver yet.
     In this paper, we designed a novel preparation process, which a porous carbon skeletonwith three-dimensional interconnected porous structure were introduced, after electrolessplating and electroplating process, the Pd or Ag metallic layer was deposited on the porouscarbon skeleton, resulting a novel porous Pd or Ag scaffolds with foam-like structure withadjustable porosities. The porous structure, phase composition, compression behavior andbiocompatibility evaluations of as-prepared porous Pd and Ag scaffolds were investigated. Inaddition, the antibacterial activity of porous Ag scaffolds was investigated.
     The open cell polyurethane foam solidified with phenolic resin, were pyrolyzed at1100oC in the vacuum, through which could successfully produce the porous carbon skeletonwith foam-like structure which average pore size287~2020μm. The as-prepared porouscarbon skeleton was characterized with short-range ordered non-graphitizing glass-like carbonphase composition. The carbon skeleton prepared by the polyurethane foam with55ppipossessed95%porosity and602±93μm average pore size which was considered to be aappropriate porous structure as substrate of electroless plating and electroplating processafterwards. Moreover, the in vitro cytotoxicity evaluation showed that as-prepared carbonskeleton possessed a good biocompatibility.
     We successfully prepared porous Pd scaffolds exhibiting highly interconnected porousstructure with porosities82.9%~63.5%, apparent densities91.7~319.6g/cm~3average pore size500~600μm by optimizing the parameters of electroless planting process (PdCl22g/L, N2H_410ml/L, EDTA60g/L, NH_4OH340ml/L, pH11, Ce additive1.5g/L) and electroplatingprocess (current density1.5A/g, pH value9.0, temperature50oC, additive2.5g/L) on porouscarbon skeleton. The as-prepared porous Pd scaffolds were face-centered cubic palladium. The porous Pd scaffolds had the porosities, apparent densities and average pore size muchsimilar as nature cancellous bone. The porous Pd scaffolds possessed elasticity modulus11.5~67.6MPa which was similar as the compression behaviors of femur cancellous bone andspinal cancellous bone. Moreover, the porous Pd scaffolds showed low ion release rate andlow cell toxicity. Therefore, the porous Pd scaffolds may have a promising application forporous coating of dental implant or joint arthroplasty implant.
     As porous Pd scaffolds, we successfully prepared porous Ag scaffolds with highlyinterconnected porous structure which porosities68%~81%, apparent densities13.1~97g/cm~3average pore size387~575μm by optimizing the parameters of electroless plantingprocess (AgNO316g/L, NH3H2O80ml/L, NaOH12g/L, C_6H_(12)O_621g/L, C2H5OH75ml/L)and electroplating process (current density4A/g, pH value9.0, temperature25oC) on porouscarbon skeleton. The as-prepared porous Ag scaffolds were face-centered cubic silver. Theporous Ag scaffolds had the porosities, apparent densities and average pore size much similaras nature cancellous bone and possessed elasticity modulus1.94~49.3MPa which was similaras the compression behavior of femur cancellous bone. Moreover, the porous Ag scaffoldsshowed low ion release rate and acceptable cell toxicity. After heat treatment, the porous Agscaffolds showed a compact smooth metallic layer and a high compress property. However,heat treatment altered the ion release behavior and the treated porous Ag scaffolds showedlower long term biosafty. Consequently, the porous Ag scaffolds may have a promisingapplication for porous coating of dental implant or joint arthroplasty implant.
引文
[1]浦素云.金属植入材料及其腐蚀[M].北京:北京航空航天大学出版社:1990,135~146.
    [2] Kroger H, Venesmaa P, Jurvelin J, et al. Bone density at the proximal femur after totalhiparthroplasty[J]. Clin Orthop Relat Res.1998;352:66-74.
    [3]郑玉峰,李莉.生物医用材料学[M].哈尔滨:哈尔滨工业大学出版社:2009,54-244.
    [4] Frank Witte. Degradable biomaterials based on magnesium corrosion[J]. Curr OpinSolid State Mater Sci.2008;12:63-72.
    [5]郑玉峰,刘彬,顾雪楠.可生物降解性医用金属材料的研究进展[J].材料导报.2009;23(1):1-6.
    [6] E. Perilli. Structural parameters and mechanical strength of cancellous bone in thefemoral head in osteoarthritis do not depend on age[J]. Bone.2007;41:760-768.
    [7] Simancik F. Introduction: the strange world of cellular metals. In:Degischer HP, KrisztB, editors. Handbook of cellular metals.Weinheim: Wiley-VCH Verlag;2002:1-4.
    [8] Weber JN, White EW. Carbon-metal graded composites for permanent osseousattachment of non-porous metals[J]. Mater Res Bull.1972;7(9):1005-1016.
    [9] Klawitter JJ, Weinstein AM. The status of porous materials to obtain direct skeletalattachment by tissue ingrowth[J]. Acta Orthop Belg1974;40:755-765.
    [10] White EW, Weber JN, Roy DM, et al. White RA.Replamineform porous biomaterialsfor hard tissue implant applications[J]. J Biomed Mater Res.1975;9:23-27.
    [11] Klawitter JJ, Bagwell JG, Weinstein AM, et al. An evaluation of bone growth intoporous high density polyethylene[J]. J Biomed Mater Res.1976;10:311-323.
    [12] Cestero Jr HJ, Salyer KE, Toranto IR. Bone growth into porous carbon, polyethylene,and polypropylene prostheses[J]. J Biomed Mater Res.1975;9:1-7.
    [13] Spector M, Michno MJ, Smarook WH, et al. A high-modulus polymer for porousorthopedic implants: biomechanical compatibility of porous implants[J]. J BiomedMater Res.1978;12:665-77.
    [14] Homsy CA, Cain TE, Kessler FB, et al. Porous implant systems for prosthesisstabilization[J]. Clin Orthop.1972;89:220-235.
    [15] Sauer BW, Weinstein AM, Klawitter JJ, et al. The role of porous polymeric materialsin prosthesis attachment[J]. J Biomed Mater Res.1974;8:145-153.
    [16] Hirschhorn J, McBeath A, Dustoor M. Porous titanium surgicalimplant materials[J]. JBiomed Mater Res.Symp.1971;2:49-67.
    [17] Galante J, Rostoker W, Lueck R, et al. Sintered fiber metal composites as a basis forattachment of implants to bone[J]. Bone Joint Surg Am.1971;53:101-114.
    [18] Karagienes M. Porous metals as a hard tissue substitute. I.Biomedical aspects[J].Biomater Med Dev Artif Organs.1973:171-181.
    [19] Banhart, John. Manufacture, characterisation and application of cellular metals andmetal foams[J]. Prog. Mater Sci.2001;46(6):559-632.
    [20] K rner C, Singer RF. Foaming processes for aluminium. In:Degischer HP, Kriszt B,editors. Handbook of cellular metals.Weinheim: Wiley-VCH Verlag;2002:8-14.
    [21] K rner C, Singer R. Processing of metal foams—challenges and opportunities[J]. AdvEng Mater.2000;2:159-165.
    [22] Hahn H, Palich W. Preliminary evaluation of porous metal surfaced titanium fororthopedic implants[J]. J Biomed Mater Res.1970;4:571-577.
    [23] Oh IH, Nomura N, Masahashi N, et al. Mechanical properties of porous titaniumcompacts prepared by powder sintering[J]. Scripta Mater2003;49:1197-1202.
    [24] Martell JM, Pierson III RH, Jacobs JJ, et al. Primary total hip reconstruction with atitanium fibercoated prosthesis inserted without cement[J]. Bone oint Surg Am.993;75:554-571.
    [25] Assad M, Likibi F, Jarzem P, et al. Porous nitinol vs. titanium intervertebral fusionimplants: computer tomography, radiological and histological study ofosseointegration capacity[J]. Materialwissenschaft und Werkstofftechnik.2004;35:219-223.
    [26] Vamsi Krishna Balla, Subhadip Bodhak, Susmita Bose, et al. Porous tantalumstructures for bone implants: Fabrication, mechanical and in vitro biologicalproperties[J]. Acta Biomaterialia.2010;6:3349-3359.
    [27] Kaplan RB. Open cell tantalum structures for cancellous bone implants and cell andtissue receptors. United States,5282861[P].1994-02-01.
    [28] Jia Ping Li. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping:Preparation and in vitro experiment[J]. Biomaterials.2006;27:1223-1235.
    [29] Garrett E. Ryan, Porous titanium scaffolds fabricated using a rapid prototyping andpowder metallurgy technique[J]. Biomaterials.2008;29:3625-3635.
    [30] J. P. Li. A novel porous Ti6Al4V: Characterization and cell attachment[J]. J BiomedMater Res A.2005;73:223-233.
    [31] Davis N, Teisen J, Schuh C, et al. Solid-state foaming of titanium by superplasticexpansion of argon-filled pores[J]. Mater Res.2001;16(5):1508-1519.
    [32] Erik D. Spoerke. A bioactive titanium foam sca old for bone repair. ActaBiomaterialia.2005;1:523-533.
    [33] Hwang JJ, Jaeger K, Hancock J, et al. Organoapatite growth on an orthopedic alloysurface[J]. J Biomed Mater Res.1999;47(4):504-515.
    [34] Bing-Yun Li, Li-Jian Rong, Yi-Yi Li, et al. Fabrication of cellular NiTi intermetalliccompounds[J]. Mater Res.2000;15:10-13.
    [35] S.L. Zhu. Processing of porous TiNi shape memory alloy from elemental powders byAr-sintering[J]. Materials Letters.2004;58:2369-2373.
    [36] M. Barrabés. Mechanical properties of nickel-titanium foams for reconstructiveorthopaedics[J]. Materials Science and Engineering C.2008,28:23-27.
    [37] Rhalmi S, Charette S, Assad M, et al. The spinal cord dura mater reaction to nitinoland titanium alloy particles: a1-year study in rabbits[J]. Europ Spine.2007;16:1063-72.
    [38] Wen C E, Yamada Y, Shimojima K, et al. Processing and mechanical properties ofautogenous titanium implant materials[J]. Journal of Materials Science: Materials inMedicine.2002;13:397-401.
    [39]蒂吉斯切H P, B克雷茨特.多孔泡沫金属[M].左孝青,周芸译:北京:化学工业出版社.2005.
    [40] Bram M, C Stiller, H P Buchkremer, et al. High-porosity titanium stainlesssteel andsuper alloy parts[J]. Advanced Engineering Materials.2000;2(4):196-199.
    [41] Esen Z, S Bor. Processing of titanium foams using magnesium spacer particles[J].Scripta Mater.2007;56(5):341-344.
    [42]李虎.生物力学相容多孔钛的制备及其活化研究[D].成都:四川大学硕士学位论文,2005:35-44.
    [43]李虎,虞奇峰,张波,等.浆料发泡法制备生物活性多孔钛及其性能[J].稀有金属材料与工程,2006,35(1):154-156.
    [44]丑晓明.粉末冶金钛合金及多孔钛研究[D].长沙:中南大学硕士学位论文,2007:56-64.
    [45] L.E. Murr. Characterization of Ti6Al4V open cellular foams fabricated by additivemanufacturing using electron beam melting[J]. Materials Science and Engineering A.2010;527:1861-1868.
    [46] Jean-Philippe St-Pierre. Three-dimensional growth of differentiatingMC3T3-E1pre-osteoblasts on porous titanium scaffolds[J]. Biomaterials.2005;26:7319-7328.
    [47] Hahn, Palich. Preliminary Evaluation of Porous Metal Surfaced Titanium forOrthopedic Implants[J]. J Biomed Mater Res.1970;4(4):571-577.
    [48] Mitsuru Takemoto. Mechanical properties and osteoconductivity of porous bioactivetitanium[J]. Biomaterials.2005;26:6014-6023.
    [49] L.E. Murr. Characterization of Ti-6Al-4V open cellular foams fabricated by additivemanufacturing using electron beam melting[J]. Materials Science and Engineering A.2010;527:1861-1868.
    [50] Zardiackas LD, Parsell DE, Dillon LD, et al. Structure, metallurgy, and mechanicalproperties of a porous tantalum foam[J]. J Biomed Mater Res.(Appl Biomater),2001;58:180-187.
    [51] Shimko DA, Shimko VF, Sander EA, et al. Effect of porosity on the fluid flowcharacteristics and mechanical properties of tantalum scaffolds[J]. J Biomed MaterRes.(Appl Biomater),2005;73B:315-324.
    [52] Zhang Y, Ahn PB, Fitzpatrick DC, et al. Interfacial Frictional Behavior: CancellousBone, Cortical Bone, and a Novel porous tantalum Biomaterial[J]. Journal ofMusculoskeletal Research.1999;3(4):245-251.
    [53] Wen HB, Dalmeijer RAJ, Cui FZ, et al. Preparation of calcium phosphate coating onporous tantalum[J]. J Mater Sci Lett,1998;17:925-930.
    [54] Gordon WJ, Conzemius MG, Birdsall E, et al. Chondroconductive potential oftantalum trabecular metal[J]. J Biomed Mater Res.Part B (Appl Biomater).2005;75B:229-233.
    [55] Hacking SA, Bobyn JD, Toh K, et al. Fibrous tissue ingrowth and attachment toporous tantalum[J]. J Biomed Mater Res,2000;52(4):631-638.
    [56] Matsuno H, Yokoyama A, Watari F, et al. Biocompatibility and osteogenesis ofrefractory metal implants, titanium, hafnium, niobium, tantalum and rhenium[J].Biomaterials.2001;22:1253-1262.
    [57] Reach JS Jr, Dickey ID, Zobitz ME, et al. Direct tendon attachment and healing toporous tantalum: an experimental animal study[J]. J Bone Joint Surg Am,2007;89(5):1000-1009.
    [58] Zou X, Li H, Teng X, et al. Pedicle screw fixation enhances anterior lumbar interbodyfusion with porous tantalum cages: an experimental study in pigs[J]. Spine,2005;30(14):392-399.
    [59] Bobyn JD, Stackpool GJ, Hacking SA, et al. Characteristics of bone ingrowth andinterface mechanics of a new porous tantalum biomaterial[J]. J Bone Joint Surg Br,1999;81(5):907-914.
    [60] Bobyn JD, Toh KK, Hacking SA, et al. Tissue response to porous tantalum acetabularcups: a canine model[J]. J Arthroplasty.1999;14(3):347-354.
    [61] Zou X, Li H, Bünger M, et al. Bone ingrowth characteristics of porous tantalum andcarbon fiber interbody devices: an experimental study in pigs[J]. Spine,2004;4:99-105.
    [62] Itala A, Heijink A, Leerapun T, et al. Successful canine patellar tendon reattachment toporous trabecular metal[J]. Clin Orthop Relat Res,2007;463:202-207.
    [63]陈景,张永俐,李关芳.贵金属—周期表中一族璀璨的元素[M].北京:清华大学出版社;2002.
    [64] White. RJ: An historical overview on the use of silver in modern woundmanagement[J]. Br. J. Nurs.2002;15(10):3-8.
    [65] Russell AD, Path FR, Hugo WB. Antimicrobial activity and action of silver[J]. Prog.Med. Chem.1994;31:351-370.
    [66] Albright CF, Nachum R, Lechtman MD: Electrolytic silver ion generator for watersterilization in Apollo spacecraft water systems. Apollo applications program. NASAContract Rep.(1967).
    [67] Conrand AH, Tramp CR, Long CJ, et al. Ag+alters cell growth, neurite extension,cardiomyocyte beating, and fertilized egg constriction. Aviat. Space Environ. Med.1999;70(11):1096-1105.
    [68] Klasen HJ: Historical review of the use of silver in the treatment of burns. I. Early uses[J]. Burns.2000;26(2):117-130.
    [69] Klasen HJ: A historical review of the use of silver in the treatment of burns. II.Renewed interest for silver [J]. Burns.2000;26:131-138.
    [70] Gibbs RJ: Silver Colloids-Do they work?R Gibbs publisher (privately published);ISBN:0967699207.1999.
    [71] Lansdown AB: Silver I: its antibacterial properties and mechanism of action[J]. J.Wound Care.2002;2(4):125-130.
    [72] Moyer CA, Brentano L, Gravens DL, et al. Treatment of large human burns with0.5%silver nitrate solution[J]. Arch. Surg.1965;90:812-867.
    [73] Fox CL, Modak SM. Mechanism of silver sulfadiazine action on burn woundinfections[J]. Antimicrob Agents Chemother.1974;5(6):582-588.
    [74] Matsuura T, Abe Y, Sato K, et al. Prolonged antimicrobial effect of tissue conditionerscontaining silver zeolite[J]. J Dent1997;25:373-377.
    [75] Gupta A, Silver S. Silver as a biocide: will resistance become a problem?[J]. NatBiotechnol.1998;16:888.
    [76] M. Kawashita, S. Tsuneyama, F. Miyaji, et al. Antibacterial silver-containing silicaglass prepared by sol-gel method[J]. Biomaterials.2000;21:393-398.
    [77] Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect ofsilver ions on Escherichia coli and Staphylococcus aureus[J]. J Biomed Mater.2000;52(4):662-668.
    [78] Furno F, Morley KS, Wong B, et al. Silver nanoparticles and polymeric medicaldevices: a new approach to prevention of infection?[J]. J Antimicrob Chemother2004;54:1019-1024.
    [79] Richard JW, Spencer BA, McCoy LF, et al. Acticoat versus silverlon: the truth[J]. JBurns Surg Wound Care2002;1:11-20.
    [80] Leaper DL. Silver dressings: their role in wound management[J]. Int Wound J2006;3(4):282-294.
    [81] Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as anantibacterial water filter[J]. Biotechnol Bioeng.2005;90(1):59-63.
    [82] W. Chen. In vitro anti-bacterial and biological properties of magnetron co-sputteredsilver-containing hydroxyapatite coating[J], Biomaterials.2006;27:5512-5517.
    [83] Tian J, Wong KKY, Ho CM, et al. Topical Delivery of Silver Nanoparticles PromotesWound Healing[J]. Chem Med Chem2006;00:171-80.
    [84] Gong P, Li H, He X, et al. Preparation and antibacterial activity of Fe3O4-Agnanoparticles[J]. Nanotechnology.2007;18:604-611.
    [85] Der-Chi Tien, et al. Colloidal silver fabrication using the spark discharge system andits antimicrobial effect on Staphylococcus aureus[J], Medical Engineering&Physics.2008;30:948-952.
    [86] Ricardo J.B. Pinto. Antibacterial activity of nanocomposites of silver and bacterial orvegetable cellulosic fibers[J], Acta Biomaterialia.2009;5:2279-2289.
    [87] Yoshiki Ando. Calcium phosphate coating containing silver shows high antibacterialactivity and low cytotoxicity and inhibits bacterial adhesion[J]. Materials Science andEngineering C.2010;30:175-180.
    [88] Ankit Agarwal, Tahlia L. Weis, Michael J. Schurr, et al. Surfaces modified withnanometer-thick silver-impregnated polymeric films that kill bacteria but supportgrowth of mammalian cells[J]. Biomaterials.2010;31:680-690.
    [89] Andrea Ewald, Daniel H sel, Sarika Patel, et al. Silver-doped calcium phosphatecements with antimicrobial activity[J]. Acta Biomaterialia.2011;7:4064-4070.
    [90] Alexander Peetsch, Christina Greulich, Dieter Braun, et al. Silver-doped calciumphosphate nanoparticles: Synthesis, characterization, and toxic effects towardmammalian and prokaryotic cells[J]. Colloids and Surfaces B: Biointerfaces.2013;102:724-729.
    [91] Melaiye A, Youngs WJ. Silver and its application as an antimicrobial agent[J]. ExpertOpin Ter Patents.2005;15(2):125-130.
    [92] L.Joska, M.Marek, J.Leitner.The mechanism of corrosion of palladium-silver binaryalloys in artificial saliva[J]. Biomaterials.2005;26:1605-1611.
    [93] Wright JB, Hansen DL, Burrell RE. The comparative efficacy of two antimicrobialbarrier dressings: in vitro examination of two controlled release silver dressings[J].Wounds.1998;10(6):179-188.
    [94] Poon VK, Burd A. In vitro cytotoxity of silver: implication for clinical woundcare[J].Burns.2004;30:140-147.
    [95] Bosetti M, Masse A, Tobin E, et al. Silver coated materials for external fixationdevices: in vitrobiocompatibility and genotoxicity[J]. Biomaterials.2002;23:887-892.
    [96]王翔,王钧,杨小利,等.网状聚氨酯泡沫材料的研究进展及发展方向[J].国外建材科技.2002;23(1):10-12.
    [97]杨晓华,刘英华,田宝勇.网状聚氨酯泡沫材料的制备、性能特点及表征[J].河北省科学院学报.2007;24(3):59-61.
    [98]林永泉.爆炸法生产网化聚氨酯泡沫塑料[J].聚氨酯工业,2002,17(1):27-29.
    [99]钊新维.基于碳骨架的多孔镍的制备与表征[D].哈尔滨,哈尔滨工程大学,2010;25-44.
    [100] Tadashi Kokubo, Hiroaki Takadama. How useful is SBF in predicting in vivo bonebioactivity?[J]. Biomaterials.2006;27:2907-2915.
    [101] Fitzgerald RH Jr. Infected total hip arthroplasty: diagnosis and treatment[J]. J AmAcad Orthop Surg.1995;3:249-262.
    [102] Gristina AG, Costerton JW. Bacterial adherence to biomaterials and tissue: thesignificance of its role in clinical sepsis[J]. J Bone Joint Surg Am.1985;67:264-73.
    [103] Buczynski BW, Kory MM, Steiner RP, et al. Bacterial adhesion to zirconiumsurfaces[J] Colloid Surface B.2003;30:167-175.
    [104]高明,武伟红,孙彩云.聚氨酯泡沫塑料的阻燃及热解性能[J].合成树脂及塑料,2009;26(1):35-38.
    [105]袁开军,江治,李疏芬,等.聚氨酯弹性体的热分解动力学研究[J].应用化学.2005;22(8):861-864.
    [106]钱军民,王继平,金志浩.木材陶瓷和Si粉原位反应烧结制备多孔SiO的研究[J].硅酸盐学报.2003;31(7):635-640.
    [107]吴绍兵,李莉,杨钢,魏月贞.热处理酚醛树脂及其结构和性能的研究[J].高分子材料科学与工程.1992;(5):66-70.
    [108] KA Trick, TE Saliba. Mechanisms of the pyrolysis of phenolic resin incarbon/phenolic composit[J]. Carbon.1995,33(1):1509-1515.
    [109]汪树军.有机高分子树脂碳化过程中结构基团的变化[J].石油大学学报.2001;25(3):45-48.
    [110] YJ Kim, MT Kim, CHYun, et al. Comparative study of carbon dioxide and nitrogenatmospheric effects on the chamical structure changes during pyrolysis ofphenol-fornaldehyde spheres[J]. Journal of colloid and interface science.2004;274:555-562.
    [111]汪树军.射线衍射法对树脂炭微观结构测试分析[J].炭素技术.2000;6:8-12.
    [112]汪树军,刘庆国酚醛树脂碳化产物作为锂离子电池碳电极材料(I)-树脂碳化产物的组成和结构参数测试分析[J].北京科技大学学报.2000,22(6):529-532.
    [113] T Noda, M Iagaki, S Yamada. Glass-like carbon[J]. Journal of non-crystalline solids.1969;1:285-302.
    [114]谢忠巍,张喜艳,田玉美,等.聚合物裂解碳材料结构对电化学性能的影响[J].高等学校化学学报.2000;21(7):1110-1112.
    [115]王君林,关振中,一种玻璃碳制备过程的X射线分析[J].材料科学与工艺.1995,3(4):39-43.
    [116] PJF Harris. Fullerene-related structure of commercial glassy carbons[J]. PhilosophicalMagazine.2004,84(29):3159-3167.
    [117] H BAR Z AIZENSHTAT. Phenal-formaldehyde resins as a link to the understandingof the isothermal kinetic behavior of geopolymers (kerogens and coals)[J]. Journal ofanalytical and applied purolysis.1991;19:265-277.
    [118] Y Yamashita, K Ouchi. A study on carbonization of Phenal-formaldehyde resinslabeled wet deuterium and13C[J]. Carbon.1981;19:89-94.
    [119]张琳,李步广,刘洪波,等.酚醛树脂为原料制备双电层电容器用电极材料的工艺研究[J].炭素技术.2004;23(4):1-6.
    [120]涂建华,张利波,彭金辉,等.酚醛树脂基玻璃炭制备机理及结构的研究进展[J].炭素技术.2005;6(24):21-29.
    [121]陈建.影响液体酚醛树脂残炭率的因素[J].炭素技术.2003(4):7-10.
    [122] BYUNG-DAE PARK, XIANG-MING WANG. thermokinetic behavior of powderedphenal-formaldehyde (PPF)resins[J]. Thermochimica Acta.2005;433:93-97.
    [123] E Fitzer, W Shafer. The effect of crosslinking on the formation of glasslike carbonsfrom thermosetting resins[J]. Carbon.1970;8:353-364.
    [124] M Blazso. Polyaromatization in common sunthetic polymers at elevatedtemperatures[J]. Journal of analytical and applied pyrolysis.1993;25:25-35.
    [125] Y Cohen, Z Aizenshtat. Investigation of pyrolytically produced condensates ofphenol-fornaldehyde resin, in relation to their structure and deconpositionmechanism[J]. Journal of analytical and applied pyrolysis.1992;22:153-178.
    [126] R. Singh a P.D. Lee a, T.C. Lindley a C. Kohlhauser, C. Hellmich, et al.Characterization of the deformation behavior of intermediate porosity interconnectedTi foams using micro-computed tomography and direct finite element modeling[J].Acta Biomaterialia.2010;6:2342-2351.
    [127] RC Atwood, JR Jones, PD. Lee, et al. Analysis of pore interconnectivity in bioactiveglass foams using X-ray microtomography[J]. Scripta Materialia.2004;51:1029-1033.
    [128] Bungo Otsuki, Mitsuru Takemotoa, Shunsuke Fujibayashi, et al. Pore throat size andconnectivity determine bone and tissue ingrowth into porous implants:Three-dimensional micro-CT based structural analyses of porous bioactive titaniumimplants[J]. Biomaterials.2006;27:5892-5900.
    [129]熊信柏,李贺军,黄剑锋,等.医用碳材料对骨组织的响应及其生物活化改性.稀有金属材料与工程.2005;34(4):515-520.
    [130] Bloyce A, Qi PY, Dong H, et al. Surface modification of titanium alloys for combinedimprovements in corrosion and wear resistance[J]. Surface and Coatings Technology.1998;107:125-132.
    [131] Tang J, Zuo Y, Tang Y, et al. The preparation of corrosion resistant palladium films on316L stainless steel by brush plating[J]. Surface and Coatings Technology.2010;204:1637-1645.
    [132] Zuo Y, Tang J, Fan C, et al. An electroless plating film of palladium on304stainlesssteel and its excellent corrosion resistance[J]. Thin Solid Films.2008;516:7565-7570.
    [133] Dong S, Deng Q, Cheng G. Cholesterol sensor based on electrodeposition of catalyticpalladium particles[J]. Analytica Chimica Acta,1993;279(2):235-240.
    [134] Nam S E, Lee S H, Lee K H. Preparation of a palladium alloy composite membranesupported in a porous stainless steel by vacuum electrodeposition[J]. Membr Sci,1999;22(23):153.
    [135]袁定重,张秋禹,窦金波.大孔聚苯乙烯-二乙烯基苯树脂负载钯催化剂的制备及对Heck反应的催化性能[J].材料科学与工程学报.2010;28(4):505.
    [136] Bergonia HA, Phillips JD, Kushner JP. Reduction of porphyrins toporphyrinogenswith palladium on carbon[J]. Anal Biochem.2009;384(1):74.
    [137] Li A W, Liang W Q, Hughes R. Fabrication of defect-free Pd/α-Al2O3compositemembranesfor hydrogen separation[J]. Thin Solid Films.1999;350:106.
    [138]鲁佳,马磊,江大好,等. γ-Al2O3载体孔结构对负载钯催化剂催化C9石油树脂加氢性能的影响[J].石油化工.2011;40(10):1105.
    [139]唐中民,赖国华,周仁贤. MCM-41分子筛固载腈钯配合物的合成及其催化Heck偶联反应的性能[J].化学通报.2009;9:833.
    [140]王敏,陈金鹏,王海彦,等. β沸石负载钯催化剂上催化合成乙基叔烷基醚性能研究[J].石油与天然气化工.2006;35(6):426.
    [141] Wu K, Mao XB, Liang Y, et al. Multiwalled carbon nanotubes supported palladiumephosphor us nanoparticles for ethanol ele ctrooxidation in alkal ine solution[J]. JPower Sources.2012;219:258.
    [142] Ayturk ME, Ma YH. Electroless Pd and Ag deposition kinetics of the composite Pdand Pd/Ag membranes synthesized from agitated plating baths[J]. J Membrane Sci.2009;330:233.
    [143] Yan Huang, Roland Dittmeyer. Preparation and characterization of compositepalladium membranes on sinter-metal supports with a ceramic barrier againstintermetallic diffusion[J]. Journal of Membrane Science.2006;282:296-310.
    [144] Yanglong Guo, Guanzhong Lu, Ren Wang. Improved electroless plating forpreparation of Pd/Ceramic composite membrane[J]. Journal of East China Univerdityof Science and Technology.1998;24(6):727.
    [145] Paglieri S N, Foo K Y, Way J D. Irreversible poisoning of Pd-Ag membranes[J].Industry Chemical Egneering.1999;38:1925-1936.
    [146] Liang Li, guiyu Yu, Nanru Yang, Preparation of palladium-silver alloy membrancesfor hydrogen separation by the electroless plating [J]. Journal of Nanjing University ofChemical Technology.1998,23(1):123.
    [147]孟春迎,化学镀法制备Pd/PSS复合膜研究[D],河北工业大学.2006:30-35.
    [148] K.L. Yeung, S.C. Christiansen, A. Varma. Palladium composite membranes byelectroless plating technique Relationships between plating kinetics, filmmicrostructure and membrane performance[J]. Journal of Membrane Science.1999;159:107-122.
    [149] Ratna Sari, Zahira Yaakob, Manal Ismail, et al. Palladium-alumina compositemembrane for hydrogen separator fabricated by combined sol-gel, and electrolessplating technique, Ceramics International.http://dx.doi.org/10.1016/j.ceramint.2012.10.006.
    [150]黄庆荣,蒋柏泉,陈常青,等.稀土在化学镀中应用研究现状[J].稀土.2007;28(1):102-106.
    [151]孙雅茹,于锦,周凯.稀土元素在化学镀Ni-P中作用的研究[J].沈阳工业大学学报.2001;23(4):293-294.
    [152] H.Ashassi-Sorkhabi, M.Moradi-Haghighi, M.G.Hosseini. Effect of rare earth (Ce, La)compounds in the electroless bath on the plating rate, bath stability and microstructureof the nickel-phosphorus deposits[J]. Surface&Coatings Technology.2008;202:1615-1620.
    [153]宣天鹏,黄芹华,章磊.稀土对化学镀Co-B合金工艺和结构的影响[J].中国稀土学报.2002;20(专刊):129-132.
    [154]章磊,宣天鹏,黄芹华,等.铈对化学镀Co-Ni-P合金工艺的影响[J].电镀与精饰.2002,24(1):1-4.
    [155]冯书争,宣天鹏,琚正挺,朱云丽.含Ce化学沉积Co-N-i B合金电化学行为的研究[J].金属功能材料,2006;13(3):17~19.
    [156]于瑶,宣天鹏,张丽丽,闵文锦.稀土Ce对化学镀Fe-P合金镀层成分和形貌的影响[J].金属功能材料.2010;17(4).29-32.
    [157]宣天鹏,黄芹华,章磊.铈对化学镀Co-Fe-B合金镀覆工艺的影响[J].有色金属.2002;54(4):9-13.
    [158]朱云丽,宣天鹏,王卫荣.稀土铈对化学镀Co-Fe-B合金工艺的影响[J].电镀与污染控制.2005;25(4):21-23.
    [159]贾瑛,冯程,张颖.铈对化学镀Ni-Fe-Co-P镀液及镀层性能的影响[J].电镀与环保.2012;32(2):27-30.
    [160]蒋柏泉,叶志强,彭健,等. La、Ce、Yb和Nd对石英光纤表面化学镀Ni-P-B的影响[J].稀土.2008;29(2):78-81.
    [161]黄燕滨,许晓丽,孟昭福,等.稀土对化学镀Ni-W-P镀液及镀层性能的影响[J].电镀与涂饰,2005,24(3):5-7.
    [162]蒋柏泉,余强.稀土在化学镀制备钯无机复合膜中的应用研究[J].稀土.2003;24(1):20-23.
    [163]蒋柏泉,余强,顾马来.稀土改进化学镀共沉积钯银合金膜[J].稀土.2006;27(11):57-60
    [164]蒋柏泉,肖正强,顾马来,等.化学镀Pd-Ag合金膜的研究[J].电镀与涂饰.2006;25(5):4-6.
    [165] Moulder J, Srickle WF,Sobol PE, et al. Handbook of X-ray photoelectronspectroscopy[M], Perlin Elmer Co.1992.
    [166] Brun M, Berthet A, Bertolini JC. XPS, AES and Auger parameter of Pd and PdO[J]. J.Electron. Spectrosc. Relat. Phenom.1999;104:55-60.
    [167] G Schoen, J. Electron Spectrosc. Relat. Phenom.[J],1972;(1):377.
    [168] H. M. Wang, J. R Deng, S. Z. Dong, Y M. Qiu. Chin. J. Chem. Phys.[J],1991(4):59.
    [169] Gabasch H, Unterberger W, Hayek K, et. al. In situ XPS study of Pd (111) oxidation atelevated pressure, Part2: Palladium oxidation in the10(-1) mbar range[J]. Surf. Sci.[J],2006;(600):2980-2989.
    [170]李梅,柳召刚,吴锦绣,胡艳宏.稀土元素及其分析化学[J].化学工业出版社.2009;154-166.
    [171]倪嘉缵.稀土生物无机化学[M].第一版.北京:科学出版社.1995.
    [172]彭瑞玲,潘小川,解清.稀土矿区婴幼儿与其母亲头发中稀土含量的研究[J].中华预防医学杂志.2003;37(1):20-23.
    [173]崔明珍,纪云晶,董辛尧,等.稀土硝酸盐的慢性毒性及致癌稀土实验[J].中国稀土学报.1987;5:67-70.
    [174]朱为方,徐素琴,邵萍萍等.赣南稀土区生物效应研究—稀土日允许摄入量[J].中国环境科学.1997;17(2):63-65.
    [175] Feyerabend, F. Evaluation of short-term effects of rare earth and other elements usedin magnesium alloys on primary cells and cell lines[J]. Acta Biomaterialia.2010;6(5):1834-1842.
    [176] Drynda. Rare earth metals used in biodegradable magnesium-based stents do notinterfere with proliferation of smooth muscle cells but do induce the upregulation ofinflammatory genes[J]. J Biomed Mater Res Part A.2009;91A(2):360-369.
    [177] Jiang BQ, Ye ZQ, Peng J. study on physical and chemical behaviors of rare earths inpreparing ceramic tube supported palladium film by electroless plating[J]. Journal ofRare Earths.2006;24:259-262.
    [178]刘铁虎,王毅坚,孙东.氧化稀土对Ni-P化学镀及其复合镀工艺及镀层组织成分的影响[J].化工机械.1999;26(4):211-214.
    [179]杜挺.稀土元素在金属材料中的一些物理化学作用[J].金属学报.1997;33(1):69.
    [180]刘光华.稀土固体材料学[M].北京:机械工业出版社.1997;71.
    [181]钟华仁.钢的稀土化学热处理[M].北京:国防工业出版社.1998;10.
    [182]王丽丽.电镀钯溶液[J].电镀与精饰.1999;21(3):24~26.
    [183]蔡积庆.钯电镀工艺[J].腐蚀与防护.2001;22(5):221~222.
    [184]徐明丽,张正富,杨显万,等.钯及其合金电镀的研究现状[J].材料保护.2003;36(10):4-8.
    [185]桥本其纪夫等,JP0711476[P],1995.1
    [186]唐鋆磊.不锈钢表面高耐蚀性钯系膜层的制备及应用研究[D].北京化工大学.2010;5-11,70-71.
    [187]骆汝简.钯镀层中的氢[J].贵金属.1987;8(3):5-10.
    [188] Bobyn JD, Pilliar RM, Cameron HU, et al. The optimum pore size for the fixation ofporous-surfaced metal implants by the ingrowth of bone[J]. Clin Orthop Relat Res.1980;150:263-70.
    [189] Gibson LJ. Biomechanics of cellular solids[J]. J Biomech2005;38:377-99.
    [190] Bonucci, E. Mechanical testing of the bone and the bone-implant interface. In: An,Y.H., Draughn, R.A.(Eds.), Basic Composition and Structure of Bone[J]. CRC Press,Boca Raton, FL,3-22.
    [191] Bansiddhi A, Sargeant TD, Stupp SI, et al. Porous NiTi for bone implants: A review[J].Acta Biomaterialia.2008;4:773-82.
    [192] Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium(Ti6Al4V) structures with electron beam melting (EBM)[J]. J Mech Behav Biomed.2010;3:249-259.
    [193] Gibson LJ, Ashby MF. Cellular solids: structure and properties[J]. Cambridge:Cambridge University Press;1997.
    [194]王鹏,姚学峰,余柳平,等.伴有股骨头坏死的松质骨生物力学特性[J].清华大学学报(自然科学版).2007;47(5):29-36.
    [195]俞超,薛文东,张双燕,等.股骨头负重区松质骨的压缩力学特性[J].中国临床康复2005;9(18):238-239.
    [196]郭玉明,贾潇凌.国人胫骨松质骨力学性质的实验研究[J].中国生物医学工程学报.1999;18(3):250-255
    [197]王晓晨,刘恩,马慧丽.人颅骨压缩实验研究[J].试验技术与试验机.1999;40(1):90-93.
    [198]严亚波.人体脊柱松质骨三维形态学指标的临床应用研究[D].第四军医大学.2012:57.
    [199]程伟.人下领松质骨压缩的生物力学性质及骨小梁结构变化[D].四川大学.2007:11.
    [200] Staffolani N, Damiani F, Lilli C,et al. Ion release from orthodontic appliances[J].Journal of Dentistry.1999;27:449-454.
    [201] Anselme K, Bigerelle M. Effect of a gold-palladium coating on the long-term adhesionof human osteoblasts on biocompatible metallic materials[J]. Surface and CoatingsTechnology.2006;200:6325-6330.
    [202]李保山,牛玉舒,翟玉春,等.电沉积法制备新型发泡银催化剂[J].石油化工.2000;29:910-913.
    [203]李保山,牛玉舒,全明秀.发泡银对甲醇空气氧化为甲醛的催化性能研究[J].精细化工.2000;17(12):145-148.
    [204]王延辉.发泡银的电沉积制备及性能研究[D].华中科技大学.2006.
    [205]安茂忠.电镀工艺学.哈尔滨工业大学出版社.2001;46-47.
    [206]何建平.无氰电镀工艺的研究现状及解决问题的途径[J].电镀与涂饰.2005;24(7):42-45.
    [207] S. Bergen G Hoffacker. Novel and Innovative Non-cyanide Silver Process: A Reporton Commercial Plating Experiences[J]. Plat. Surf. Finish.2005;92(3):46-51.
    [208] G. M. Oliveira, L. L. Barbosa, R. L. Broggi. Voltammetric Study of the Influence ofEDTA on the Silver Electrodeposition and Morphological and StructuralCharacterization of Silver films[J]. J. Electroanal. Chem.2005;578(1):151-158.
    [209] G. M. Zarkadas, A. Stergiou, G. Papanastasiou. Influence of citric acid on the silverelectrodeposition from aqueous AgN03solutions[J]. Electrochim.Acta.2005;50(25-26):5022-5031
    [210]王春霞.无氰镀银研究进展.电镀与精饰.2006;28(6):18-21.
    [211] M. H. Margarita, G. Ignacio. Study of the Silver Electrodeposition with Non-stationaryTechniques in an Ethylamine Aqueous Medium[J]. Electrochim. Acta.1997;42(15):2295-2303.
    [212] R. W. Plieth, A.Mzcagno. Influence of Thiourea on Silver Deposition: SpectroscicInvestigation[J]. J. Electroanal. Chem.1998;453(9):121-127.
    [213] W. Simons, D. Gonnissen, A. Hubin. Study of the Initial Stages of SilverElectrocrystallization from Silver Thiosuphate Complexes.J.Electroanal[J]. Chem.1997;(9)433:141-151.
    [214] S. Vandeputte, E. Verboom, A. Hubin. Investigation of the Mechanism of SilverDeposition from Thiosulphate Solutions by Means of AC Impedance Measurementsand Surface-enhanced Raman Spectroscopy[J]. Electrochim.Acta.1996;41(7):1051-1056.
    [215]周永章.丁二酞亚胺无氰镀银工艺.表面技术.2003;32(4):51-52.
    [216]杨秀汉.对亚氨基二磺酸按无氰镀银的工艺探讨.电镀与环保.1985;1(5):12-14.
    [217]岑启成.硫代硫酸按无氰镀银新工艺.电机电器技术.1982;2(11):32-35.
    [218]周德义. SL-80添加剂硫代硫酸铵无氰镀银新工艺的优越性.电机电器技术.1985;4(11):3842.
    [219]张瑜.咪唑磺基水杨酸镀银.表面技术.1982;4(6):2224.
    [220]刘奎仁.亚硫酸盐无氰镀银新工艺.黄金学报.1997;4(16):258-263.
    [221]卢俊峰,安茂忠,郑环宇等.5,5-二甲基内乙酰脲无氰镀银工艺的研究.电镀与环保.2007;27(1):9-11.
    [222]张允诚,胡如南,向荣主编.电镀手册.国防工业出版社.1997:308-363.
    [223]田洪丽,于锦,单颖会.脉冲参数对磺基水杨酸镀液镀银性能的影响[J].电镀与精饰.2009;31(9):9-12.
    [224]电子工业技术动态编辑组.电子工业技术动态增刊[J].电子工业部科技情报研究所.1973;3:44.
    [225] Vitanov T, Popov A, Budevski E. Mechanism of electrocry stallization [J].Electrochemical Science and Technology.1974;121(21):207-212.
    [226]电镀手册编写组编.电镀手册.国防工业出版社.1977:103-108,119-122.
    [227]王政,赵炯心.化学镀银导电聚氨醋纤维的制备[J].合成技术及应用.2006;21(3):35-39.
    [228] Zhao H, Cui J. Electroless plating of silver on AZ31magnesium alloy substrate[J],Surf Coat Technol.2007;201:4512-4157.
    [229] John Banhart. Manufature and Application of Celluar Metal Foam [J]. Prog Mater Sci.2001;46:559.
    [230]关华,潘功配,侯伟,等.碳纤维布化学镀银工艺的优化[J].电镀与涂饰.2008;27(1):20-23.
    [231]吴青龙,安茂忠,卢俊峰.无氰镀银液组成及工艺条件的研究[J].2007年全国电子电镀学术年会暨绿色电子制造技术论坛论文集.120-123
    [232] C.Y. Zheng, F.L. Nie, Y.F. Zheng, et al. R.Z. Valievd. Enhanced in vitrobiocompatibility of ultrafine-grained titanium with hierarchical porous surface[J].Applied Surface Science.2011;257:5634-5640.
    [233] Bobyn JD, Pilliar RM, Cameron HU, et al. The optimum pore size for the fixation ofporous-surfaced metal implants by the ingrowth of bone[J]. Clin Orthop Relat Res.1980;150:263-70.
    [234]刘培生,付超,李铁藩.制备条件对泡沫镍抗拉强度的影响[J].中国有色金属学报.1999;9:1-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700