导电高分子材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料由于其质量轻、易加工、耐热、耐腐蚀及良好的机械性能,作为结构材料在众多领域得到广泛的应用。导电高分子材料根据其导电物质的不同,可分为结构型导电高分子材料和复合型导电高分子材料。随着90年代后大量的实验与研究,导电高分子材料已经逐步进入了实际应用阶段。
     本论文从四个方面制备了不同类型导电高分子材料,研究了合成方法、制备工艺等对导电高分子材料结构与性能的影响,并用SEM、TEM、IR、DTG、电导率测试仪等仪器对其进行表征,结论如下:
     1.以苯胺酚醛树脂为前驱体,掺杂ZnCl_2改性剂,制得了改性酚醛树脂导电高分子材料。分别研究了ZnCl_2加入量、原料配比、合成温度、固化温度对产物结构与导电性能的影响。研究结果表明:(1)、通过SEM观察,所制备的产物为含有ZnCl_2微球的酚醛树脂;(2)、在IR曲线中观察到酚醛树脂骨架中含有氮元素;(3)、在氯化锌与酚醛树脂质量比3:1,升温速率1℃/min、固化温度180℃时,固化产物的电导率可达7.8×10~(-5)S/cm。
     2.以苯胺酚醛树脂为前驱体,氮气保护下在不同温度下加热使苯胺酚醛树脂裂解,制备了酚醛树脂热解碳材料。研究结果表明:所制备的苯胺酚醛树脂热解碳材料为三维网状碳骨架结构,以0.5℃/min的升温速率升温至800℃并维持2h,其比表面积达到70m~2/g、电导率为8.63S/cm。
     3.本实验利用化学氧化法制备了质子酸掺杂的聚苯胺粉末,并研究了在不同工艺条件下的产物电导率与产率变化关系。研究结果表明:(1)、不同的工艺条件对产物的电导率有较大影响,对产率影响相对较低;(2)、以APS为氧化剂、反应温度为30℃、APS与苯胺单体摩尔比为1.0、25min滴加完APS溶液,掺杂反应时间为15h时,所制得的聚苯胺电导率最高,达5.39S/cm。
     4.将所制备聚苯胺还原为本征态,在丙酮中分别与氯化镧、氯化铈混合浸泡,制得稀土掺杂聚苯胺。通过海量数据筛选出最佳工艺条件,研究结果表明:(1)、通过SEM可以观察到:稀土元素掺杂的聚苯胺由三维棒状网络结构组成,相比本征态聚苯胺具有更高的孔隙率;(2)、在IR曲线中发现:掺杂过程中稀土元素只影响醌式结构中的亚胺基,其接受一个质子后变为=NH~+结构,因此掺杂过程可以看做是赝质子化过程;(3)、在掺杂时间为24h时,两种不同掺杂聚苯胺产物电导率均达到最大,分别为4.29×10~(-3)S/cm与1.31×10~(-2)S/cm。
Polymer materials used as a structural material because of its light weight, easy processing,heat resistance, corrosion resistance and fine mechanical properties, have been extensivelyapplied in many fields. With the fast development of information technology, all kinds offunctional polymer materials emerge as the times require, and the conductive polymer materialsare one of the most outstanding one. Conductive polymer material is divided into structuralconductive material and composite material. With the large number of experiments and researchafter90’s, conductive polymer materials has been gradually used into practical application.
     In this paper, four different types of conductive polymer materials were prepared accordingto four aspects. The influences of the synthesis and preparation on the structures and propertieswere studied, which were characterized through SEM, TEM, IR, DTG and conductivity meter.the conclusions are as follows:
     1. conductive phenol formaldehyde resin was obtained by heat treatment of aniline-phenolformaldehyde (APF) resin doped with different contents of a modifier (ZnCl_2). The influences ofthe contents of ZnCl_2, the ratio of raw materials, synthesis temperature, and curing temperatureon product conductivity were also studied respectively. The researchresults showed that:1. Thestructure of PF-resin contained ZnCl_2microsphere;2. In IR curve, the nitrogen element wasfound in the PF-resin matrix;3. When resin-ZnCl_2mass ratio was1:3, and the speed of heattreatment,1℃/min, and the curing temperature,180℃, the conductivity of the cured materialcould increase to7.8×10~(-5)S/cm.
     2. phenolic resin pyrolysis carbon materials were prepared by different heat treatments withaniline phenolic resin as precursor, under the protection of nitrogen gas. The research resultsshow that: aniline phenolic resin pyrolysis carbon materials were constructed by three-dimensio-nal network of carbon skeleton structure. With0.5℃/min heating rate up to900℃andmaintaining2h, the specific surface area was70m~2/g, and the conductivity of the anilinephenolic resin pyrolysis carbon materials was8.63S/cm.
     3. The experiments used chemical oxidation method for preparing polyaniline dark greenpowder which doped protonic acid, and studied the varieties of the products conductivity and theyield under different conditions. The research results show that:1. Different process conditionson product conductivity has great effect but relatively low on the yield;2. When APS and anilinemonomer molar ratio was1:1, the reaction temperature30℃, doped APS solution in25min, andthe reaction time was15h, the conductivity of the polyaniline could increase to5.39S/cm.
     4. the rare earth doped polyaniline materials were obtained by the immersion of theeigenstate polyaniline and anthanum chloride, cerium chloride mixture in acetone. Themorphology and molecular structure were characterized by SEM and infrared spectrum analysis.The best conditions of preparing the highest conductivity of the materials were also recordedthrough mass experimental statistics. The research results show that:1. The rare earth elementsdoped polyaniline were constructed by three dimensional rod-like network structure throughSEM. They had higher porosity compared to polyaniline;2. Rare earth elements affected onlythe quinoid structure of imine, which accepts a proton into=NH+structure, so the dopingprocess could be regarded as a pseudo protonation process;3. when doping time was24h, boththe conductivity of the two kinds of doped polyaniline reached their maximum of4.29×10-3S/cm
引文
[1] Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organicpolymers: halogen derivatives of polyacetylene,(CH)x[J]. Journal of the Chemical Society,Chemical Communications,1977,16:578-580.
    [2]黄泽铣.功能材料及其应用手册[M].北京:机械工业出版社,1991.
    [3]张凯,曾敏,雷毅,等.导电高分子材料的进展[J].化工新型材料,2002,30(7):14-15.
    [4]路崎,王献红,王佛松.含二茂铁齐聚苯乙炔分子导线的合成[J].应用化学,2011,(2).
    [5]李季,赵晓江,王岱珂,王佛松.低温等离子体对聚乙炔稳定性的影响[J].科学通报,1990,(03):189-191.
    [6]戴黎明,冒怀庆,钱人元.可溶性导电高分子的合成[J].高分子通报,1995,(1):1-9.
    [7]王长松,古亚新,刘罡,史航.可溶性聚吡咯复合导电薄膜(PPY/PMMA)的研制[J].沈阳化工学院学报.2001,(04):241-244.
    [8]闫廷娟,陈贻炽,尹五生等.新型导电高分子材料-聚吡咯/聚(丙烯酸丁酯-苯乙烯-丙烯酸)的研究[J].精细化工,1999,(3):21-24.
    [9]王锦成.电磁屏蔽材料的屏蔽原理及研究现状[J].化工新型材料,2002,30(7):16-18.
    [10] C Y Lee, H G Song, K. S Jang et al. Electromagnetic Interference Shielsing Efficency ofPoly aniline Mixtures and Multiplayer Films[J]. Synthetic Metals,1999,102:1346-1349.
    [11]谭松庭,张明秋,曾汉民.屏蔽EM I用导电性高分子复合材料[M].材料工程,1998,5:6-9.
    [12] Wrobleski D W, Benecewicz B C, Thompson K G, et al. Corrosion resistant coating fromconducting polymers[J]. Polymer Preprint,1994,35(1):264-268.
    [13] MacDiarmid A G, Heeger A J, Nigrey P J. US,442187(1984).
    [14]雀部博之编.曹镛,叶成,朱道本译.导电高分子材料[M].北京:科学出版社,1989:290.
    [15] Kotwal A, Schmidt CE. Electrical stimulation alters protein absorption and nerve cellinteractions with electrically conducting biomaterials[J]. Biomaterials,2001,22(10):1055-64.
    [16]沈海红,孙彤,张锦珠.脉冲电场对鸡胚脑细胞Ca2+和cAMP含量的影响[J].生物物理学报,1997,13(1):101-106.
    [17] Janata J, Josowicz M. Conducting polymers in electronic chemical sensors[J]. Nat Mater,2003,2(1):19-24.
    [18] Gerard M, Chaubey A, Malhotra B D. Application of conducting polymers to biosensors[J].Biosens Bioelectron,2002,17(5):345-59.
    [19] Porter R A. Investigation of electroplated conducting polymers as antibody receptors inimmunosensors[J]. J Immunoassay,2000,21(1):51-64.
    [20]朱道本,王佛松.有机固体[M].上海:上海科学技术出版社,1999:274.
    [21]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2009.
    [22]刘粤惠,刘平安. X射线衍射分析与应用[M].北京:化学工业出版社,2003.
    [23]赵宗彦. X射线与物质结构[M].安徽:安徽大学出版社,2004.
    [24]陈文雄,徐军.电子显微学报,1995,14(6):449.
    [25] Joy D C. Ultra microscopy,1991,37:216.
    [26] Joy D C. Luo S.Scanning,1989,11:75.
    [27]魏全金.材料电子显微技术[M].北京:冶金工业出版社,1990.
    [28]许振嘉.半导体检测[M].北京:科学出版社,2007.
    [29]黄发荣,焦杨声.PF及其应用[M].北京:化学工业出版社,2003:111.
    [30]张玉龙,高树理.纳米改性剂[M].北京:国防工业出版社,2004:8-9.
    [31]吴泳,王建平.关于氯化物作合成酚醛树脂催化剂的初步研究[J].中国化工,1994,(04):58-59.
    [32]吴利敏,齐暑华,刘乃亮,等.纳米材料改性酚醛树脂研究进展[J].中国胶粘剂,2011,20(04):58-62.
    [33] Reghunadhan Nair C P. Advances in addition-cure phenolic resins[J]. Progress in PolymerScience,2004,29:401-498.
    [34] Alonso M V, Oliet M, Rodriguez F, et al. Modification of ammonium lignosulfonate by foruse in phenolic resins[J]. Bioresource Technology,2005,96:1013-1018.
    [35]邱军,王国建,冯悦兵.不同硼含量硼改性酚醛树脂的合成及其性能[J].同济大学学报(自然科学版),2007,35(3):381-384.
    [36]喻丽华,何林,闫建伟. Al2O3和SiC纳米粒子改性酚醛树脂的热稳定性研究[J].贵州工业大学学报,2007,36(2):19-21.
    [37]王存国,林琳,路乃群,等.多孔酚醛树脂热解碳材料的制备与结构[J].化学学报.2008,66(16):1909-1914.
    [38]陈秀,何建平,党王娟,等.可溶性酚醛树脂为碳源合成有序介孔炭及其电催化性能[J].新型碳材料,2008,23(03):281-288.
    [39] Guyomard D, Tarascon J, M. J. Electrochem. Soc,1992,139(4),937.
    [40] Scrosati B J. Electrochem Soc,1992,139(10),2776.
    [41] Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H. Electrochim Acta1993,38(9),1159.
    [42] Hwang K T, Um W S, Lee H S, Song J K, Chung K W J. Power Sources1998,74,169.
    [43] Tanaka K, Yoshizawa K, Koike T, Yamabe T, Yamauchi J, Deguch Y, Yata S. Solid StateCommun.1984,52(3),343.
    [44] Jinwoo L, Jaeyun K, Taegwan H. Recent progress in the synthesis of porous carbonmaterials[J]. AdvMater,2006,18:1-22.
    [45] Lu A H, Liw C, Wolfgang S, et al. Synthesis of new, nanoporous carbon with hexagonallyordered mesostructure[J]. J Am Chem Soc,2000,122(43):10712-10713.
    [46] MacDiarmid A G, Chiang J C, Halpern M, Huang W S, Mu S L, Somasiy N L D. Aqueouschemistry and electrochemistry of polyacetylene and/polyaniline0: Application torechargeable batteries [J]. Polym Prep,1984,121:195.
    [47]张连明,司慧涵等.聚苯胺的合成与研究现状[J].广西轻工业,2007,2:27-29.
    [48]马利,汤琪.导电高分子材料聚苯胺的研究进展[J].重庆大学学报(自然科学版),2002,25(2):125.
    [49] Zhe yuan Huang, Pen Cheng Wang, and Alan G. MacDiarmid. Selective Deposition ofConducting Polymers on Hydroxyl-Terminated Surfaces with Printed Monolayers ofAlkylsiloxanes as Templates[J]. Langmuir,1997,13:6480-6484.
    [50]朱新生,王新波,孙东豪.微乳液法制备导电聚苯胺的研究[J].合成技术及应用,2002,17(3):5-7.
    [51] Fo song Wang(王佛松), Jing song Tang(唐劲松), Xia bin Jing(景遐斌), Shao ru Ni(倪少儒), Bao chen Wang(王宝忱). Acta Polymerica Sinica (高分子学报),1987,(5):384~387.
    [52] MacDiarmid A G, Chiang J C, Richter A F, Epstein A J. Synth Metals,1987,18:285~290.
    [53] Xia bin Jing (景遐斌), Jing song Tang(唐劲松), Ying Wang(王英), Liang cai Lei(雷良才),Bao chen Wang(王宝忱), Fo song Wang(王佛松). Science in China, Ser B(中国科学B辑),1990,(1):15~20.
    [54] Chiang J C, MacDiarmid A G. Synth Metals,1986,13:193~205.
    [55] Jing X B, Tang J S, Wang Y, Lei L C, Wang B C, Wang F S. Science in China, Ser B (Eng),1990,33(7):787~794.
    [56] Zhou Yuqing(周宇清),Lei Liangcai (雷良才),Jing Xiabin(景遐斌),Tang Jingsong(唐劲松),Wang Fosong(王佛松),Tian Zhongqun(田中群). Acta Polymerica Sinica (高分子学报),1992,(4):438~443.
    [57] Ogasa T, Takahashi J, Kemmochi K. Polymer-based composite materials in generalindustries[J]. Adv Comp Mater,1995,4:221.
    [58] Rarig R S Jr, Zubieta J. Hydrothermal synthesis and structural characterization of an organicinorganic hybrid materials(H2tptz)2[δ-Mo8O26]·2H2O(tptz=2,4,6tripyridyltriazine)[J].Inorganica Chimica Acta,2001,312:188.
    [59] Devi R N, Zubieta J. Synthesis and characterization of three novel inorganic/organic hybridmaterials based on polyoxomolybdate cluster: an investigation into the structuralconsequences of steric effect of the organoimine ligands[J]. Inorganica Chimica Acta,2002,332:72.
    [60] Devi R N, Burkholder E, Zubiet a J. Hydrothermal synthesis of polyoxotung state clusters,surface modified with M(II) or ganonitrogen subunits[J]. Inorganica Chimica Acta,2003,348:150.
    [61] Beaudry C L, Klein L C. Sol-gel process of silica/poly(vinylacetate) nanocomposites[J].Polym Polym Comp,1995,3:431.
    [62] Jian ye Wen, Wilkes G L. Organic/inorganic hybrid network materials by the sol-gelapproach[J]. Chem Mater,1996,8(8):1667.
    [63] Orialchi C O, Lerner M M. Poly(pyrrole) and poly(thiophene)/clay nanocomposites[J].Mater Res Bull,1995,30(6):723.
    [64] Carlucci L, Gianfranco C.1-,2-, and3-dimentional polymeric frames in the coordinationchemistry of AgBF4with pyrazine: The first example of three inter penetrating3-dimenti-onal triconnected nets[J]. J Am Chem Soc,1995,117:4562.
    [65]杨勇,朱子康,漆宗能.有机-无机纳米复合材料的研究进展[J].上海交通大学学报,1998,32(9):130.
    [66] Mousavand T, Takami S, Umetsu M, et al. Supercritical hydro thermal synthesis of organic-inorganic hybrid nanoparticles[J]. J Mater Sci,2006,41(5):1445.
    [67] Chen S A, Lin L C.[J]. Macromolecules,1995,28(4):1239-1245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700