基于静电纺丝技术构筑一维纳米过渡金属氧化物及其储锂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口与经济的迅猛增长,全球能源消耗日益增加。高效率、低成本及环境友好型的可再生能源转换及存储系统的研究已成为科研热点。同时,随着对便携式电子设备和下一代电动汽车需求的日益增长,锂离子电池作为能量转换及存储技术的核心,变得越来越不可或缺。然而,石墨,传统的锂离子电池负极材料,理论容量仅为372mAh/g,远远不能满足高能量密度与高功率密度锂离子电池的要求。
     自从Tarascon等人首次报道了过渡金属氧化物电极材料具有优异的比容量、循环寿命及倍率性能后,过渡金属氧化物在锂离子电池领域引起了广泛的关注。但在电化学转换反应中,过渡金属氧化物会被还原为金属团簇,同时锂离子会与氧反应形成Li2O。这将导致非常大的体积膨胀及结构的严重破坏,进而引发容量的迅速衰退。为了解决这些问题,包括电极材料的纳米化、材料的形貌控制及各种碳基添加剂的引入在内的很多方法被采用。这些方法显著地提高了过渡金属氧化物基负极材料的储锂性能。
     过去几十年,纳米纤维、纳米棒、纳米管及纳米线等一维纳米材料因其较高的比表面积、优异的轴向电导性而在高性能锂离子电池上有了长足的发展。静电纺丝是一种构筑一维纳米材料的简单、普适的方法。受此启发,我们利用静电纺丝结合不同的后处理工艺制备了一系列一维纳米过渡金属氧化物,并研究了其储锂性能。
     作为一种储锂材料,二氧化钼(MoO2)因其具有低电子阻抗、高稳定性及高密度(6.5g/cm3)等性质而引起广泛关注。我们采用单针头静电纺丝、空气稳定和还原碳化这一简单制备过程,制备了具有核壳结构的碳包覆MoO2纳米纤维。这种纳米纤维的核是约20nm大小的MoO2晶粒,壳为约3nm厚的碳层。这种单针头静电纺丝的方法省略了常用到的复杂的同轴针头设备和特殊的不互溶前驱体溶液,并且得到的碳包覆M002纳米纤维表现出了优异的储锂性能,其在50mA/g的电流密度下,充放电循环100次后,比容量仍高达762.7mAh/g.这不仅说明纳米尺寸的MoO2具有很高的电化学活性,而且也证明了碳包覆可以有效地维持MoO2在充放电过程中结构的稳定性,从而改善其循环性能。
     二氧化钛(TiO2)因其优越的安全性、低廉的成本、高化学稳定性及无毒性等优点而有望取代石墨成为一类很有前景的负极材料。然而,Ti02固有的低离子扩散速率及低电导率致使其作为锂离子电池负极材料时容量衰减较快及倍率性能低下。为了解决这些问题,本文采用基于静电纺丝的层层(Layer-by-Layer,简称LBL)自组装的方法合成了MoO2表面修饰的TiO2纳米纤维。这些纳米纤维由处于纤维芯层的TiO2纳米晶粒和处于表面的具有类金属导电性的MoO2纳米层构成,并且表面MoO2的量可通过改变LBL过程中溶液的浓度或LBL自组装的次数来调节。当被用作锂离子电池负极材料时,MoO2表面修饰的TiO2纳米纤维在0.2C的电流密度下,充放电循环50次后,容量仍高达到514.5mAh/g,表现出了较高的比容量。同时,这种材料的倍率性能和循环性能也得到了改善。这表明,表面修饰MoO2可以实现TiO2纳米纤维储锂性能的提高。
     最后,我们还通过静电纺丝及简单的一步烧结法成功制备出多孔钴酸锌(ZnCo2O4)纳米管。这种独特的多孔管状结构的形成主要取决于热处理过程中不同物质的不同迁移率和有机物的分解与燃烧。在最初的热处理过程中Zn(NO3)2/Co(NO3)2/PVP纳米纤维表面的Zn(NO3)2和Co(NO3)2分解并氧化生成金属氧化物,处于纤维内部的金属硝酸盐由于未接触氧气而没有及时反应,从而造成了纤维内部与表面之间金属硝酸盐的浓度差。受此浓度差的驱动,纤维内部的金属硝酸盐处于不稳定状态并趋于向表面迁移。同时,纤维表面与内部之间也存在着金属氧化物的浓度梯度,其趋向于向纤维内部迁移。当温度达到PVP的玻璃化转变温度时,PVP分子链段将变得高度柔韧,这有利于金属硝酸盐的扩散,从而促使纤维表面富集金属氧化物,而其内部富集PVP。当加热温度进一步升高时,PVP完全分解,纳米纤维结构将转变为中空的纳米管结构,并且由于烧结过程中气体的放出及ZnCo2O4晶粒的长大,纳米管的管壁必将产生大量的孔隙。这种独特的多孔纳米管结构的形成机理可归结于Kirkendall effect效应(熔融金属硝酸盐相对于新形成的金属氧化物具有更高的扩散速率)。当被用作锂离子电池负极材料时,多孔ZnCo2O4纳米管不仅表现出了较高的比容量(100mA/g电流密度下充放电循环30次后容量高达1454mAh/g),而且显示出优越的倍率性能(2000mA/g电流密度下充放电循环30次后容量仍有794mAh/g).可见,多孔的纳米管结构即有助于电解液的浸润以及锂离子的扩散,还对结构的稳定性起了积极的作用,从而保证了电极材料在充放电过程中实现优异的倍率性能和循环性能。
With the rapid growth of population and economy, global energy consumption increases strongly, which has stimulated intense research on renewable energy conversion and storage systems with high efficiency, low cost and environmental friendliness. In particular, rechargeable Lithium-ion batteries (LIBs), as the heart of key renewable energy conversion and storage technologies, become increasingly imperative with the increasing need of portable electronic devices and the upcoming electric vehicles. However, graphite, the conventional anode material in LIBs, only has a theoretical capacity of372mAh/g, which cannot meet the growing need for LIBs with higher capacity and power.
     Recently, transition metal oxides (TMOs) had been widely investigated since Tarascon et al first report that electrodes made of TMOs exhibit perfect reversible capacity, cyclic life and rate performance as alternative anode materials for LIBs. However, the TMOs are reduced in a conversion reaction to small metal clusters with the oxygen reacting with Li ion to form Li2O, leading to large volume expansion and destruction of the structure upon electrochemical cycling, and thus resulting in a rapid capacity fading and limiting their wide applications. Considerable approaches have been carried out to tackle this issue, including the use of nanostructure, porous structure, and the introduction of various carbon additives. These studies have brought significantly improvements of the lithium-storage performance of TMOs-based anodes.
     The past decade has witnessed significant growth in one dimensional (1D) nanomaterials, such as nanofibers, nanorods, nanotubes and nanowires, for high-performance LIBs by their high surface-to-volume ratios and excellent electrical conductivity along the lateral direction. Electrospinning is a simple and versatile method that provides direct and controllable fabrication strategies to construct well-defined1D nanostructure. Inspired by this, a series of1D nanostructured TMOs have been fabricated by electro spinning combining with post-heating. Furthermore, the lithium-storage properties of these1D nanostructured TMOs have been attempted to be integrated in this study.
     Molybdenum dioxide (MoO2) has recently received much attention as host substances for lithium-storage, owing to the low electrical resistivity, high stability, and high density (6.5g/cm). By employing a facile route based on single-nozzle electrospinning, air stabilization, and reduction/carbonization processes,1D carbon-coated MoO2nanofibers were prepared. The as-obtained1D carbon-coated MoO2nanofibers comprise hierarchically assembled MoO2nanocrystals of~20nm that are encapsulated within a thin carbon shell. This method does not require a complex coaxial-nozzle electrospinning device or a specialized immiscible solution-based precursor that is usually indispensable in an electrospinning process to form1D core-shell composites. The electrode made of the as-formed MoO2@C nanofibers exhibits excellent cyclability and a reversible capacity as high as762.7mAh/g at50mA/g after100cycles.
     Moreover, Titanium dioxide (TiO2) has also been fabricated as promising alternative anodes to graphite in LIBs because of their superior safety, low cost, chemical stability, and non-toxicity. Nevertheless, the main weakness of TiO2lies in the intrinsically slow kinetics of lithium ions diffusion and low electronic conductivity, resulting in the deterioration of reversible capacity and rate capability. To overcome this issue, an economical route based on electrospinning and layer-by-layer (LBL) self-assembly processes has been developed to synthesize unique MoO2-modified TiO2nanofibers, comprising a core of TiO2nanofibers and a thin metal-like MoO2nanolayer. The thickness of the MoO2nanolayer can be tuned by altering the precursor concentration or the LBL cycles. When evaluated for their lithium-storage properties, the MoO2modified TiO2nanofibers exhibit a high discharge capacity of514.5mAh/g at0.2C over50cycles and excellent rate capability, demonstrating that enhanced physical and/or chemical properties can be achieved through proper surface modification.
     Lastly, we have successfully fabricated porous ZnCo2O4nanotubes by an electrospinning method followed by annealing procedures. The formation mechanism of the unique porous nanotubular structure mainly relies on the different rate of mass transfer and the removal of polymer during the heating process. Zn(NO3)2and Co(NO3)2near the surface of the as-spun Zn(NO3)2/Co(NO3)2/PVP nanofibers decompose oxidatively to generate metal oxide nanocrystals during the thermal treatment initially. Meanwhile, the included metal nitrates in the core region do not react promptly due to lack of oxygen, but are unstable and tend to diffuse to the surface, driven by the concentration gradient. In addition, there exists another concentration gradient of metal-oxide nanocrystals from the surface to the interior of the nanofibers. Furthermore, PVP chains are highly flexible when the temperature is above Tg of PVP, facilitating the diffuse of metal nitrates. When the heating temperature is further enhanced, PVP decomposes completely. Therefore, the as-spun fibers have a great tendency to form hollow tubes eventually under annealing in air, owing to the Kirkendall effect related to the higher diffusion speed of melting metal nitrates in comparison to the newly-formed metal oxides. When evaluated for their lithium-storage properties, the porous ZnCo2O4nanotubes exhibit not only a high specific capacity of1454mAh/at100mA/g, but also a perfect rate capability of794mAh/g at a current density as high as2000mA/g, indicating a promising anode candidate for lithium-ion batteries.
引文
1.周凌云.世界能源危机与我国的能源安全[J].中国能源,2001,(1):12-13.
    2.江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    3.付融冰,张慧明.中国能源的现状[J].能源环境保护,2005,19(1):8-12.
    4.程新群.化学能源[M].北京:化学工业出版社,2008.
    5.吴宇平,戴晓兵,马军旗等.锂离子电池应用与实践[M].北京:化学工业出版社,2004.
    6.黄彦瑜.锂电池发展简史[J].物理学史和物理学家,2007,36(8):643-651.
    7. Jang, Y.-I; Huang, B.; Wang, H.; Sadoway, D. R.; Ceder, G.; Chiang, Y.-M.; Liu, H.; Tamura, H.. LiAlyCo1-y(R3-m) Intercalation Cathode for Rechargeable Lithium Batteries. Journal of The Electrochemical Society,1999,146 (3):862-868.
    8. Mladenov, M.; Stoyanova, R.; Zhecheva, E.; Vassilev, S.. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochemistry Communications,2001,3 (8):410-416.
    9. Shi, S.; Ouyang, C.; Lei, M.; Tang, W.. Effect of Mg-doping on the structural and electronic properties of LiCoO2:A first-principles investigation. Journal of Power Sources,2007,171 (2):908-912.
    10. Madhavi, S.; Subba Rao, G. V.; Chowdari, B. V. R.; Li, S. F. Y. Effect of Cr dopant on the cathodic behavior of LiCoO2. Electrochimica Acta,2002,48 (3),219-226.
    11. Ohzuku, T.; Ueda, A.; Nagayama, M.; Iwakoshi, Y.; Komori, H.. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochimica Acta,1993,38(9):1159-1167.
    12.Zou, M.; Yoshio, M.;Gopukumar. S.; Yamaki, J.-i.. Synthesis of High-Voltage (4.5 V) Cycling Doped LiCoO2 for Use in Lithium Rechargeable Cells. Chemistry of Materials. 2003,15 (25):4699-4702.
    13. Cho, J.; Kim, Y. J.; Park, B.. Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell. Chemistry of Materials,2000,12 (12):3788-3791.
    14. Miyashiro, H.; Kobayashi, Y.; Seki, S.; Mita, Y.; Usami, A.; Nakayama, M.; Wakihara, M.. Fabrication of All-Solid-State Lithium Polymer Secondary Batteries Using Al2O3-Coated LiCoO2. Chemistry of Materials,2005,17 (23):5603-5605.
    15. Hwang, B. J.; Chen, C. Y.; Cheng, M. Y.; Santhanam, R.; Ragavendran, K.. Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. Journal of Power Sources,2010,195 (13):4255-4265.
    16. Lee, J.-W.; Park, S.-M.; Kim, H.-J.. Enhanced cycleability of LiCoO2 coated with vanadium oxides. Journal of Power Sources,2009,188 (2):583-587.
    17. Fey, G. T.-K.; Muralidharan, P.; Lu, C.-Z.; Cho, Y.-D.. Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2. Electrochimica Acta,2006, 51 (23):4850-4858.
    18. Moshtev, R. V.; Zlatilova, P.; Manev, V.; Sato, A.. The LiNiO2 solid solution as a cathode material for rechargeable lithium batteries. Journal of Power Sources,1995,54 (2):329-333.
    19. Nohma, T.; Kurokawa, H.; Uehara, M.; Takahashi, M.; Nishio, K.; Saito, T. Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries. Journal of Power Sources,1995,54 (2):522-524.
    20. Yamada, S.; Fujiwara, M.; Kanda, M.. Synthesis and properties of LiNiO2 as cathode material for secondary batteries. Journal of Power Sources,1995,54 (2):209-213.
    21. Nishida, Y.; Nakane, K.; Satoh, T.. Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries. Journal of Power Sources,1997. 68 (2):561-564.
    22. Davidson. I. J.:McMillan. R. S.:Murray,J. J.;Greedan. J. E.. Lithium-ion cell based on orthorhombic LiMnO2. Journal of Power Sources,1995,54 (2):232-235.
    23. Armstrong, A. R.; Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature,1996,381 (6582):499-500.
    24. G. Bruce, P.; Robert Armstrong, A.; L. Gitzendanner, R.. New intercalation compounds for lithium batteries:layered LiMnO2. Journal of Materials Chemistry,1999, 9(1):193-198.
    25. Liao, P. Y.; Duh, J. G.; Sheen, S. R.. Microstructure and electrochemical performance of LiNi0.6Co0.4-xMnxO2 cathode materials. Journal of Power Sources,2005,143 (1-2): 212-218.
    26. Xiao, J.; Chernova, N. A.; Whittingham, M. S.. Layered Mixed Transition Metal Oxide Cathodes with Reduced Cobalt Content for Lithium Ion Batteries. Chemistry of Materials,2008,20 (24):7454-7464.
    27. Wang, L.; Li, J.; He, X.; Pu, W.; Wan, C.; Jiang, C. Recent advances in layered LiNixCoyMn1-xO2 cathode materials for lithium ion batteries. Journal of Solid State Electrochemistry,2009,13 (8):1157-1164.
    28. Hwang, B. J.; Tsai, Y. W.; Carlier, D.; Ceder, G. A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2. Chemistry of Materials, 2003,15 (19):3676-3682.
    29. Tsai, Y. W.; Hwang, B. J.; Ceder, G.; Sheu, H. S.; Liu, D. G.; Lee, J. F.. In-Situ X-ray Absorption Spectroscopic Study on Variation of Electronic Transitions and Local Structure of LiNi1/3Co1/3Mn1/3O2 Cathode Material during Electrochemical Cycling. Chemistry of Materials,2005,17 (12):3191-3199.
    30. Kim, Y.; Kim, H. S.; Martin, S. W.. Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries. Electrochimica Acta,2006,52 (3):1316-1322.
    31. Choi. J.; Manthiram, A.. Comparison of the Electrochemical Behaviors of Stoichiometric LiNi1/3Co1/3Mn1/3O2 and Lithium Excess Li1.03(Ni1/3Co1/3Mn1/3)0.97O2. Electrochemical and Solid-State Letters,2004,7 (10):A365-A368.
    32. Kim, H. S.; Kim, K.; Moon, S. I.; Kim, I. J.; Gu, H. B.. A study on carbon-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium secondary batteries. Journal of Solid State Electrochemistry,2008,12 (7):867-872.
    33. Sinha, N. N.; Munichandraiah, N.. Synthesis and Characterization of Carbon-Coated LiNi1/3Co1/3Mn1/3O2 in a Single Step by an Inverse Microemulsion Route. ACS Applied Materials & Interfaces,2009,1 (6):1241-1249.
    34. Thackeray, M. M.; Johnson, P. J.; de Picciotto, L. A.; Bruce, P. G.; Goodenough, J. B.. Electrochemical extraction of lithium from LiMn2O4. Materials Research Bulletin,1984, 19(2):179-187.
    35. Barboux, P.; Tarascon, J. M.; Shokoohi, F. K.. The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds. Journal of Solid State Chemistry,1991,94 (1):185-196.
    36. Kim, D. K.; Muralidharan, P.; Lee, H. W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui, Y. Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes. Nano Letters,2008,8 (11):3948-3952.
    37. Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H.. Synthesis of Single Crystalline Spinel LiMn2O4 Nanowires for a Lithium Ion Battery with High Power Density. Nano Letters,2009,9 (3):1045-1051.
    38. Tarascon, J. M.; McKinnon, W. R.; Coowar, F.; Bowmer, T. N.; Amatucci, G.; Guyomard, D.. Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4. Journal of The Electrochemical Society,1994,141 (6): 1421-1431.
    39. Yamada, A.; Tanaka. M.. Jahn-Teller structural phase transition around 280K in LiMn2O4. Materials Research Bulletin.1995.30 (6):715-721.
    40. Yang. S. H.; Hackney, S. A.; Kahaian, A. J.; Kepler, K. D.; Skinner, E.; Vaughey, J. T. Thackeray, M. M.. Structural fatigue in spinel electrodes in Li/Lix[Mn2]O4 cells. Journal of Power Sources,1999,81-82 (0):496-499.
    41. Thirunakaran, R.; Babu, B.; Kalaiselvi, N.; Periasamy, P.; Kumar, T.; Renganathan, N.; Raghavan, M.; Muniyandi, N.. Electrochemical behaviour of LiMyMn2-yO4(M=Cu, Cr; 0≤y≤0.4. Bulletin of Materials Science,2001,24 (1):51-55.
    42. Cho, J.. VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. Journal of Materials Chemistry,2008,18 (19):2257-2261.
    43. Lim, S.; Cho, J.. PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochemistry Communications, 2008,10 (10):1478-1481.
    44. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B.. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of The Electrochemical Society,1997,144 (4):1188-1194.
    45. Huang, H.; Yin, S. C.; Nazar, L. F.. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid State Letters,2001,4 (10): A170-A172.
    46. Yamada, A.; Chung, S. C.; Hinokuma, K.. Optimized LiFePO4 for lithium battery cathodes. Journal of The Electrochemical Society,2001,148 (3):A224-A229.
    47. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M.. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials,2002,1 (2):123-128.
    48. Yuan, L. X.; Wang, Z. H.; Zhang, W. X.; Hu, X. L.; Chen, J. T.; Huang, Y. H.; Goodenough, J. B.. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy & Environmental Science,2011,4 (2):269-284.
    49. Wang, Z. H.; Yuan, L. X.; Wu, M.; Sun, D.; Huang, Y. H.. Effects of Na+ and Cl-co-doping on electrochemical performance in LiFePO4/C. Electrochimica Acta,2011,56 (24):8477-8483.
    50.Wang,Z. H.; Yuan, L. X.; Ma, J.; Qie, L.; Zhang, L. L.; Huang, Y. H.. Electrochemical performance in Na-incorporated nonstoichiometric LiFePO4/C composites with controllable impurity phases. Electrochimica Acta,2012,62(0): 416-423.
    51.Chen,Z. H.; Dahn, J. R..Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. Journal of The Electrochemical Society, 2002, 149 (9): A1184-A1189.
    52.Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; Pejovnik, S.; Jamnik, J.. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. Journal of The Electrochemical Society,2005,152(3): A607-A610.
    53.Wang, Y.; Cao, G. Z.. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Advanced Materials, 2008,20(12):2251-2269.
    54.Scrosati, B.; Garche, J.. Lithium batteries:Status, prospects and future. Journal of Power Sources,2010,195(9):2419-2430.
    55.Yang, Z.;Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D.; Zhang, J.; Graff, G.; Liu, J.. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. Journal of Power Sources, 2009,192 (2):588-598.
    56.Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Ti-based compounds as anode materials for Li-ion batteries. Energy & Environmental Science, 2012, DOI:10.1039/C2EE03410G.
    57.Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H.J..Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 2010,39(8):3115-3141.
    58.Zhang, W.J.. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources,2011,196(1):13-24.
    59. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W.. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science,2011,4 (8):2682-2699.
    60. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P.. Insertion electrode materials for rechargeable lithium batteries. Advanced Materials,1998,10 (10):725-763.
    61. Nishizawa, M.; Hashitani, R.; Itoh, T.; Matsue, T.; Uchida, I.. Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode. Electrochemical and Solid State Letters,1998,1 (1):10-12.
    62. Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S.. Mechanisms for Lithium Insertion in Carbonaceous Materials. Science,1995,270 (5236):590-593.
    63. Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H., Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability. Advanced Materials 2012,24 (15):2047-2050.
    64. Kaskhedikar, N. A.:Maier, J.. Lithium Storage in Carbon Nanostructures. Advanced Materials,2009,21 (25):2664-2680.
    65. Wang, G. X.; Yao, J.; Liu, H. K.. Characterization of nanocrystalline Si-MCMB composite anode materials. Electrochemical and Solid State Letters,2004,7 (8): A250-A253.
    66. Che, G. L.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R.. Carbon nanotubule membranes for electrochemical energy storage and production. Nature,1998,393 (6683): 346-349.
    67. Kim, C.; Yang, K. S.; Kojima, M.; Yoshida, K.; Kim, Y. J.; Kim, Y. A.; Endo, M.. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Advanced Functional Materials,2006,16 (18): 2393-2397.
    68. Yoo. E.:Kim. J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I.. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters,2008,8 (8):2277-2282.
    69. Hu, Y. S.; Adelhelm, P.; Smarsly, B. M.; Hore, S.; Antonietti, M.; Maier, J.. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Advanced Functional Materials,2007,17 (12):1873-1878.
    70. Dillon, A. C. Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chemical Reviews,2010,110 (11):6856-6872.
    71. Eom, J. Y.; Kwon, H. S.; Liu, J.; Zhou, O.. Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD. Carbon,2004,42 (12-13):2589-2596.
    72. Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P.. Carbon nanotubes for lithium ion batteries. Energy & Environmental Science,2009,2 (6): 638-654.
    73. Wen, Z.; Wang, Q.; Zhang, Q.; Li, J.. In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes:A Novel Composite with Porous-Tube Structure as Anode for Lithium Batteries. Advanced Functional Materials,2007,17 (15):2772-2778.
    74. Paek, S. M.; Yoo, E.; Honma, I.. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters,2009,9 (1):72-75.
    75. Yang, S.; Feng, X.; Ivanovici, S.; Mullen, K.. Fabrication of Graphene-Encapsulated Oxide Nanoparticles:Towards High-Performance Anode Materials for Lithium Storage. Angewandte Chemie International Edition,2010,49 (45):8408-8411.
    76. Zhou, G.; Wang, D. W.; Li, F.; Zhang, L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M.. Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials.2010,22 (18):5306-5313.
    77. Wu, Z. S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H. M.. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano,2010,4 (6): 3187-3194.
    78. Wang, H.; Cui, L. F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. J.. Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society,2010,132 (40): 13978-13980.
    79. Kavan, L.; Gratzel, M., Facile synthesis of nanocrystalline Li4Ti5O12(spinel) exhibiting fast Li insertion. Electrochemical and Solid State Letters,2002,5 (2): A39-A42.
    80. Qiao, Y.; Hu, X. L.; Liu, Y.; Huang, Y H.. Li4Ti5O12 nanocrystallites for high-rate lithium-ion batteries synthesized by a rapid microwave-assisted solid-state process. Electrochimica Acta,2012,63(0):118-123.
    81. Gao, J.; Ying, J. R.; Jiang, C. Y.; Wan, C. R.. High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. Journal of Power Sources,2007,166 (1):255-259.
    82. Cheng, L.; Li, X. L.; Liu, H. J.; Xiong, H. M.; Zhang, P. W.; Xia, Y Y. Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. Journal of The Electrochemical Society,2007,154 (7):A692-A697.
    83. Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid State Letters,1999,2 (11):547-549.
    84. Dimov, N.; Kugino, S.; Yoshio. M.. Carbon-coated silicon as anode material for lithium ion batteries:advantages and limitations. Electrochimica Acta,2003,48 (11): 1579-1587.
    85. Hatchard, T. D.; Dahn, J. R.. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of the Electrochemical Society,2004,151 (6): A838-A842.
    86. Kasavajjula, U.; Wang, C. S.; Appleby, A. J.. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources,2007,163 (2): 1003-1039.
    87. Yang, J.; Takeda, Y.; Imanishi, N.; Yamamoto, O.. Ultrafine Sn and SnSb0.14 powders for lithium storage matrices in lithium-ion batteries. Journal of The Electrochemical Society,1999,146 (11):4009-4013.
    88. Yang, J.; Wachtler, M.; Winter, M.; Besenhard, J. O.. Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries. Electrochemical and Solid State Letters,1999,2 (4):161-163.
    89. Li, N. C.; Martin, C. R.. A high-rate, high-capacity, nano structured Sn-based anode prepared using sol-gel template synthesis. Journal of The Electrochemical Society,2001, 148(2):A164-A170.
    90. Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B.. Nano structured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Advanced Materials,2007,19 (17):2336-2340.
    91. Hassoun, J.; Panero, S.; Simon, P.; Taberna, P. L.; Scrosati, B.. High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries. Advanced Materials,2007,19 (12):1632-1635.
    92. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology,2008,3(1):31-35.
    93. Cui, L. F.; Yang, Y.; Hsu. C. M.:Cui, Y. Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters,2009,9 (9):3370-3374.
    94. Chan, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y.. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano,2010,4 (3):1443-1450.
    95. Zhang, Q.; Zhang, W.; Wan, W.; Cui, Y.; Wang, E.. Lithium Insertion In Silicon Nanowires:An ab Initio Study. Nano Letters,2010,10 (9):3243-3249.
    96. Liu, H. K.; Guo, Z. P.; Wang, J. Z.; Konstantinov, K.. Si-based anode materials for lithium rechargeable batteries. Journal of Materials Chemistry,2010,20 (45): 10055-10057.
    97. Wang, G. X.; Ahn, J. H.; Yao, J.; Bewlay, S.; Liu, H. K.. Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochemistry Communications,2004,6 (7):689-692.
    98. Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J., Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. Advanced Materials,2008, 20(6):1160-1165.
    99. Yu, Y.; Gu, L.; Wang, C.; Dhanabalan, A.; van Aken, P. A.; Maier, J.. Encapsulation of Sn@carbon Nanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries. Angewandte Chemie International Edition,2009,48 (35):6485-6489.
    100. Courtney, I. A.; Dahn, J. R.. Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. Journal of The Electrochemical Society,1997,144 (6):2045-2052.
    101. Courtney, I. A.; McKinnon, W. R.; Dahn, J. R.. On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. Journal of The Electrochemical Society,1999,146 (1):59-68.
    102. Read, J.; Foster, D.; Wolfenstine, J.; Behl, W.. SnO2-carbon composites for lithium-ion battery anodes. Journal of Power Sources,2001,96 (2):277-281.
    103. Aurbach, D.; Nimberger, A.; Markovsky, B.; Levi, E.; Sominski, E.; Gedanken, A.. Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries. Chemistry of Materials,2002,14 (10):4155-4163.
    104. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M.. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000,407 (6803):496-499.
    105. Han, S. J.; Jang, B. C.; Kim, T.; Oh, S. M.; Hyeon, T.. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Advanced Functional Materials,2005,15 (11):1845-1850.
    106. Wang, Y.; Lee, J. Y.; Zeng, H. C. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chemistry of Materials.2005,17(15):3899-3903.
    107. Wang, Y.; Su, F. B.; Lee, J. Y.; Zhao, X. S.. Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres:Synthesis and performance in reversible Li-ion storage. Chemistry of Materials,2006,18 (5): 1347-1353.
    108. Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K.. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angewandte Chemie-International Edition,2007,46 (5):750-753.
    109. Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A.. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Advanced Materials,2006,18 (17):2325-2329.
    11 O.Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A.. Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties. Chemistry of Materials. 2008,20 (20):6562-6566.
    111.Chen, J. S.; Cheah, Y. L.; Chen, Y. T.; Jayaprakash, N.; Madhavi, S.; Yang, Y. H.; Lou, X. W.. SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2009, 113 (47):20504-20508.
    112.Chen, J. S.; Li, C. M.; Zhou, W. W.; Yan, Q. Y.; Archer, L. A.; Lou, X. W.. One-pot formation of SnO2 hollow nanospheres and alpha-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale,2009,1(2):280-285.
    113.Lou, X. W.; Chen, J. S.; Chen, P.; Archer, L. A.. One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties. Chemistry of Materials,2009,21(13):2868-2874.
    114.Lou, X. W.; Li, C. M.; Archer, L. A.. Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage. Advanced Materials, 2009, 21 (24):2536-2539.
    115.Chen, J. S.; Archer, L. A.; Lou, X. W.. SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. Journal of Materials Chemistry, 2011,21 (27):9912-9924.
    116.Ding, S. J.; Chen, J. S.; Lou, X. W.. CNTs@SnO2@Carbon Coaxial Nanocables with High Mass Fraction of SnO2 for Improved Lithium Storage. Chemistry-an Asian Journal, 2011,6(9):2278-2281.
    117.Ding, S. J.; Chen, J. S.; Qi, G. G.; Duan, X. N.; Wang, Z. Y.; Giannelis, E. P.; Archer, L. A.; Lou, X. W.. Formation of SnO2 Hollow Nanospheres inside Mesoporous Silica Nanoreactors. Journal of the American Chemical Society, 2011,133(1):21-23.
    118.Ding, S. J.; Lou, X. W.. SnO2 nanosheet hollow spheres with improved lithium storage capabilities. Nanoscale,2011,3 (9):3586-3588.
    119.Ding, S. J.; Luan, D. Y.; Boey, F. Y. C.; Chen, J. S.; Lou, X. W.. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chemical Communications. 2011, 47 (25): 7155-7157.
    120. Ding, S. J.; Wang, Z. Y.; Madhavi, S.; Lou, X. W.. SBA-15 derived carbon-supported SnO2 nanowire arrays with improved lithium storage capabilities. Journal of Materials Chemistry,2011,21 (36):13860-13864.
    121. Wang, Z.; Luan, D.; Boey, F. Y. C.; Lou, X. W.. Fast Formation of SnO2 Nanoboxes with Enhanced Lithium Storage Capability. Journal of the American Chemical Society,2011,133(13):4738-4741.
    122. Wu, H. B.; Chen, J. S.; Lou, X. W.; Hng, H. H.. Synthesis of SnO2 Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties. The Journal of Physical Chemistry C,2011,115(50):24605-24610.
    123. Shao, Q. G.; Chen, W. M.; Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y H.. SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries. Electrochemistry Communications,2011,13 (12):1431-1434.
    124. Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W.. Effect of diffusion on lithium intercalation in titanium dioxide. Physical Review Letters,2001,86 (7): 1275-1278.
    125. Kavan, L.; Kalbac, M.; Zukalova, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Graetzel, M.. Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth. Chemistry of Materials,2004,16 (3):477-485.
    126. Sudant, G.; Baudrin, E.; Larcher, D.; Tarascon, J.-M.. Electrochemical lithium reactivity with nanotextured anatase-type TiO2. Journal of Materials Chemistry,2005,15 (12):1263-1269.
    127. Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Protonated titanates and TiO2 nanostructured materials:Synthesis, properties, and applications. Advanced Materials, 2006,18 (21):2807-2824.
    128. Armstrong, A. R.; Armstrong, G.; Canales, J.;Bruce. P. G. TiO2-B Nanowires. Angewandte Chemie International Edition,2004,43 (17):2286-2288.
    129. Armstrong, A. R.; Armstrong, G.; Canales, J.; Garcia, R.; Bruce, P. G. Lithium-Ion Intercalation into TiO2-B Nanowires. Advanced Materials,2005,17 (7): 862-865.
    130. Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B.. TiO2 (B) Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte. Advanced Materials, 2006,18 (19):2597-2600.
    131. Armstrong, G.; Armstrong, A. R.; Canales, J.; Bruce, P. G. Nanotubes with the TiO2-B structure. Chemical Communications,2005, (19):2454-2456.
    132. Qiao, Y.; Hu, X. L.; Huang, Y. H. Microwave-induced solid-state synthesis of TiO2 (B) nanobelts with enhanced lithium-storage properties. Journal of Nanoparticle Research,2012,14(2):1-7.
    133. Taberna, L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M.. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials,2006,5 (7):567-573.
    134. Wang, L.; Yu, Y.; Chen, P. C.; Zhang, D. W.; Chen, C. H.. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. Journal of Power Sources,2008,183 (2):717-723.
    135. Dedryvere, R.; Laruelle, S.; Grugeon, S.; Poizot, P.; Gonbeau, D.; Tarascon, J. M.. Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chemistry of Materials,2004,16 (6):1056-1061.
    136. Li, F.; Zou, Q. Q.; Xia, Y. Y.. CoO-loaded graphitable carbon hollow spheres as anode materials for lithium-ion battery. Journal of Power Sources,2008,177 (2): 546-552.
    137. Wang, X.; Li. L.:Zhang. Y. G.; Wang, S. T.; Zhang, Z. D.; Fei, L. F.; Qian, Y. T. High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance. Crystal Growth & Design,2006,6 (9):2163-2165.
    138. Varghese, B.; Reddy, M. V.; Yanwu, Z.; Lit, C. S.; Hoong, T. C.; Rao, G. V. S.; Chowdari, B. V. R.; Wee, A. T. S.; Lim, C. T.; Sow, C. H.. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials,2008,20 (10):3360-3367.
    139. Grugeon, S.; Laruelle, S.; Herrera-Urbina, R.; Dupont, L.; Poizot, P.; Tarascon, J. M.. Particle size effects on the electrochemical performance of copper oxides toward lithium. Journal of The Electrochemical Society,2001,148 (4):A285-A292.
    140. Gao, X. P.; Bao, J. L.; Pan, G. L.; Zhu, H. Y.; Huang, P. X.; Wu, F.; Song, D. Y. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. Journal of Physical Chemistry B, 2004,108 (18):5547-5551.
    141. Zheng, S. F.; Hu, J. S.; Zhong, L. S.; Song, W. G.; Wan, L. J.; Guo, Y. G.. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chemistry of Materials,2008,20 (11): 3617-3622.
    142. Park, J. C.; Kim, J.; Kwon, H.; Song, H.. Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials. Advanced Materials,2009,21 (7):803-807.
    143. Yu, X. Q.; He, Y.; Sun, J. P.; Tang, K.; Li, H.; Chen, L. Q.; Huang, X. J.. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochemistry Communications,2009,11 (4):791-794.
    144. Liu, J.; Pan. Q. M.. MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries. Electrochemical and Solid State Letters,2010,13 (10):A139-A142.
    145. Zhong, K. F.; Xia. X.; Zhang, B.; Li. H.; Wang, Z. X.; Chen. L. Q.. MnO powder as anode active materials for lithium ion batteries. Journal of Power Sources,2010,195 (10):3300-3308.
    146. Komaba, S.; Suzuki, K.; Kumagai, N.. Synthesis of nanocrystalline Fe2O3 for lithium secondary battery cathode. Electrochemistry,2002,70 (7):506-510.
    147. Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L.. alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Advanced Materials,2005,17 (5):582-586.
    148. Wang, Z. Y.; Luan, D. Y.; Madhavi, S.; Hu, Y.; Lou, X. D.. Assembling carbon-coated alpha-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy & Environmental Science,2012,5 (1):5252-5256.
    149. Xia, Y N.; Yang, P. D.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H.. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications. Advanced Materials,2003,15 (5):353-389.
    150. Tang, Z.; Kotov, N. A.. One-Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise. Advanced Materials,2005,17 (8):951-962.
    151. Seifert, W.; Borgstrom, M.; Deppert, K.; Dick, K. A.; Johansson, J.; Larsson, M. W.; Martensson, T.; Skold, N.; Patrik T. Svensson, C.; Wacaser, B. A.; Reine Wallenberg, L.; Samuelson, L.. Growth of one-dimensional nanostructures in MOVPE. Journal of Crystal Growth,2004,272 (1-4):211-220.
    152. Yan, H.; He, R.; Pham, J.; Yang, P.. Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals. Advanced Materials,2003,15 (5):402-405.
    153. Wang, Z. L.. Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides—From Materials to Nanodevices. Advanced Materials,2003,15 (5):432-436.
    154. Marinakos, S. M.;Brousseau, L. C.; Jones, A.; Feldheim, D. L.. Template synthesis of one-dimensional Au, Au-poly(pyrrole), and poly(pyrrole) nanoparticle arrays. Chemistry of Materials,1998,10 (5):1214-1219.
    155. Yu, Y.; Du. F. P.; Yu, J. C.; Zhuang, Y. Y.; Wong. P. K.. One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template. Journal of Solid State Chemistry,2004,177 (12):4640-4647.
    156. Hurst, S. J.; Payne, E. K.; Qin, L. D.; Mirkin, C. A.. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angewandte Chemie-International Edition,2006,45 (17):2672-2692.
    157. Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M.. Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes. Science,2006,312 (5775):885-888.
    158. Hagrman, D.; Hammond, R. P.; Haushalter, R.; Zubieta, J.. Organic/inorganic composite materials:Hydrothermal syntheses and structures of the one-, two-, and three-dimensional copper(II) sulfate organodiamine phases [Cu(H2O)3(4,4 '-bipyridine)(SO4)]·2H2O, [Cu(bpe)2][Cu(bpe)(H2O)2(SO4)2]·2H2O, and [Cu(bpe)(H2O)(SO4)] (bpe=trans-1,2-Bis (4-pyridyl)ethylene). Chemistry of Materials, 1998,10(8):2091-2100.
    159. Cao, M. H.; Hu, C. W.; Wang, E. B.. The first fluoride one-dimensional nanostructures:Microemulsion-mediated hydrothermal synthesis of BaF2 whiskers. Journal of the American Chemical Society,2003,125 (37):11196-11197.
    160. Cheng, B.; Samulski, E. T.. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chemical Communications,2004, (8): 986-987.
    161. Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S.. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics,2000,87 (9):4531-4547.
    162. Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L.. Electrospinning of collagen nanofibers. Biomacromolecules.2002,3 (2):232-238.
    163. Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna,S.. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology,2003,63 (15):2223-2253.
    164. Li, D.; Xia, Y. N.. Fabrication of titania nanofibers by electrospinning. Nano Letters,2003,3 (4):555-560.
    165. Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P.. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003,24 (12):2077-2082.
    166. Li, D.; Xia, Y. N.. Electrospinning of nanofibers:Reinventing the wheel? Advanced Materials,2004,16 (14):1151-1170.
    167. Greiner, A.; Wendorff, J. H.. Electrospinning:A fascinating method for the preparation of ultrathin fibres. Angewandte Chemie-International Edition,2007,46 (30): 5670-5703.
    168. Ji, L.; Zhang, X.. Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochemistry Communications,2009,11 (4):795-798.
    169. Ji, L.; Lin, Z.; Guo, B.; Medford, A. J.; Zhang, X.. Assembly of Carbon-SnO2 Core-Sheath Composite Nanofibers for Superior Lithium Storage. Chemistry-A European Journal,2010,16 (38):11543-11548.
    170. Lin, Z.; Ji, L.; Woodroof, M. D.; Zhang, X.. Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. Journal of Power Sources,2010,195 (15):5025-5031.
    171. Liu, J. G.; Zhang, Z. J.; Pan, C. Y.; Zhao, Y.; Su, X.; Zhou, Y.; Yu, D. P.. Enhanced field emission properties Of MoO2 nanorods with controllable shape and orientation. Materials Letters,2004,58 (29):3812-3815.
    172. Flores, O. G. M.; Ha, S.. Activity and stability studies of MoO2 catalyst for the partial oxidation of gasoline. Applied Catalysis a-General,2009,352 (1-2):124-132.
    173. Ye, J. S.; Wen, Y.; Zhang, W. D.; Cui, H. F., Xu, G. Q.; Sheu, F. S.. Electrochemical functionalization of vertically aligned carbon nanotube arrays with molybdenum oxides for the development of a surface-charge-controlled sensor. Nanotechnology, 2006,17 (15):3994-4001.
    174. Gesheva, K. A.; Ivanova, T.. A Low-Temperature Atmospheric Pressure CVD Process for Growing Thin Films of MoO3 and MoO3-WO3 for Electrochromic Device Applications. Chemical Vapor Deposition, 2006, 12 (4): 231-238.
    175. Scarminio, J.; Lourenco, A.; Gorenstein, A.. Electrochromism and photochromism in amorphous molybdenum oxide films. Thin Solid Films, 1997, 302 (1-2): 66-70.
    176. Auborn, J. J.; Barberio, Y. L.. Lithium intercalation cells without metallic lithium MoO2/LiCoO2 and WO2/LiCoO2. Journal of The Electrochemical Society,1987,134: 638-641.
    177. Liang, Y. G.; Yang, S. J.; Yi, Z. H.; Sun, J. T.; Zhou, Y. H.. Preparation, characterization and lithium-intercalation performance of different morphological molybdenum dioxide. Materials Chemistry and Physics, 2005, 93(2-3),395-398.
    178. Liang, Y. G.; Yi, Z. H.; Yang, S. J.; Zhou, L. Q.; Sun, J. T.; Zhou, Y. H.. Hydrothermal synthesis and lithium-intercalation properties of MoO2 nano-particles with different morphologies. Solid State Ion, 2006, 177 (5-6):501-505.
    179. Yang, L. C.; Gao, Q. S.; Tang, Y.; Wu, Y. P.; Holze, R.. MoO2 synthesized by reduction Of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery. Journal of Power Sources, 2008,179 (1):357-360.
    180. Yang, L. C.; Gao, Q. S.; Zhang, Y. H.; Tang, Y.; Wu, Y. P.. Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery. Electrochemistry Communications,2008,10(1):118-122.
    181. Ku, J. H.; Jung, Y. S.;Lee, K. T.;Kim, C. H.;Oh,S. M.. Thermoelectrochemically Activated MoO2 Powder Electrode for Lithium Secondary Batteries. Journal of the Electrochemical Society,2009,156 (8):A688-A693.
    182. Gao, Q. S.; Yang, L. C.; Lu, X. C.; Mao, J. J.; Zhang, Y. H.; Wu, Y. P.; Tang, Y. Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires. Journal of Materials Chemistry,2010,20 (14):2807-2812.
    183. Wang, Z. Y.; Chen, J. S.; Zhu, T.; Madhavi, S.; Lou, X. W.. One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chemical Communications,2010,46 (37):6906-6908.
    184. Lei, Y. Z.; Hu, J. C.; Liu, H. W.; Li, J. L.. Template-free synthesis of hollow core-shell MoO2 microspheres with high lithium-ion storage capacity. Materials Letters, 2012,68:82-85.
    185. Xu, Y.; Yi, R.; Yuan, B.; Wu, X. F.; Dunwell, M.; Lin, Q. L.; Fei, L.; Deng, S. G.; Andersen, P.; Wang, D. H.; Luo, H. M.. High Capacity MoO2/Graphite Oxide Composite Anode for Lithium-Ion Batteries. Journal of Physical Chemistry Letters,2012,3 (3): 309-314.
    186. Zhou, L.; Wu, H. B.; Wang, Z.; Lou, X. W.. Interconnected MoO2 Nanocrystals with Carbon Nanocoating as High-Capacity Anode Materials for Lithium-ion Batteries. Acs Applied Materials & Interfaces,2011,3 (12):4853-4857.
    187. Ji, X. L.; Herle, S.; Rho, Y H.; Nazar, L. F.. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers. Chemistry of Materials,2007,19 (3):374-383.
    188. Shi, Y. F.; Guo, B. K.; Corr, S. A.; Shi, Q. H.; Hu, Y. S.; Heier, K. R.; Chen, L. Q.; Seshadri, R.;Stucky, G. D.. Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity. Nano Letters,2009,9 (12):4215-4220.
    189. Shi, Y. F.; Fang, X.; Guo, B. K.; Li, B.; Yao, C.; Zhang, Y.; Hu, Y. S.:Stucky, G. D.; Chen, L. Q.. Enhanced Li Storage Performance of Ordered Mesoporous MoO2 via Tungsten Doping. Nanoscale,2012,4(5):1541-1544.
    190. Sun, Y. M.; Hu, X. L; Luo, W.; Huang, Y. H.. Self-Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano,2011,5 (9):7100-7107.
    191. Sun, Y. M.; Hu, X. L.; Yu, J. C.; Li, Q.; Luo, W.; Yuan, L. X.; Zhang, W. X.; Huang, Y. H.. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy & Environmental Science,2011,4 (8): 2870-2877.
    192. Sun, Y. M.; Hu, X. L; Luo, W.; Huang, Y. H.. Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. Journal of Materials Chemistry,2012,22(2):425-431.
    193. Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H.. Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Physical Chemistry Chemical Physics,2011,13 (37):16735-16740.
    194. Chen, X. Y.; Zhang, Z. J.; Li, X. X.; Shi, C. W.; Li, X. L.. Selective synthesis of metastable MoO2 nanocrystallites through a solution-phase approach. Chemical Physics Letters,2006,418 (1-3):105-108.
    195. Lee, S. H.; Kim, Y. H.; Deshpande, R.; Parilla, P. A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A. H.; Zhang, S. B.; Dillon, A. C. Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles. Advanced Materials,2008,20 (19): 3627-3632.
    196. Hu, X. L.; Yu, J. C.; Li, Q.. Synthesis of surface-functionalized t-Se microspheres via a green wet-chemical route. Journal of Materials Chemistry,2006,16 (8):748-751.
    197. Guo. B. K.;Fang, X. P.; Li. B.; Shi, Y. F.; Ouyang, C. Y.; Hu. Y S.; Wang, Z. X.; Stucky. G. D.:Chen, L. Q.. Synthesis and Lithium Storage Mechanism of Ultrafine MoO2 Nanorods. Chemistry of Materials,2012,24 (3):457-463.
    198. Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R.. Beyond Intercalation-Based Li-Ion Batteries:The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials,2010,22 (35): E170-E192.
    199. Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J.. Research on Advanced Materials for Li-ion Batteries. Advanced Materials,2009,21 (45):4593-4607. 200. Jamnik, J.; Maier, J.. Nanocrystallinity effects in lithium battery materials Aspects of nano-ionics. Part IV. Physical Chemistry Chemical Physics,2003,5 (23): 5215-5220.
    201. Fu, L. J.; Liu, H.; Zhang, H. P.; Li, C.; Zhang, T.; Wu, Y. P.; Wu, H. Q.. Novel TiO2/C nanocomposites for anode materials of lithium ion batteries. Journal of Power Sources,2006,159 (1):219-222.
    202. Gligor, F.; De Leeuw, S.. Lithium diffusion in rutile structured titania. Solid State Ion,2006,177 (26-32):2741-2746.
    203. Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J.. High Lithium Electroactivity of Nanometer Sized Rutile TiO2. Advanced Materials,2006,18 (11):1421-1426.
    204. Bach, S.; Pereira-Ramos, J.; Willman, P.. Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy. Electrochimica Acta,2010,55 (17): 4952-4959.
    205. Chen, J. S.; Lou, X. W.. The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. Journal of Power Sources,2010,195 (9):2905-2908.
    206. Chen, J. S.; Liu, H.; Qiao, S. Z.; Lou, X. W.. Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. Journal of Materials Chemistry,2011, 21 (15):5687-5692.
    207. Chen, J. S.; Wang. Z. Y.; Dong, X. C.; Chen, P.;Lou,X. W.. Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. Nanoscale,2011,3 (5): 2158-2161.
    208. Ding, S. J.; Chen, J. S.; Luan, D. Y.; Boey, F. Y. C.; Madhavi, S.; Lou, X. W.. Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chemical Communications,2011,47 (20):5780-5782.
    209. Ding, S. J.; Chen, J. S.; Wang, Z. Y.; Cheah, Y. L.; Madhavi, S.; Hu, X. A.; Lou, X. W.. TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. Journal of Materials Chemistry,2011,21 (6):1677-1680.
    210. Liu, J. H.; Chen, J. S.; Wei, X. F.; Lou, X. W.; Liu, X. W.. Sandwich-Like, Stacked Ultrathin Titanate Nanosheets for Ultrafast Lithium Storage. Advanced Materials, 2011,23 (8):998-1002.
    211. Park, S. J.; Kim, Y. J.; Lee, H.. Synthesis of Carbon Coated TiO2 Nanotubes for High Power Lithium-ion Batteries. Journal of Power Sources,2011,196(11):5133-5137.
    212. Wang, Y. D.; Smarsly, B. M.; Djerdj, I.. Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion. Chemistry of Materials,2010,22 (24): 6624-6631.
    213. Nam, S. H.; Shim, H. S.; Kim, Y. S.; Dar, M. A.; Kim, J. G.; Kim, W. B.. Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries. Acs Applied Materials & Interfaces, 2010,2 (7):2046-2052.
    214. Ariga, K.; Lvov, Y.; Kunitake, T.. Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. Journal of the American Chemical Society,1997,119 (9):2224-2231.
    215. Stockton, W. B.; Rubner. M. F.. Molecular-level processing of conjugated polymers. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules,1997,30 (9):2717-2725.
    216. Lvov, Y. M.; Lu, Z. Q.; Schenkman, J. B.; Zu, X. L.; Rusling, J. F.. Direct electrochemistry of myoglobin and cytochrome p450(cam) in alternate layer-by-layer films with DNA and other polyions. Journal of the American Chemical Society,1998, 120 (17):4073-4080.
    217. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A. Buzaneva, E. V.; Gorchinskiy, A. D.. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials, 1999,11 (3):771-778.
    218. Caruso, F.; Trau, D.; Mohwald, H.; Renneberg, R.. Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir,2000,16 (4): 1485-1488.
    219. Malikova, N.; Pastoriza-Santos, I.; Schierhorn, M.; Kotov, N. A.; Liz-Marzan, L. M.. Layer-by-layer assembled mixed spherical and planar gold nanoparticles:Control of interparticle interactions. Langmuir,2002,18 (9):3694-3697.
    220. Tang, Z. Y.; Wang, Y.; Podsiadlo, P.; Kotov, N. A.. Biomedical applications of layer-by-layer assembly:From biomimetics to tissue engineering. Advanced Materials, 2006,18 (24):3203-3224.
    221. Ariga, K.; Hill, J. P.; Ji, Q. M.. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics,2007,9 (19):2319-2340.
    222. Wang, Y.; Angelatos, A. S.; Caruso, F.. Template synthesis of nanostructured materials via layer-by-layer assembly. Chemistry of Materials,2008,20 (3):848-858.
    223. Shang, M.; Wang, W.; Zhang, L.; Sun, S.; Wang, L.; Zhou, L..3D Bi2WO6/TiO2 Hierarchical Heterostructure:Controllable Synthesis and Enhanced Visible Photocatalytic Degradation Performances. The Journal of Physical Chemistry C,2009,113 (33): 14727-14731.
    224. Kumar, A.; Jose, R.; Fujihara, K.; Wang, J.; Ramakrishna, S.. Structural and Optical Properties of Electrospun TiO2 Nanofibers. Chemistry of Materials,2007,19 (26): 6536-6542.
    225. Liu, G.; Jaegermann, W.; He, J.; Sundstrom, V.; Sun, L.. XPS and UPS Characterization of the TiO2/ZnPcGly Heterointerface:Alignment of Energy Levels. The Journal of Physical Chemistry B,2002,106 (23):5814-5819.
    226. Gao, X.; Zhu, H.; Pan, G.; Ye, S.; Lan, Y.; Wu, F.; Song, D.. Preparation and Electrochemical Characterization of Anatase Nanorods for Lithium-Inserting Electrode Material. The Journal of Physical Chemistry B,2004,108 (9):2868-2872.
    227. Choi, H. C.; Lee, S. Y.; Kim, S. B.; Kim, M. G.; Lee, M. K.; Shin, H. J.; Lee, J. S.. Local Structural Characterization for Electrochemical Insertion-Extraction of Lithium into CoO with X-ray Absorption Spectroscopy. The Journal of Physical Chemistry B, 2002,106 (36):9252-9260.
    228. Do, J. S.; Weng, C. H.. Preparation and characterization of CoO used as anodic material of lithium battery. Journal of Power Sources,2005,146 (1-2):482-486.
    229. Jiang, J.; Liu, J.; Ding, R.; Ji, X.; Hu, Y.; Li, X.; Hu, A.; Wu, F.; Zhu, Z.; Huang, X.. Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes. The Journal of Physical Chemistry C, 2009,114 (2):929-932.
    230. Li, W. Y.; Xu, L. N.; Chen, J.. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Advanced Functional Materials,2005,15 (5):851-857.
    231. Liu, H. C.; Yen, S. K.. Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries. Journal of Power Sources,2007,166 (2):478-484.
    232. Shaju, K. M.; Jiao,F.; Debart, A.; Bruce, P. G.. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Physical Chemistry Chemical Physics,2007,9 (15):1837-1842.
    233. Chou,S.L.;Wang,J.Z.;Liu,H.K.;Dou,S.X..Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery.Joumal of Power Sources, 2008,182(1):359-364.
    234. Li,Y G.;Tan,B.;Wu,Y.Y..Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability.Nano Letters,2008,8(1):265-270.
    235. Liu,Y.;Mi,C.H.;Su,L.H.;Zhang,X.G.Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries.Electrochimica Acta,2008,53 (5):2507-2513.
    236. Lou,X.W.;Deng,D.;Lee,J.Y.;Feng,J.;Archer,L.A..Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes.Advanced Materials,2008,20(2),258-262.
    237. Yao,X.Y.;Xin,X.;Zhang,Y. M.;Wang,J.;Liu,Z.P.;Xu,X.X..Co3O4 nanowires as high capacity anode materials for lithium ion batteries.Joumal of Alloys and Compounds,2012,521:95-100.
    238. Qiu,Y. C.;Yang,S.H.;Deng,H.;Jin,L.M.;Li,W.S..A novel nanostructured spinel ZnCo2O4 electrode material:morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries.Journal of Materials Chemistry,2010,20(21):4439-4444.
    239. Sharma,Y.;Sharma, N.;Rao,G. V.S.;Chowdari,B.V.R..Lithium recycling behaviour of nano-phase-CuCo:04 as anode for lithium-ion batteries.Journal of Power Sources,2007,173(1):495-501.
    240. NuLi,Y N.;Zhang,P.;Guo,Z.P.;Liu,H.K.;Yang,J..NiCo2O4/C nanocomposite as a highly reversible anode material for lithium-ion batteries. Electrochemical and Solid State Letters,2008,11(5):A64-A67.
    241. Sharma,Sharma,N.;Rao,G.V S.;Chowdari,B.V R..Studies on spinel cobaltites,FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries.Solid State Ion,2008, 179 (15-16):587-597.
    242. Wang, Y.; Su, D.; Ung, A.; Ahn, J.; Wang, G. Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology,2012,23(5): 055402-055408.
    243. NuLi, Y. N.; Chu, Y. Q.; Qin, Q. Z.. Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries. Journal of the Electrochemical Society,2004,151 (7):A1077-A1083.
    244. Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R.. Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochimica Acta,2008,53 (5):2380-2385.
    245. Guo, X.; Lu, X.; Fang, X.; Mao, Y; Wang, Z.; Chen, L.; Xu, X.; Yang, H.; Liu, Y.. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochemistry Communications,2010,12 (6):847-850.
    246. Deng, Y.; Zhang, Q.; Tang, S.; Zhang, L.; Deng, S.; Shi, Z.; Chen, G. H.. One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chemical Communications,2011,47 (24):6828-6830.
    247. Ding, Y.; Yang, Y.; Shao, H.. High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochimica Acta,2011,56 (25):9433-9438.
    248. Teh, P. F.; Sharma, Y.; Pramana, S. S.; Srinivasan, M.. Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. Journal of Materials Chemistry,2011,21 (38): 14999-15008.
    249. Yang, Y. Y.; Zhao, Y. Q.; Xiao, L. F.; Zhang, L. Z.. Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochemistry Communications,2008,10 (8): 1117-1120.
    250. Xiao,L.; Yang, Y.; Yin, J.; Li, Q.; Zhang, L. Z.. Low temperature synthesis of flower-like ZuMn2O4 superstructures with enhanced electrochemical lithium storage. Journal of Power Sources,2009,194 (2):1089-1093.
    251. Deng, Y.; Tang, S.; Zhang, Q.; Shi, Z.; Zhang, L.; Zhan, S.; Chen, G. H. Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. Journal of Materials Chemistry,2011,21 (32):11987-11995.
    252. Kim, S. W.; Lee, H. W.; Muralidharan, P.; Seo, D. H.; Yoon, W. S.; Kim, D.; Kang, K.. Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Research,2011,4 (5):505-510.
    253. Zhou, L.; Wu, H. B.; Zhu, T.; Lou, X. W.. Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry,2012,22(3):827-829.
    254. Lin, C.; Li, Y.; Yu, M.; Yang, P.; Lin, J.. A Facile Synthesis and Characterization of Monodisperse Spherical Pigment Particles with a Core/Shell Structure. Advanced Functional Materials,2007,17(9):1459-1465.
    255. Ai, C. C.; Yin, M. C.; Wang, C. W.; Sun, J. T.. Synthesis and characterization of spinel type ZnCo2O4 as a novel anode material for lithium ion batteries. Journal of Materials Science,2004,39 (3):1077-1079.
    256. Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R.. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Advanced Functional Materials, 2007,17 (15):2855-2861.
    257. Reddy, M. V.; Kenrick, K. Y. H.; Wei, T. Y.; Chong, G. Y.; Leong, G. H.; Chowdari, B. V. R.. Nano-ZnCo2O4 Material Preparation by Molten Salt Method and Its Electrochemical Properties for Lithium Batteries. Journal of the Electrochemical Society, 2011,158(12):A1423-A1430.
    258. Deng, D.; Lee. J. Y. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage. Nanotechnology,2011,22(35):355401-335410.
    259. Du, N.; Xu, Y. F.; Zhang, H.; Yu, J. X.; Zhai, C. X.; Yang, D. R.. Porous ZnCo2O4 Nanowires Synthesis via Sacrificial Templates:High-Performance Anode Materials of Li-Ion Batteries. Inorganic Chemistry,2011,50 (8):3320-3324.
    260. Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H.. Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry,2012,22(18):8916-8921.
    261. Xu, L.; Dong, B. A.; Wang, Y.; Bai, X.; Chen, J. S.; Liu, Q.; Song, H. W.. Porous In2O3:RE (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb) Nanotubes:Electrospinning Preparation and Room Gas-Sensing Properties. Journal of Physical Chemistry C,2010,114 (19): 9089-9095.
    262. Xiang, H.; Long, Y.; Yu, X.; Zhang, X.; Zhao, N.; Xu, J.. A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning. CrystEngComm,2011,13 (15):4856-4860.
    263. Chen, X.; Unruh, K. M.; Ni, C. Y.; Ali, B.;Sun, Z. C.; Lu, Q.; Deitzel, J.; Xiao, J. Q.. Fabrication, Formation Mechanism, and Magnetic Properties of Metal Oxide Nanotubes via Electrospinning and Thermal Treatment. Journal of Physical Chemistry C, 2011,115 (2):373-378.
    264. Lu, X.; Zhao, Y.; Wang, C. Fabrication of PbS Nanoparticles in Polymer-Fiber Matrices by Electrospinning. Advanced Materials,2005,17 (20):2485-2488.
    265. Kustova, G. N.; Burgina, E. B.; Volkova, G. G.; Yurieva, T. M.; Plyasova, L. M.. IR spectroscopic investigation of cation distribution in Zn-Co oxide catalysts with spinel type structure. Journal of Molecular Catalysis a-Chemica,2000,158 (1):293-296.
    266. Wei. X. H.; Chen. D. H.; Tang, W. J.. Preparation and characterization of the spinel oxide ZnCooO4 obtained by sol-gel method. Materials Chemistry and Physics, 2007,103(1):54-58.
    267. Barakat, N. A. M.; Khil, M. S.; Sheikh, F. A.; Kim, H. Y.. Synthesis and optical properties of two cobalt oxides (CoO and CO3O4) nanofibers produced by electrospinning process. Journal of Physical Chemistry C,2008,112 (32):12225-12233.
    268. Varghese, B.; Hoong, T. C.; Yanwu, Z.; Reddy, M. V.; Chowdari, B. V. R.; Wee, A. T. S.; Vincent, T. B. C.; Lim, C. T.; Sow, C. H.. Co3O4 nanostructures with different morphologies and their field-emission properties. Advanced Functional Materials,2007, 17(12):1932-1939.
    269. Vijayanand, S.; Joy, P. A.; Potdar, H. S.; Patil, D.; Patil, P.. Nanostructured spinet ZnCo2O4 for the detection of LPG. Sensors and Actuators B-Chemical,2011,152 (1): 121-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700