球形纳米孔二氧化硅材料及其吸附特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球形纳米孔SiO_2材料中存在大量纳米孔,具有比表面积大、孔容高、流动性好和表面易功能化等特点,在吸附分离、催化剂载体、色谱分析、阻热、光子晶体和药物可控释放等方面具有广阔的应用前景。实验采用溶胶-凝胶法,结合喷雾干燥、自组装途径制备了结构和孔特性不同的球形纳米孔SiO_2材料。采用扫描电子显微镜、红外光谱、差热-热重分析、N_2等温吸附和小角X-射线衍射等
     实验手段研究了所得样品的形貌、结构和性能,重点研究了不同球形纳米孔SiO_2材料对罗丹明6G(R6G)、甲基蓝、金属离子以及焦亚硫酸钠的吸附特性。实验首先考察了正硅酸乙酯-乙醇-氨水-水-十六烷基三甲基溴化铵(CTAB)体系中水硅比变化对所得产物形貌的影响。当反应体系无外加水时,TEOS在氨水中发生水解缩聚反应,所得SiO_2微球中只存在少量的无序微孔;水硅比为124 : 1时,表面活性剂形成的胶束与TEOS水解缩聚的产物进行自组装,产物干燥煅烧后最终得到有序介孔SiO_2微球。若增加反应体系水硅比增至248 : 1时,样品逐渐变为球形和棒状的混合物。水硅比超过372 : 1时,样品为多孔纳米棒。随着水硅比的增大,SiO_2纳米棒的长度和长径比减小,孔径增大,且孔的有序性降低。纳米棒的形成是由于CTAB位阻效应凸现所致。以稳定的复合纳米棒悬浮液喷雾干燥、煅烧制得纳米孔球形SiO_2颗粒。所得球形纳米孔SiO2颗粒尺寸为1μm左右,其比表面积、孔容、孔径均比对应的多孔纳米棒小。在上述体系随着CTAB用量增多,所得多孔SiO_2微球的相貌和尺寸变化较小,孔径减小,但比表面积增大。不同孔径微球混合物的N2吸附等温线在毛细管凝聚阶段无分离特征,但孔径分布曲线呈现双峰,两峰的相对面积随混合物中不同孔径微球所占比例变化而变化。
     研究表明,低浓度的前驱体溶液、高吸附质含量的条件下有利于多孔SiO_2微球对Ce~(2+)、Cu~(2+)离子的吸附。染料分子吸附实验结果显示,由于水和CTAB用量不同时制得的SiO_2微球中纳米孔的孔径均大于R6G的分子直径,纳米孔SiO_2微球吸附R6G的速率和最终吸附量均随着样品比表面积的增大而提高;而多孔纳米棒吸附R6G的速率及吸附量随棒尺寸的减小而降低;喷雾干燥制得的球形纳米孔SiO_2颗粒吸附R6G的量均比对应的多孔纳米棒小。所有样品对染料的吸附过程均符合准二级动力学吸附模型。
     实验还分别考察了壳上具有纳米孔的厚壁中空SiO_2微球和薄壁中空SiO_2微球对R6G、甲基蓝以及焦亚硫酸钠的吸附行为。结果表明,厚壁中空SiO_2微球的孔径、染料分子的直径影响中空SiO_2微球对染料的吸附特性。当样品的孔径均大于染料分子直径时,孔径增大,吸附量增加。薄壁中空SiO_2微球中,样品孔径、球壳厚度均对样品吸附R6G的性能产生影响。样品孔径增大,球壳厚度增加,吸附R6G的速率和平衡吸附量增大。中空微球对R6G的吸附过程均符合准二级动力学模型。此外,实验发现随着薄壁中空SiO_2微球球壳厚度的增加,其吸附焦亚硫酸钠的量依次增加,分别为51%、63%和72%。
Spherical nanoporousSiO_2 materials possess abundant nanopores, high surface area, large pore volume, good fluidity and ease of surface functionalization etc. They may find potential applications in the fields of adsorption and separation, catalysis, chromatographic analysis, heat resistance, photonic crystal, controlled drug delivery and release. In this work, spherical nanoporous SiO_2 materials with different structures and pore features were prepared using sol-gel technique combined with spraying-dry and self-assembly approach. SEM, FT-IR, DTA-TG, N2-sorption, small angle XRD were used to charcterize the morphology, structure and properties of the obtained samples. The adsorption of Rodamine 6G (R6G), methyl blue, metal ions and Na_2S_2O_5 by the prepared spherical nanoporous SiO_2 materials were studied in detail.
     The influence of water to silica ratio on the morphology of the products in tetraethylorthosilicate (TEOS) - EtOH - ammonia - water - cetyltrimethylammonium bromide (CTAB) system was first investigated. When no extra water was added, hydrolysis and condensation of TEOS occurred in the ammonia solution. SiO_2 microspheres with disordered micropores were formed. When the water to silica ratio of the system was 124: 1, surfactant and the silica species from the hydrolysis and condensation of TEOS self-assembled, resulting in ordered mesoporous SiO_2 microspheres. When the water to silica ratio of the system was doubled to 248: 1, the sample consisted of spherical and rod-like particles. When the water to silica ratio of the system was more than 372: 1, porous nanorods were obtained. The results show that the length and aspect ratio as well as the pore ordering of the nanorods decrease with increasing the water to silica ratio of the system. However, the pore diameter increases. The steric effect of CTAB is responsible for the formation of the naorods. Spray-drying stable suspensions containing the silica-CTAB nanorods generated spherical nanoporous SiO_2 particles sized about 1μm. The surface area, pore volume and pore diameter of the spray-dried spherical particles were smaller than those of the correspondent nanorods. Also, increase in the amount of CTAB in above system had little effect on the morphology and size of the obtained porous SiO_2 spheres. However, the pore diameter decreased while the surface area increased. N_2-sorption isotherms of mixed silica spheres with different pore diameters do not show distinct break in the capillary condensation stages. In contrast, that pore size distribution curves of mixed samples exhibit double peaks whose relative areas change with the proportion in the mixture of microspheres with different pore diameters.
     Adsorption studies indicate that the precursor solutions with low concentration, high dosage of absorbent are favorable for the adsorption of Ce~(2+), Cu~(2+) ions in the nanoporus silica microspheres. Since the size of nanopores inside the SiO_2 microspheres synthesized with different water and CTAB additions is larger than the diameter of R6G molecules, it is demonstrated that the adsorption rate and final adsorbance of R6G in nanoporous SiO_2 spheres are improved mainly due to the increase in the surface area of silica microspheres. The adsorption rate and final adsorbance of R6G in the porous nanorods decreases as the rods become shortened. The adsorbance of R6G in spray-dried nanoporous SiO_2 particles is less than that in the correspondnet porous nanorods. All the above samples show the pseudo-second-order adsorption process of R6G. The adsorption of Rhodamine 6G, methyl blue and Na2S2O5 by nanoporous hollow SiO_2 microspheres with thick and thin shells was also investigated. The results indicate that the pore size of nanopores in the thick-walled hollow silica microspheres and the diameter of dye molecules affect the adsorption of dyes in hollow SiO_2 microspheres. When nanopores are larger the dye molecules, the adsorbance increases with the pore diameter. However, in the case of hollow silica microspheres with thin shells, the pore diameter and shell thickness have effects on the adsorption of R6G.
     The adsorption rate and equilibrium adsorption capacity of R6G in thin-walled hollow silica microspheres increased with the pore diameter and shell thickness. All the adsorption process of R6G in hollow silica microspheres are also pseudo-second-order. In addition, the adsorbance of Na_2S_2O_5 in the thin-walled hollow silica microspheres is found to be increased from 51% to 63%and 72% with the increases in shell thickness.
引文
[1].陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社, 2001.
    [2].孙永安,王晓晖.催化作用原理与应用[M].天津:天津科学技术出版社, 2008.
    [3].Langmuir I. The adsorption of gases on plane surfaces of glass, mice and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
    [4].Messina P V, Schulz P C. Adsorption of reactive dyes on titania-silica mesoporous materials[J]. Journal of Colloid and Interface Science, 2006, 299: 305-320.
    [5].赵振国, Langmuir方程在稀溶液吸附中的应用[J].大学化学, 1999, 14(5): 7-11.
    [6].张增强,孟昭福,张一平. Freundlich动力学方程及其参数的物理意义探析[J].西北农林科技大学学报(自然科学版), 2003, 31(5): 202-204.
    [7].印永嘉,奚正楷.物理化学简明教程(第三版)[M].北京市:高等教育出版社, 1992.
    [8].曲荣君,殷平,纪春暖.金属离子吸附材料:制备?结构?性能[M].北京:化学工业出版社, 2009.
    [9].Ho Y S, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34: 451-465.
    [10].周洁,阳永荣,王靖岱.新型介孔活性炭对Cr(Ⅵ)吸附动力学研究[J].化工进展, 2005, 24(4): 403-407.
    [11].李颖,岳钦艳,高宝玉等.活性炭纤维对活性染料的吸附动力学研究[J].环境科学, 2007, 28(11): 2637-2641.
    [12].Kumar K V, Sivanesan S. Equilibrium data, isotherm parameters and process design for partial and complete isotherm of methylene blue onto activated carbon[J]. Journal of Hazardous Materials B, 2006, 134: 237-244.
    [13].Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling[J]. Biochemical Engineering Journal, 2001, 7(1): 79-84.
    [14].Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study[J]. Dyes and Pigments, 2001, 51: 25-40.
    [15].Zhang Z J, Li J, Sun F S, et al. Preparation and characterization of activated carbon fiber from paper[J]. Chinese of Chemical Physics, 2011, 24(1): 103-108.
    [16].詹予忠,李海龙,杨向东.多孔炭/硅胶复合吸附剂的除铬(Ⅵ)吸附动力学研究[J].化工时刊, 2007, 21(9): 17-19.
    [17].王纪霞,张秋禹,苗振华,等.单分散二氧化硅微球的制备及粉体分散方法的研究进展[J].材料科学与工程学报, 2008, 26(5): 798-801.
    [18].郑典模,李广梅,庄叶凯,等.球形SiO2的制备研究[J].江西科学, 2009, 27(1):58-61.
    [19].常文明,李军平,赵宁等.新型SiO2基微/介孔材料的合成及其对集成电路生产中VOCs废气的吸附研究[J].化工新型材料, 2009, 37(2): 26-28.
    [20].Patel D B, Singh S, Bandyopadhyaya R. Enrichment of benzene from benzene–water mixture by adsorption in silylated mesoporous silica[J]. Microporous and Mesoporous Materials, 2011, 137: 49-55.
    [21].Newalkar B L, Choudary N V, Turaga U T, et al. Adsorption of light hydrocarbons on HMS type mesoporous silica[J]. Microporous and Mesoporous Materials, 2003, 65: 267-276.
    [22].Kn?fel C, Lutecki M, Martin C, et al. Green solvent extraction of a triblock copolymer from mesoporous silica: Application to the adsorption of carbon dioxide under static and dynamic conditions[J]. Microporous and Mesoporous Materials, 2010, 128: 26-33.
    [23].Asouhidou D D, Triantafyllidis K S, Lazaridis N K, et al. Adsorption of Remazol Red 3BS from aqueous solutions using APTES-and cyclodextrin-modified HMS-type mesoporous silicas[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346: 83-90.
    [24].Wang S B, Li H T. Structure directed reversible adsorption of organic dye on mesoporous silica in aqueous solution[J]. Microporous and Mesoporous Materials, 2006, 97: 21-26.
    [25].Miyahara M, Vinu A, Hossain K Z, et al. Adsorption study of heme proteins on SBA-15 mesoporous silica with pore-filling models[J]. Thin Solid Films, 2006, 499: 13-18.
    [26].Murata S, Hata H, Kimura T, et al. Effective adsorption of chlorophyll a by FSM-type mesoporous silica modified with 1,4-butanediol[J]. Langmuir, 2000, 16: 7106-7108.
    [27].Aguado J, Arsuaga J M, Arencibia A, et al. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica[J]. Journal of Hazardous Materials, 2009, 163: 213-221.
    [28].Kang T, Park Y, Yi J. Highly selective adsorption of Pt2+ and Pd2+ using thiol-functionalized mesoporous silica[J]. Industrial & Engineering Chemistry Research, 2004, 43: 1478-1484.
    [29].Bourlinos A B, Karakassides M A, Petridis D. Synthesis and characterization of iron-containing MCM-41 porous silica by the exchange method of the template[J]. The Journal of Physical Chemistry B, 2000, 104(18): 4375-4380.
    [30].冯磊,张月成,赵继全等. MCM-41负载磷钨酸催化剂的制备及其对乙酞化反应的催化性能[J].石油化工, 2008, 37(9), 931-936.
    [31].罗文彬,林向农,张昭等.中孔二氧化硅作无机抗菌剂载体的应用[J].湿法冶金, 2003, 22(1): 28-33.
    [32].蔡杰,任楠,唐颐等.载有量子点的介孔二氧化硅微球的制备与性能研究[J].化学学报, 2008, 66(8): 923-929.
    [33].Ogawa K, Chemburu S, Lopez G P, et al. Conjugated polyelectrolyte-grafted silica microspheres[J]. Langmuir, 2007, 23: 4541-4548.
    [34].阮建明,王亚东,伍秋美等.单分散球形SiO2的制备及其分散体系的流变性能[J].中南大学学报(自然科学版): 2007, 38(5): 825-829.
    [35].刘世权,王利民,刘福田,等. SiO2微球的制备与应用[J].功能材料, 2004, 1(35): 11-13.
    [36].乔文婷,周国伟,徐会颖.有序介孔材料的形貌调控及应用研究进展[J].化工进展, 2008, 27(3): 372-377.
    [37].许红涛,王新收,陶磊明等.一种新型介孔空腔二氧化硅纳米微球的制备与缓释行为[J].中国科学:化学, 2010, 40(4): 309-315.
    [38].Zhang C, Hou T, Chen J F, et al. Preparation of mesoporous silica microspheres with multi-hollow cores and their application in sustained drug release[J]. Particuology, 2010, 8(5): 447-452.
    [39].Zhu Y F, Shi J L, Li Y S, et al. Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface[J]. Microporous and Mesoporous Materials, 2005, 85(1-2):75-81.
    [40].Ciesla U, Schuth F. Ordered mesoporous materials[J]. Microporous and Mesoporous Materials, 1999, 27: 131-149.
    [41].Miura H, Kanebako M, Shirai H. Enhancement of dissolution rate and oral absorption of a poorly water-soluble drug, K-832, by adsorption onto porous silica using supercritical carbon[J]. Journal of Pharmaceutics and Biopharmaceutics, 2010, 76(2): 215-221.
    [42].Molina A I, Robles J M, García P B, et al. Nickel supported on porous silica as catalysts for the gas-phase hydrogenation of acetonitrile[J]. Journal of Catalysis, 2004, 225: 479-488.
    [43].Martines M U, Yeong E, Persin M, et al. Hexagonal mesoporous silica nanoparticles with large pores and a hierarchical porosity tested for HPLC[J]. Comptes Rendus Chimie, 2005, 8: 627-634.
    [44].Reim M, K?rner W, Manara J, et al. Silica aerogel granulate material for thermal insulation and daylighting[J]. Solar Energy, 2005, 79(2): 131-139.
    [45].Pallavidino L, Liscidini M, Virga A, et al. Synthesis of amorphous silicon/ magnesiabased direct opals with tunable optical properties[J]. Optical Materials, 2011, 33(3): 563-569.
    [46].Hoang T K A, Hamaed A, Trudeau M, et al. Bis(benzene) and bis(cyclopentadienyl) V and Cr doped mesoporous silica with high enthalpies of hydrogen adsorption[J]. The Journal of Physical Chemistry C, 2009, 113, 17240-17246.
    [47].Naeem H A, Sapirstein H D. Ultra-fast separation of wheat glutenin subunits by reversed-phase HPLC using a suoerficially porous silica-based column[J]. Journal of Cereal Science, 2007, 46(2): 157-168.
    [48].Mcglashan M L. IUPAC manual of symbols and terminology[J]. Pure and Applied Chemistry, 1972, 31(4): 578-638.
    [49].李英杰,柏刚,张妍等.复合模板制备介孔SiO2及对苯酚吸附研究[J].化学研究与应用, 2009, 21(9): 1314-1316.
    [50].Hung C T, Bai H. Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method[J]. Chemical Engineering Science, 2008, 63: 997-2005.
    [51].Solberg S M, Landry C C. Adsorption of DNA into mesoporous silica[J]. The Journal of Physical Chemistry B, 2006, 110: 15261-5268.
    [52].Miyake Y, Yosuke M, Azechi E, et al. Preparation and adsorption properties of thiol-functionalized mesoporous silica microspheres[J]. Industrial Engineering Chemistry Research, 2009, 48(2): 938–943.
    [53].Ng J B S, Kamali-Zare P, Brismar H, et al. Release and molecular transport of cationic and anionic fluorescent molecules inmesoporous silica spheres[J]. Langmuir, 2008, 4(19): 11096-11102.
    [54].Wang J, Ding H, Tao X, et al. Storage and sustained release of volatile substances from a hollow silica matrix[J]. Nanotechnology, 2007, 18: 245705.
    [55].Liu S Q, Xia G, Sui X Y, et al. Adsorption and chromatographic separation capacities of hollow silica spheres[C]. 15th International Zeolite Conference, 2007, 8: 12-17.
    [56].Buchel G, Unger H H, Matsumoto A,et al. A novel pathway for synthesis of submicrometersize solide core/mesoporous shell silica spheres[J]. Advanced Materials, 1998, 10: 1036-1038.
    [57].Izutsu H, Mizukami F, Nair P K, et al. Preparation and characterization of porous silica spheres by the sol-gel method in the presence of tartaric acid[J]. Journal of Materials Chemistry, 1997, 7(5): 767-771.
    [58].Lecloux A J, Bronckart J, Noville F, et al. Study of the texture of monodisperse silicasphere samples in the nanometer size range[J]. Colloids and Surfaces, 1986, 19(4): 359-374.
    [59].Grun M, Lauer I, Unger K K. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41[J]. Advanced Materials, 1997, 9(3): 254-257.
    [60].Shimura N, Ogawa M. Preparation of surfactant templated nanoporous silica spherical particles by the St?ber method, effect of solvent composition on the particle size[J]. Journal of Materials Science, 2007, 42: 5299-5306.
    [61].Kazuhisa Y, Yoshiaki F. Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethy lammonium halide as a surfactant[J]. Journal of Materials Chemistry, 2004, 14: 1579-1584.
    [62].Wang J G, Li F, Zhou H J, et al. Silica Hollow Spheres with Ordered and Radially Oriented Amino-Functionalized Mesochannels[J]. Chemistry of Materials, 2009, 21: 612–620.
    [63].Tungkananurak1 K, Kerdsiri S, Jadsadapattarakul D, et al. Semi-micro preparation and characterization of mesoporous silica microspheres from rice husk sodium silicate using a non-ionic surfactant as a template: application in normal phase HPLC columns[J]. Microchimica Acta, 2007, 159: 217-222.
    [64].Kosuge K, Sigh P S. Mesoporous silica spheres via 1-alkylamine templating route[J]. Microporous and Mesoporous Materials, 2001, 44-45: 139-145.
    [65].Liu S Q, Rao J C, Sui X Y, et al. Preparation of hollow silica spheres with different mesostructures[J]. Journal of Non-Crystalline Solids, 2008, 354: 826-830.
    [66].Qi L. Micrometer-sized microporous silica spheres templated by a double-hydrophilic block copolymer[J]. Journal of Materials Science Letters, 2001, 20(23): 2153-2156.
    [67].余承忠,范杰,赵东元.利用嵌段共聚物及无机盐合成高质量的立方相、大孔径介孔氧化硅球[J].化学学报, 2002, 60(8): 1357-1360.
    [68].邱健全,赵翔,金敏超等.混合表面活性剂法制备介孔SiO2微球及其Semi-batch法生长[J].无机材学报, 2006, 2(3): 558-564.
    [69].Smitha S, Shajesh P, Mukundan P, et al. Synthesis of mesoporous hydrophobic silica microspheres through a modified sol-emulsion-gel process[J]. Journal of Sol-Gel Science and Technology, 2008, 48: 356-361.
    [70].Chang H K, Kim S J, Jan H D, Kim T O, et al. Pore size-controlled synthesis and characterization of nanostructured silica particles[J]. Ultramicroscopy, 2008, 108, 1260-1265.
    [71].Witoon T, Chareonpanich M, Limtrakul J. Synthesis of bimodal porous silica from rice husk ash via sol-gel process using chitosan as template[J]. Materials Letters, 2008, 62: 1476-1479.
    [72].胡秉方,陈馥衡.有机化学.北京:农业出版社, 1988.
    [73].Bourlinos A B, Karakassides M A, Petridis D. Synthesis and characterization of iron-containing MCM-41 porous silica by the exchange method of the template[J]. The Journal of Physical Chemistry B, 2000, 104(18): 4375-4380.
    [74].He J X, Cui M Y, Zheng Y Y a, et al. Self-assembly of modified silica nanospheres at the liquid/liquid interface[J]. Materials Letters, 2010, 64: 463-465.
    [75].Zhao X S, Lu G Q, Whittaker A K, et al. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA[J]. The Journal of Physical Chemistry B, 1997, 101(33): 6525-6531.
    [76].郭斌,唐永建,程建平.介孔SiO2纳米棒的制备及其表面锚接金纳米粒子[J].强激光与粒子束, 2008, 20(5): 774-778.
    [77].李明天,王娜,梁艳等.单分散短棒状介孔二氧化硅的制备[J].材料研究学报, 2006, 20(2): 181-185.
    [78].Lind A, Hohenesche C F, Smaatt J H, et al. Spherical silica agglomerates possessing hierarchical porosity prepared by spray drying of MCM-41 and MCM-48 nanospheres[J]. Microporous and Mesoporous Materials, 2003, 66: 219-227.
    [79].Qiu Q, Zhan J, Liu S Q. Size determination of ultramicropores and small mesopores using a calculation procedure based on the tangents of comparison plot[J]. Journal of Wuhan University of Technology--Materials Science Edition, 2010, 25(3): 391-394.
    [80].Wei M Y, Oers C J V, Hao X P, et al. In?uence of silica forming media on the synthesis of hollow silica microspheres[J]. Microporous and Mesoporous Materials, 2011, 138: 17-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700