钛丝烧结制备医用多孔钛及其表面Si-HA生物活化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔钛的孔结构可以诱导骨组织向内生长,增加界面结合强度、促进体液在其中流动、加快骨修复进程,因此在骨修复领域有广泛的应用前景。本文以钛丝为原料制备多孔钛,采用理论设计和计算的方法给出了多孔钛毛坯孔隙度的计算公式,分析了各参数对毛坯孔隙度的影响。优化了多孔钛的最终成形和真空烧结工艺。研究了多孔钛压缩性能及变形过程,给出了压缩屈服强度与孔隙度之间的理论关系式。以含硅羟基磷灰石(Si-HA)热力学与动力学几率分析为基础,在钛及多孔钛表面仿生制备了Si-HA涂层,最后对该涂层的生物活性进行了体外细胞试验和动物体内植入试验评价。得到如下结果:
     多孔钛毛坯孔隙度计算结果表明:调整钛丝直径dTi,最小螺旋直径D,以及螺旋升角θ1和θ2可以控制多孔钛毛坯的孔隙度。
     多孔钛成形研究表明:采用双向成形和循环加压可以获得孔尺寸更均匀的多孔钛。获得的医用多孔钛的孔隙为三维螺旋结构,其孔隙度的范围为53%-72%,孔隙尺寸范围为150-600微米,开孔率为90%-100%。压缩屈服强度为160-60MPa,杨氏弹性模量为5-2GPa。
     对多孔钛压缩过程的研究表明:孔隙度大于67%时,压缩过程分为三个阶段:弹性阶段、平台阶段和致密化阶段;孔隙度小于67%时,压缩过程只有弹性阶段和致密化阶段。
     对多孔钛孔隙度与压缩屈服强度间关系的研究发现:随孔隙度增加,压缩屈服强度降低。孔结构弹性坍塌和塑性坍塌对压缩屈服强度均有贡献。引入参数f衡量弹性坍塌对压缩屈服强度的贡献,试验结果表明f=0.15,说明弹性坍塌对压缩屈服强度有15%的贡献,塑性坍塌对压缩屈服强度的贡献为85%。
     研究了钛表面Ca(OH)2+NaOH混合碱-热处理工艺。结果表明通过混合碱处理在钛表面可引入Ca2+,处理后表面活化层呈网状多孔结构,物相主要为钙钛矿型CaTiO3和金红石型TiO2。同时研究发现表面含钙量、热处理温度和处理时间对表面活化层形态、物相及分布有影响。随着热处理温度和时间的增加,表面钛酸钙量增加,表面多孔结构被破坏,并且金红石逐渐变为短棒状。表面含钙量越高,钛酸钙越易于聚集成片且分布于表面。
     采用SBF体外浸泡实验研究了各个因素对表面生物活性的影响,结果表明:主要的影响因素为热处理温度,其范围为580-600℃;表面含钙量影响次之,应保持在0.87at.%附近。在此基础上,成功地将混合碱—热处理工艺应用于多孔钛表面处理,获得了内外均匀的表面活化层。
     热力学和动力学几率计算以及实验结果表明:当控制沉积液的pH值在7.0-8.0之间,SiO32-名义浓度小于5.0mM时,单相Si-HA优先生成。钛表面仿生制备的Si-HA涂层表面多孔,有珊瑚状凸起,涂层中的硅由内向外呈梯度分布;随着涂层平均含硅量增加,表面逐渐致密,涂层厚度减小。Si的引入增加了仿生Si-HA涂层与基体的剪切强度。将Si-HA涂层仿生制备工艺应用于多孔钛,获得了内外均匀的Si-HA涂层。
     体外细胞实验结果表明:Si的引入增加了Si-HA涂层的生物活性并加速细胞的矿化进程。培养初期,不同硅含量的表面粘附的细胞数量没有显著差异;7天后0.50wt.% Si-HA涂层表面粘附的细胞明显多于其它硅含量的涂层(p<0.05),这表明0.50wt.% Si- HA表现出更好的生物相容性。
     动物体内植入试验表明:Si-HA涂层可以诱导新骨沿涂层向骨髓腔内生长和向外生长(向肌肉方向),并且新骨与涂层的界面结合紧密,验证了Si-HA涂层具有良好的骨诱导性。
Porous titanium can induce bone to ingrow into porous structure, which enhances the interface intensity. Body fluid can flow in connected pores, which accelerates the course of bone healing and remodelling. Therefore, porous titanium shows great potential for the bone implant application. Titanium wire was used as material to sinter porous titanium in present dissertation. An equation to design and predict the porosity of porous titanium preform was given by means of theoretical design and calculation, and the effect factors on the porosity of porous titanium preform were analyzed. The final forming and vacuum sintering process was studied. The compressive deformation process and compressive properties were studied, and the relationship between porosity and compressive yield strength was given. On the base of thermodynamics and dynamics analysis, the silicon-containing hydroxyapatite (Si-HA) was prepared on titanium by a biomimetic method. The bioactivity of Si-HA coating was assessed through in vitro cell experiment and in vivo implantation experiment. The results are summaried as follows:
     The calculated results of the porosity of the porous titanium preform showed that the porosity could be controlled by changing the diameter of the titanium wire (dTi), minimum screw diameter (D) and helix angles (θ1 andθ2).
     The results of the forming of porous titanium showed that the two-direction-shaping method and the cyclic pressure method made the pore uniform. The obtained biomedical porous titanium had a 3-dimemsion and helix pore structure. The range of porosity was 53%-72%, the range of pore size was 150-600μm, and the range of open-cell percent was 90%-100%. The compressive yield strength ranged 160-60MPa, and Young’s modulus was 5-2GPa.
     The compressive deformation process was studied. The result showed that when the porosity is larger than 67%, the compressive process includes three stages: elastic stage, plateau stage and densification stage. When the porosity is less than 67%, the compressive process includes two stages: elastic stage and densification stage.
     The relationship between the porosity and the compressive yield strength was studied. The result showed that the compressive yield strength was reduced with the increasing of the porosity. The elastic collapse and the plastic collapse of pore structure were contributed to the compressive yield strength. f was introduced to assess the contribution of the elastic collapse in the stage of yielding. The experimental results showed that the value of f was 0.15, which indicated that the percent of the elastic collapse contributed to the compressive yield strength was 15%, and the percent of the plastic collapse contributed to the compressive yield strength was 85%.
     The process of mixed alkali (Ca(OH)2 + NaOH) and heat treatment of the titanium surface was studied. Ca2+ was introduced into the surface and the active layer of the surface had a network porous structure after mixed alkali treatment. The phases on the surface were CaTiO3 and rutile mainly. Surface Ca content, the temperature and the time of the heat treatment affected the morphology, the phases constitute and the distribution of the active layer. With the increasing of the temperature and time of heat treatment, the amount of CaTiO3 increased, the network porous structure of the surface was broken, and the shape of rutile changed into a cosh. The more the surface Ca content had, the more CaTiO3 congregated in a flake shape on the surface.
     The bioactivity of the surface layer was assessed by immersing it in a simulated body fluid (SBF). Influential factors for the bioactivity were the temperature of the treatment temperature, which should be within a range of 580-600℃, and the surface Ca content, which should be at 0.87 at.%. The optimal process of the mixed alkali and heat treatment was applied to porous titanium, and the active layer was uniform all over the porous titanium.
     The calculated result of thermodynamics and dynamics probability analysis of Si-HA and the experimental result showed that the single phase of Si-HA could be obtained preferentially on the condition of the range of pH value being 7.0-8.0 and the nominal concentration of SiO32- in the immersion solution being less than 5mM. A Si-HA coating was prepared on titanium by a biomimetic method. The surface of the Si-HA coating was porous, and there was coralloid gibbosity on the surface. Si concentration was descent in Si-HA coating from outside to inside. When the Si content increased, the coating became denser and thinner. The introduction of Si in the coating could enhance the shearing strength. The biomimetic method was applied to porous titanium, and the Si-HA coating was uniform all over the porous titanium.
     The in vitro cell experimental result showed the introduction of Si could enhance the bioactivity and accelerate the biomineralization. The amount of Si content did not show distinct difference in cell attachment on the coating in the early culture stage. After 5 days culture,the most cells were observed on the Si-HA coating with 0.50 wt.% Si, indicating that the surface has the best bioactivity.
     The in vivo implantation experimental result showed that the Si-HA coating could induce the ingrowth of new bone into porous titanium toward the directions of marrow cavity and muscle. The new bone was well integrated with the Si-HA coating, which testified the better osteoinduction of the Si-HA coating.
引文
1 S. Nishiguchi, H. Kato, H. Fujita. Titanium metal form direct bonding to bone after alkali and heat treatmentslll. Biomaterials. 2001, 22 (18) : 2525~ 2532
    2 Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992,274:124~134
    3 K. Anselme. Osteoblast adhesion on biomaterials. Biomaterials 2000, 21(7):667~681
    4 H.P. Degischer, B.Kriszt.多孔泡沫金属.左孝青周芸.化学工业出版社, 2005:1~58
    5刘培生,梁开明,顾守仁,王习术.多孔金属抗拉强公式中的指数相取值.力学学报. 2001,33(6):853~855
    6姜淑文,齐民.生物医用多孔金属材料的研究进展.材料科学与工程. 2002, 20 (4): 597~600
    7 J. Banhart. Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 2001,46:559~632
    8俞耀庭,张兴栋.生物医用材料.天津大学出版社. 2000.1~136
    9 K. de Groot, R.G. T. Geesink, P. Serekian. Plasma sprayed coatings of hydroxylapatite. J. Biomed. Mater Res. 1987,21:1375~1381
    10赵冰,杜荣归,林昌健.羟基磷灰石生物陶瓷材料的制备及其新进展.功能材料. 2003, 34 (2):126~132
    11 L. Joná?ová, F. A. Müller, A. Helebrant, J. Strnad, P. Greil. Hydroxyapatite formation on alkali~treated titanium with different content of Na+ in the surface layer. Biomaterials. 2002, 23 (15): 3095~3101
    12梁芳慧,王克光,周廉.利用预钙化处理提高碱热处理多孔钛的表面生物活性.稀有金属材料与工程. 2004,33(10):1013~1017
    13李虎,虞奇峰,张波,王辉,范红松,张兴栋.浆料发泡法制备生物活性多孔钛及其性能.稀有金属材料与工程. 2006,35(1):154~157
    14张其翼,陈继镛,张兴栋.多孔钛的制备及磷灰石涂层的仿生沉积.四川大学学报(自然科学版) 2003,40 (4):700~703
    15梁芳慧,王克光,周廉.不同过饱和钙化溶液中多孔钛表面磷灰石层的形成.稀有金属材料与工程. 2004 ,33(2):166~170
    16付涛,徐可为.仿生法沉积磷灰石层的研究进展.生物医学工程学杂志. 2001, 18 (1):116~118
    17 L. J. Gibson, M.EAshby. Cellular solids: Structure and properties. Second edition,Cambridge:Cambridge University Press,1997:152~200
    18柯华,宁聪琴,贾德昌,周玉,宋桂明.羟基磷灰石及钛作为骨替代材料的研究进展.有色金属. 2001,53(4):8~14
    19 E. Cheal, M. Spector, W. Hayes. Role of loads and prostheses material properties on the mechanics of the proximal femur after total hip arthroplasty. J Orthop. Res.1992,10:405~422
    20 R. Huiskes, H. Welnans, B. Riebergen.The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res,1992,274:124~134
    21 D Sumner, J.Gatante. Determinants of stress shielding: design versus materials versus interface . Clin. Orthop. Relat. Res. 1992,274:202~212
    22 C. M.Agrawal. JOM.1998,50(l):31~35
    23 K.Anselme. Osteoblast adhesion on biomaterials. Biomaterials. 2000,21:667~681
    24 C. E. Wen, Y. Yamada, K. Shimdima, Y. Chino, T. Asahina, M. Mabuchi. Processing and mechanical properties of autogenous titanium implant materials. Journal of Materials Science:Materials in Medicine.2002,13: 397~401
    25张明华,叶军,邹宏恩,唐农轩,蔡和平.微孔涂层植入物与骨组织界面的生物力学关系.第四军医大学学报. 1999,20(12):1081~1084
    26 F. Brossa, A. Cigada, R. Chiesa. Adhesion properties of plasma sprayed hydroxyapatite coatings for orthopaedic prostheses. Bio-Medical Materials and Engineering. 1993,3(3):127~136
    27李伯琼,王德庆,陆兴.粉末冶金多孔钛的研究.大连铁道学院学报. 2004, 25(1):74~78
    28黄培云.粉末冶金原理.北京:冶金工业出版社. 1982, l~390
    29刘康美.多孔钛抗腐蚀性能的研究.稀有金属材料与工程. 1989,(5): 55~ 58
    30 P. S. Liu, K. M. Lian. Functional materials of porous metals made by P/M,electroplating and some other techniques. Journal of Materials Science. 2001,36:5059~5072
    31 I. H. Oh, N. Nomura, S. Hanada. Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering. Materials Transactions. 2002, 43(3):443~446
    32 R. Ricceri, F. Arcuri, P. Matteazzi. Porous titanium obtained by P/M. J. Phys. IV France.2001,11:51~57
    33 M.Thieme, K.P. Weters, F Bergner, D. Scharnweber, H Worch, J. Ndop, T. J. Kim, W. Grill. Titanium powder sintering for preparation of a porous functionally graded material destined for orthopedic implants. Journal of materials science: materials in medicine. 2001,12:225~231
    34 C. E. Wen, M. Mabuchi, Y. Yamada, K.Shimojima, Y. Chino, T. Asahina. Processing of biocompatible porous Ti and Mg. Scripta Materialia 2001,45:1147~1153
    35 J. P. Li, S. H. Li, K. De. Groot, P Layroll. Preparation and characterization of porous titanium. Key Engineering Materials. 2002,218-220:51~54
    36 M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki,T. Kokubo, T. Nakamura. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials. 2005,26: 6014~6023
    37 S. Fujibayashi, M. Neo, H. M. Kim, T. Kokubo, T. Nakamura. Osteoinduction of porous bioactive titanium metal. Biomaterials 2004, 25: 443~450
    38刘培生,黄林国.多孔金属材料制备方法.功能材料. 2002,33(1):5~11
    39 G. J. Davies,S. Zhen. Metallic foams: their production, properties and applications. J. Mater. Sci.1983,18:1899~1911
    40汤慧萍,张正德.金属多孔材料发展现状.稀有金属材料与工程.1997,26 (1): 1~6
    41俞冰,梁开明,顾守仁,林清快.金属表面生物陶瓷涂层的研究进展.材料导报.2001,15(8):32~34
    42曾晟宇,赵乃勤,崔振择等.金属生物材料表面改性研究的进展.材料保护.2000,33(1):5~8
    43 M. Fini, A. Cigsda, G. Rondelli, R. Chiesa, R, Giardino,G, Giavaasi, N.Aldini, P. Torricelli, B. Vcentini. Biomaterals. 1999,20:1587~1594
    44 T. Kokubo, H. M. Kim, F. MiyajiI. Ceramic-metal and ceramic-ploymer composites prepared by a biomimetic process. Composites.1999,A 30: 405~409
    45 H. B. Wen, J. R. De Wijin, Q. Liu. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatment. Biomaterials. 1997,18(22):1471~1478
    46李金勇,付涛,宋忠孝.碳/碳复合材料表面软复合磷酸钙层.硅酸盐学报. 2002,30(4):524~527
    47 S. Nishiguchi, H. Kato, M. Neo. Alkali-and heat-treated porous titanium for orthopedic implants. J Biomed Mater Res, 2001, 54:198~208
    48 W. Shi, A. Kamiya, J. Zhu, A. Watazu. Properties of titanium biomaterial fabricated by sinter-bonding of titanium/hydroxyapatite composite surface-coated layer to pure bulk titanium. Mater. Sci. Eng. 2002, A337:104~
    49 S. Suzuki, M. Ohgaki, M. Ichiyanagi. Preparation of needle the hydroxyspatite. J. Mater. Set. Lett.1998,17:381~383
    50 H. Morgan, R. Wilson, J. Elliott. Preparation and characterizatlon of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate. Biomaterials.2000,21:617~627
    51 S. Brown, I. Turner, H. Reter. Residual stress measurement in thermal sprayed hydroxyapatite coatings. J. Mater Sci:Mater Sci. 1994,5: 756~759
    52肖秀兰,陈志刚.磷酸钙主物陶瓷涂层制备及其研究进展.江苏大学学报(自然科学版). 2002,23(6): 34~50
    53王正平,叶贤富.生物材料的应用及进展.应用科技. 2002,29(7):68~71
    54徐淑华,王迎军,罗承萍.生物羟基磷灰石涂层材料的研究进展.材料导报. 2002,26(1): 48~56
    55张亚平,高家诚,文静,王勇.钛基激光涂覆生物陶瓷涂层的生物相容性.中国生物医学工程学报. 2002,21(3):242~245
    56刘榕芳,黄紫洋,倪军,简秋兰,钟惠妹.在钛基上电泳沉积羟基磷灰石生物陶瓷涂层的研究.电镀与涂饰. 2003, 22 (5):17~19
    57黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展.硅酸盐学报, 2003,31(6):591~597
    58陈晓明,焦玉恒,许传波.电泳沉积制备羟基磷灰石-生物玻璃梯度涂层的研究材料科学与工程. 2002, 20(4):545~548
    59李琛,殷钢,佘铭钢,刘铮.电泳羟基磷灰石色谱吸附BSA机理.清华大学学报(自然科学版). 2001,41(6): 48~51
    60王家伟,程祥荣,王贻宁.纯钛阳极氧化及表面薄层羟基磷灰石形成技术的研究Ⅱ.电解质及电压对氧化膜性能的影响.中国口腔种植学杂志. 2001,6(3):101~103
    61李卫,陈柳珠,刘英,黄艳.阳极电压对医用钛材微弧氧化的影响.特种铸造及有色合金. 2007, 27 (2):97~100
    62黄平,徐可为,憨勇.钙、磷在钛表面微弧氧化层中的存在形式及进入机制.硅酸盐学报. 2004, 32 (9): 1184~1188
    63 M. A. Golden, S. R. Hanson, T. R. Kirkman. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J Vasc. Surg. 1990,11(6):838~845
    64 G. C. David, D. R. Buddy. Biomedical surface science: Foundations to frontiers. surface science.2002,500:28~60
    65文学军,王小祥,薛森.金属生物材料的微粗糙表面及其生物学效应(Ⅰ)金属生物材料的微粗糙表面.生物医学工程学杂志. 1997,14(1):77~80
    66文学军,王小祥,薛森.金属生物材料的微粗糙表面及其生物学效应(Ⅱ)金属生物材料的微粗糙表面.生物医学工程学杂志. 1997,14(2):164~169
    67 A. Ungersbock, O. Pohler, S. M. Perren. Evaluation of the soft tissue interface at titanium implants with differernt surface treatments: experiment study on rabbits. Bio-Med. Mat. Eng. 1994,4:317
    68 T. Peter, G. Christina. Macrophage interactions with modified material surfaces. Current opinion in Solid State and Materials Science. 2001,5: 163~176
    69 K. C. Olbrich, T. T. Andersen, F. A. Blumenstock, R. Bizios. Surfaces modified with covalently-immobilized adhesive peptides affect fibroblast population motility. Biomaterials. 1996, 17(8): 759~764
    70 L. L. Hench, J. Wilson. Surface-active biomaterials. Science. 1984,226: 630~636
    71 P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro. Apatite formation induced by silica gel in a simulated body fluid. J. Am. Ceram. Soc. 1992,75:2094~ 2097
    72 P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, K. de Groot. The role of hydrated silica, titanium and alumina in inducing apatite on implants, J. Biomed. Mater. Res. 1994,28:7~15
    73 M. Uchida, H. M. Kim, T. Kokubo, K. Tanaka, T. Nakamura, Structural dependence of apatite formation on zirconia gels in a simulated body fluid, J. Ceram. Soc. Jpn. 2002,110:710~715
    74 T. Miyazaki, H. M. Kim, T. Kokubo, C. Ohtsuki, T. Nakamura, Apatite-forming ability of niobium oxide gels in a simulated body fluid, J. Ceram. Soc. Jpn. 2001,109: 929~ 933
    75 T. Miyazaki, H.-M. Kim, T. Kokubo, H. Kato, T. Nakamura, Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid. J. Sol-Gel Sci. Tech. 2001,21:83~88
    76 H. Takadama, H. M. Kim, T. Kokubo, T. Nakamura. Mechanism of biomineralization of apatite on a sodium silicate glass: TEM–EDX study in vitro. Chem. Mater. 2001,13:1108~1113
    77 T. Kokubo. Novel bioactive materials with different mechanical properties. Biomaterials. 2003,24: 2161~2175
    78 H. Takadama, H. M. Kim, T. Kokubo, T. Nakamura. An XPS study of the process of apatite formation on bioactive titanium metal in a simulated body fluid. J. Biomed. Mater Res. 2001, 55:185~193
    79 H. Takadama, H. M. Kim, T. Kokubo, T. Nakamura. TEM-EDX study of the mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J. Biomed. Mater. Res. 2001, 57: 441~448
    80 W. Neuman, M. Neuman. The chemical dynamics of bone mineral. Chicago: University of Chicago Press, IL, 1958:1~200
    81 J. Gamble. Chemical anatomy, physiological and pathology of extracellular fluid. Cambridge, MA: Harvard University Press, 1967:1~165
    82 C. Fonseca, M.A. Barbosa. Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy. Corrosion Science. 2001,43:547~559
    83 J. H. Park, Y. K. Lee, K. M. Kim, K. N. Kim. Bioactive calcium phosphate coating prepared on H2O2-treated titanium substrate by electrodeposition. Surface & Coatings Technology. 2005,195: 252– 257
    84 P. Li, I. Kangasniemi, K. De Groot. Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate J Am Ceram Soc. 1994,77:1307~1312
    85 T. Peltola, M. Patsi H. Rahiala, I. Kangasniemi, A. Yli-Urpo. Calcium phosphate induction by sol -gel-derived titania coatings on titanium substrates in vitro. J Biomed Mater Res. 1998,41: 504~510
    86 P. Li, P.Ducheyne. Quasi-biological apetite film induced by titanium in a simulated body fluid. J Biomed Mater Res , 1998,41:341~348
    87 H. B. Wen, J. R. De Wijn, Q. Liu, K. de Groot, F. Z. Cui. A Simple method to prepare calcium phosphate coatings on Ti6Al4V. J. Mater Sci.: Mater in Med. 1997,8:765~770
    88 H. B. Wen, Q. Liu, J. R. De Wijn, K. de Groot. Preparation of bioactive microporous titanium surface by new two -step chemical treatment. J. Mater. Sci.: Mater. in Med. 1998,9:121~128
    89 F. Barrere, P. Layrolle, C.A.van Blitterswijk, K. de Groot. Fast formation of biomimetic Ca–P coatings on Ti6A14V. Mater Res Soc Symp Proc. 2000, 599: 135~140
    90 F. Barrere, C.A. van Blitterswijk, K. de Groot and P. Layrolle, Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials. 2002,23 (9):1921~1930
    91 F. Li, Q.L. Feng, F.Z. Cui, H.D. Li and H. Schubert, A simple biomimetic method for calcium phosphate coating. Surface and Coatings Technology. 2002,154:88~93
    92 W. Wu, G. H. Nancollas. Kinetics of heterogeneous nucleation of calcium phosphates on anatase and rutile surfaces. Journal of Colloid and Interface Science.1998,199:206~211
    93 F. Barrere, P. Layrolle, C.A. van Blitterswijk and K. de Groot. Biomimetic calcium phosphate coatings on Ti6Al4V: a crystal. growth study of octacalcium phosphate and inhibition by Mg2+and HCO3-. Bone.1999,25 (2 S):107~111
    94张芳,崔春翔,戚玉敏,刘双进.预钙化对医用钛合金表面沉积钙磷层的影响.钛工业进展. 2005, 22:18~21
    95梁芳慧,王克光,周廉.利用预钙化处理提高碱热处理多孔钛的表面生物活性.稀有金属材料与工程. 2004, 33:1013~1017
    96 S. Fujibayashi, T. Nakamura, S. Nishiguchi, J. Tamura, M. Uchida, H. M. Kim, T. Kokubo. Bioactive titanium: Effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. J Biomed Mater Res. 2001,56: 562~570
    97石建民.吴益华.丁传贤.处理时间和溶液条件对等离子喷涂钛涂层诱导磷灰石生长的影响.硅酸盐学报. 2001,29(4):355~360
    98石建民,丁传贤,吴益华.生物活性钛涂层.无机材料学报. 2001,16 (3): 515~521
    99 A. M. Pietak, J. W. Reid, M. J. Stott, M. Sayer. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 2007,28:4023~4032
    100唐晓恋,刘榕芳,肖秀峰.含硅羟基磷灰石的研究进展.硅酸盐通报2005,(6):89~94
    101 M. Mastrogiacoma, A. Muraglia, V. Komlev, F. Peryin, F. Rustichelli, A. Crovace. Tissue engineering of bone: search for a better scaffold. Orthod Craniofacial Res. 2005,8:277~284
    102 J. Elliot. Structure and chemistry of the apatites and other calcium orthophosphates. New York: Elsevier, 1994:1~8
    103 M. Vallet-Regi, D. Arcos. Silicon substituted hydroxyapatites: a method to upgrade calcium phosphate based implants. J Mater Chem. 2005,15: 1509~1516
    104 K. Schwarz. A bound form of Si in glycosaminoglycans and polyuronides. Proc Nat Acad Sci USA 1973;70:1608~1612
    105 I. Xynos, A. Edgar, D. Buttery, L. Hench, J. Polak. Gene-expression profiling of human osteblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res. 2001,55: 151~157
    106 D. Reffitt, N. Ogston, R. Jugdaohsingh, H. Cheung, B. Evans, R. Thompson. Orthosilicic acid stimulates collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003,32: 127 ~ 135
    107 P. Valerio, M. Pereira, A. Goes, M. Leite. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 2004,25:2941~2948
    108 P. De Aza, Z. Luklinska, A. Martinez, M. Anseau, F. Guitan, S. De Aza. Morphological and structural study of pseudowollastonite implants in bone. J Microsc. 2000,197:60~68
    109 E. Carlise. Si: an essential element for the chick. Science. 1972,178: 619~621
    110 E. Carlise. Biochemical and morphological changes associated with long bone abnormalities in Si deficiency. J Nutr. 1979,110:1046~1055
    111 E.Carlise. The nutritional essentiality of silicon. Nutr Rev. 1982,40:193~198
    112 Y. Tanizawa, T. Suzuki. Effects of silicate ions on the formation and transformation of calcium phosphates in neutral aqueous solutions. J Chem Soc Faraday Trans. 1995,91:3499~3503
    113 J. Damen, J. Ten Cate. Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation. J Dent Res. 1992, 71: 453~457
    114 M.Hott. Short term effects of organic silicon on trabecular bone in mature ovariectomized rats. Cal Tiss Inter. 1993,53:174~179
    115 F. Nielson, R.Poellot. Dietary Si affects bone turnover and differentiation in overiectomized and sham operated growing rats. J. Trace Elements Exp. Med. 2004,17:137~149
    116 K. Schwarz, D. Milne. Growth promoting effects of Si in rats. Nature. 1972, 239: 333~334
    117 C.Seaborn, F.Nielson. Si depravation decreases collagen formation in wounds, bone and ornithine transaminase enzyme activity in liver. Biol Trace Elem Res. 2002,89:251~261
    118 R. Jugdaohsingh, K. Tucker, N. Qiau, L. Cupples, D. Kiel, J. Powell. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J. Bone Miner. Res. 2004,19:297~307
    119 M. Calomme, D. Vanden-Berghe. Supplementation of calves with stabilized orthosilicic acid. Effect on the Si, Ca, Mg and P concentrations in serum and the collagen conventration in skin and cartilage. Biol. Trace Elem. Res. 1997,56:153~165
    120 E.Carlise. The nutritional essentiality of silicon. Nutr Rev. 1982,40:193~198
    121 E.Carlise. Silicon as an essential trace element in animal nutrition. Ciba. Found Symp. 1986,121:123~139
    122 E.Carlise. Silicon as a trace nutrient. Sci Total Environ. 1988,73: 95~106
    123 A. Ruys. Silicon doped hydroxyapatite. J Aust Ceram Soc. 1993,29:71~80
    124 I. Gibson, L. Jha, J. Santos, S. Best, W. Bonfield. Effect of Si content on the chemical and phase composition of novel Si substituted hydroxyapatites. In: LeGeros RaL JP, editor, Bioceramics. 1998: 105~108
    125 I. Gibson, S. Best, W. Bonfield. Chemical characterization of silicon substituted hydroxyapatite. J Biomed Mater Res. 1999,44:422~428
    126 I. Gibson, S. Best, W. Bonfield. Effect of silicon substitution on the sintering and microstructure of hydroxyapatite. J. Am. Ceram. Soc.2002, 85: 2771~ 2777
    127 S. Kim, J. Lee, Y. Kim, D. Riu, S. Jung, Y. Lee. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviours. Biomaterials. 2003,24:1389~1398
    128 D. Arcos, J. Rodriguez-Carvajal, M. Vallet-Regi. Silicon incorporation in hydroxyapatite obtained by controlled crystallization. Chem Matter. 2004;16: 2300~2308
    129 S. Langstaff, M. Sayer, T. Smith, S. Pugh, S. Hesp, W. Thompson. Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization. Biomaterials. 1999,20:1727~1741
    130 M. Sayer, A. Stratilatov, J. Reid, L. Calderin, M. Stott, X. Yin. Structure and composition of silicon stabilized tricalcium phosphate. Biomaterials. 2002, 24: 369~382
    131 J. Reid, A. Pietak, M. Sayer, D. Dunfield, T. Smith. Phase formation and evolution in the silicon substituted tri-calcium phosphate/apatite system. Biomaterials. 2005;26:2887~2987
    132 J. Reid, L. Tuck, M. Sayer, K. Fargo, J. Hendry. Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate. Biomaterials. 2006, 27:2916~2925
    133 X. Li, H. Yasuda, Y. Umakoshi. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200°C: preparation, microstuctures and invitro bone-layer growth. J. Mater. Sci. Mater. Med. 2006,17:573~581
    134 L. Boyer, J. Carpena, J. Lacout. Synthesis of phosphate–silicate apatites at atmospheric pressure. Sol State Ionics. 1997,95:121~129
    135 C. Mochales, El Briah-Ben, M. Abdeslam, M. Ginebra, P. Boudeville, J. Planell. Obtention of silicon-substituted calcium deficient hydroxyapatite by dry mechanosynthesis. Key Eng. Mater. 2004,254-256: 107~110
    136 X. Tang, X. Xiao, R. Liu. Structural characterization of siliconsubstituted hydroxyapatite synthesized by hydrothermal method. Mater Lett. 2005, 59:3841~3846
    137 X. Wei, M. Akinc. Si, Zn modified tricalcium phosphates: a phase composition and crystal structure study. Key Eng Mater. 2005, 284-286: 83~86
    138 T. Leventouri, C. Bunaciu, V. Perdikatsis. Neutron powder diffraction studies of silicon-substituted hydroxyapatite. Biomaterials. 2003, 24: 4205~4211
    139 L. Tuck, M. Sayer, D. Dunfield, M. Mackenzie, J. Hadermann, A. Pietak. Composition and crystal structure of resorbable calcium phosphate thin films. J Mater Sci. 2005,41:4273~4284
    140 C. Botelho, M. Lopez, I. Gibson, S. Best, J. Santos. Structural analysis of Si substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy. J Mater Sci Mater Med. 2002,13:1123~1127
    141 D. Arcos, J. Rodriguez-Carvajal, M. Vallet-Regi. The effect of silicon incorporation on hydroxyapatite structure. A neutron diffraction study. Solid State Sci. 2004,6:987~994
    142 P. Alberius-Henning, E. Aldolfsson, J. Grins, A .Fitch. Triclinic oxyhydroxyapatite. J Mater Sci. 2001,36:663~668
    143 I. Stich, M. Payne, R. K. Smith, J. Lin. Ab initio total energy calculations for extreemely large systems. Phys Rev Lett. 1992, 68: 1351~1354
    144 M. Payne, J. Joannoploulos, D. Allan, M. Teter, D. Vanderbilt. Molecular dynamics and ab initio total energy calculations. Phys Rev Lett. 1986,56: 2656
    145 N. Siyu, J. Chang, L. Chou, W. Zhai. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. JBiomed Mater Res B. 2006,80:174~183
    146 K. Hing, P. Revell, N. Smith, T. Buckland. Effect of silicon level on rate, quality and progression of bone healing within silicatesubstituted porous hydroxyapatite scaffolds. Biomaterials. 2006,27: 5014~5026
    147 M. Mastrogiacoma, A. Corsi, E. Francioso, M. D. Comite, F. Monetti, S. Scaglione. Reconstruction of extensive long bone defects in sheep using resorbable biocermics based on silicon stabilized tracalcium phosphate. Tissue Eng. 2006,12:1261~1273
    148 W. Lai, J. Garino, P. Ducheyne. Si excretion from bioactive glass implanted in rabbit bone. Biomaterials. 2002,23:213~217
    149 C. Botelho, R. Brooks, S. Best, M. Lopes, J. Santos, N. Rushton. Human osteoblast response to silicon-substit uted hydroxyapatite. J Biomed Mater Res A. 2006,79:723~730
    150 C. Botelho, R. Brooks, G. Spence, I. McFarlane, M. Lopes, S. Best. Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite. J Biomed Mater Res. A 2006,78:709~720
    151 N. Patel, S. Best, W. Bonfield, I. Gibson, K. Hing, E. Damien. A comparitive study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med. 2002,13: 1199~1206
    152 S. Langstaff, M. Sayer, T. Smith, S. Pugh, S. Hesp, W. Thompson. Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials. 2001;22:135~150
    153 F. Balas, J. Perez-Pariente, M. Vallet-Regy. In vitro bioactivity of silicon-substituted hydroxyapatites. J Biomed Mater Res. 2003,2:364~375
    154 S. R. Kim, J. H. Lee, Y. T. Kim. Synthesis of Si, Mg substituted Hydroxyapatite and their sintering behavours. Biomaterials. 2003,24: 1389~1398
    155 C. M. Boteho, R. A. Brooks, S. M. Best. In vitroanalysis of proteins adhersion to phase pure hydroxyapatite and silicon substituted hydroxyapatite. Key Eng Mater. 2004,254-256:845~848
    156 P. Ducheyne, Q. Qui. Bioactive ceramics: the effect of surface reactivity on bone formation and function. Biomaterials. 1999,20: 2287~2303
    157 T. Kokubo, H. Takadama. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006,27:2907~2915
    158 L. Canham, J. Newey, C. Reeves. The effects of DC electric currents on the in vitro calcification of bioactive silicon wafers. Adv. Mater. 1996,8: 847~849
    159 F. Miyai, M. Iwai, T. Kokubo. Chemical surface treatment of silicone for inducing its bioactivity. J Mater Sci Mater Med. 1998,9:61~65
    160 M. Uchida, H. Kim, T. Kokubo. Apatite forming ability of sodium containing titania gels in a simulated body fluid. J Am Ceram Soc. 2001,84: 2969~2974
    161 P. Habibovic, F. Barrere, C. van Blitterswijk, K. de Groot, P. Layrolle. Biomimetic hydroxyapatite coatings on metal implants. J Am Chem Soc. 2002, 85: 517~522
    162 P. Li, D. Bakker, C. van Blitterswijk. A bone-building polymer induces hydroxycarbonate apatite formation in vitro. J Biomed Mater Res. 1997,34: 79~86
    163 S. Kuroda, A. Virdi, P. Li, K. Healy, D. Sumner. A low temperature biomimetic calcium phosphate surface enhances early implant fixation in a rat model. J Biomed Mater Res. 2004,70A:66~73
    164 F. Grinnel, M. Feld. Adsorption characteristics of plasma fibronectin in relationship to biological activity. J Biomed Mater Res. 1981,15: 363~381
    165 L. Tuck, R. Astala, J. Reid, M. Sayer, M. Stott. Dissolution and recrystallization processes in multiphase silicon stabilized tricalcium phosphate. J Mater Sci Mater Med 2007. (Available on line).
    166 A. Pietak, M. Sayer. Functional atomic force microscopy investigation of osteopontin affinity for Si-TCP bioceramic surfaces. Biomaterials. 2006,27:3~14
    167 P. Ducheyne, S. Radin, L. King. The effect of calcium phosphate ceramic composition and structure on in vitro behaviour. I. Dissolution. J Biomed Mater. Res. 1993, 27: 25~34
    168 Q. Liu, J. Ding, F. K. Mante, S. L. Wunder, G. R. Baran. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials. 2002;23:3103~3111
    169 A. Porter. Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Micron. 2006,37:681~688
    170 A. Pietak, M. Sayer. Electron spin resonance in Si substituted HA and tricalcium phosphate. Biomaterials. 2005, 24:3819~3830
    171 A. Pietak, M. Sayer. Thermoluminescence in Si substituted hydroxyapatite and tricalcium phosphate. J Mater Sci. 2006,41:5025~5028
    172 J. Vandiver, D. Dean, N. Patel, C. Botelho, S. Best, J. Santos. Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals and adhesive interactions. J Biomed Mater Res. 2005,78A:352~363
    173 I. Lenor, A. Ito, K. Onuma, N. Kanzaki, Z. Zhong, D. Greenspan. In situ study of partially crystallized bioglass and hydroxyapatite in vitro bioactivity using atomic force microscopy. J Biomed Mater Res. 2002,62:82~88
    174 M. Glimcher. Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. The Anatom Record. 1989,224:139~153
    175 L. Addadi, S.Weiner. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Nat Acad Sci USA 1985,82:4110~4114
    176 C. Combes, C. Rey, M. Freche. In vitro crystallization of octacalcium phosphate on type I collagen: influence of serum albumin. J Mater Sci Mater Med. 1999,10:153~160
    177 A. Porter, C. Botelho, M. Lopes, J. Santos, S. Best, W. Bonfield. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res. 2004,69A:670~679
    178 M. Paddruwe, O. Standard, C. Sorrel, C. Howlet. Effects of Si doping on bone formation within alumina porous domains. J Biomed Mater Res. 2004,71A:250~257
    179李中郢.金属橡胶构件的设计.北京国防工业出版社2000:1~253
    180姜红江,王玉林.医用钛合金的表面改性.生物骨科材料与临床研究. 2005, 4:32~34
    181冯颖芳.钛及钛合金人工关节植人材料.稀有金属快报. 2002,6:15~20
    182 S.W.K. Kweh, K.A. Khor, P. Cheang, An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials. 2002,23 (3):775~785
    183 S.W. Ha, R. Reber, K.L. Eckert, M. Petitmermet, J. Mayer, E. Wintermantel, C. Baerlocher and H. Gruner. Chemical and morphological changes of vacuum-plasma-sprayed hydroxyapatite coatings during immersion in simulated physiological solutions. J Am. Ceram. Soc. 1998,81:81~88
    184 M. F. Hsieh, L. H. Perng, T. S. Chin. Hydroxyapatite coating on Ti6A14V alloy using a sol-gel derived precursor. Materials Chemistry and Physics. 2002,74:245~250
    185 M. Okido, K. Kuroda, M. Ishikawa, R.Ichin, O. Takai Hydroxyapatite coating on titanium by means of thermal substrate method in aqueous solutions. Solid State Ionics. 2002, 151:47~52
    186 L. Joná?ová, F. A. Müller. Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer. Biomaterials. 2002,23 (15):3095~3101
    187 T. Kokubo. Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochimica Acta. 1996, 280-281: 479~490
    188 C. Iwakura, W. K. Choi, S.G. Zhang., H. Inoue. Source Choi. Mechanism of hydrogen absorption in Zr0.9Ti0.1Ni1.1Co0.1Mn0.6V0.2 alloy during alkali treatment with a boiling 6 M KOH solution. Electrochimica Acta. 1999,44: 1677~1679
    189 H. M Kim, F. Miyaji, T. Kokubo and T. Nakamura. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996, 32 (3):409~417
    190 M. Uchida, H. M. Kim.T. Kokubo, S. Fujibayashi, T. Nakamura. Structural dependence of apatite formation on titania gels in a. simulated body fluid. J Biomed Mater Res , 2003;64A:164~170
    191 B. Feng, J.Y. Chen, S. K. Qi. Carbonate apatite coating on titanium induced rapidly by precalcification. Biomaterials, 2002,23(1):173~179
    192 F. Barrere, M.M.E.Snel, C. A. van Blitterswijk, K. De Groot, P. Layrolle.Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials 2004,25 (14): 2901~2910
    193 X. Lu, Y. Leng. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials. 2005,26:1097~1108
    194王勇高家诚,张亚平,张春艳.钛合金表面仿生矿化的热力学分析.稀有金属材料与工程.2004,33(4):397-399
    195韩同春.水玻璃浆液的聚合时间探讨.水利水运科学研究.1999,3: 269~272
    196胡岳华,徐竞,王淀佐.水玻璃与磷灰石方解石作用的溶液化学研究.矿冶工程. 1992,12 (2):23~26
    197邝志清,潘春跃,黄可龙. Sol_gel法制备羟基磷酸钙超细粉末.中南工业大学学报. 2000, 31 (3):246~248
    198瞿双清.关于硅酸溶胶制备的探讨.高等函授学报(自然科学版). 2000, 13(2): 57~61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700