利用固体废弃物制备系列多孔陶瓷滤料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和社会的发展,污染物的种类和数量不断增加。综合利用固体废弃物,研制新型的过滤材料具有重大环保意义。本研究以烧结法赤泥、拜耳法赤泥与淤泥为主要原料,加入一些改善材料成型与烧成性能的添加剂,制备了性能优良的系列赤泥质、淤泥质多孔陶瓷滤球,实现了对多种固体废弃物的综合开发和利用。
     利用XRFA、XRD、TG-DTA与SEM等测试手段,分析了固体废弃物烧结法赤泥、拜耳法赤泥和淤泥的化学组成、矿物组成、高温特性以及显微形貌等。结果表明,烧结法赤泥适宜于生产低温快烧的Ca-Al-Si系统陶瓷;拜耳法赤泥适宜于生产高品质陶瓷;淤泥中仅存在大量石英(SiO_2)晶相,将在烧成中赋予制品较高的强度与耐久性。
     采用SEM、XRD和EPMA等测试方法,对赤泥质多孔陶瓷滤球样品的性能和微观结构进行了分析测试。结果表明,烧结法赤泥(S)及拜耳法赤泥(B)均可以单独制备多孔陶瓷滤料,但两种赤泥联合使用可弥补单一原料的不足,获得更优的制品性能。典型配方BS5-2赤泥总添加量达50wt%(S:B=1:1.2),于1100℃下烧成样品的显气孔率为37.58%,吸水率为20.44%,体积密度为1.84kg/m~3,抗压碎强度为26.6MPa,耐酸性为89.17%,耐碱性为99.76%。
     在赤泥质多孔陶瓷滤球的最佳配方BS5-2中添加低温成孔剂煤粉及高温成孔剂石墨对滤料进行气孔率调控,并通过SEM、XRD等测试手段测试所得样品的相关理化性能。结果表明,低温成孔剂煤粉及高温成孔剂石墨的加入都能起到气孔率调控的作用,以石墨为成孔剂的系列具有更优的制品性能。典型配方G2石墨添加量达20wt%(外加),于1120℃下烧成样品的显气孔率为48.21%,吸水率为31.33%,体积密度为1.54kg/m~3,抗压碎强度为10.50MPa,耐酸性为86.55%,耐碱性为97.87%。
     以东湖淤泥为主要原料制备多孔陶瓷滤料,并在淤泥系列最佳配方中添加高温成孔剂白云石与石墨进行气孔率调控,通过SEM、XRD等测试手段测试所得样品的相关理化性能。结果表明,淤泥可以单独制备多孔陶瓷滤料;成孔剂石墨与白云石的加入都能起到气孔率调控的作用,使用石墨成孔剂的系列具有更优的制品性能。典型配方YC2石墨添加量达20wt%(外加),于1080℃下烧成样品的显气孔率为36.97%,吸水率为20.34%,体积密度为1.82kg/m~3,抗压碎强度为13.50MPa,耐酸性为96.76%,耐碱性为97.38%。
     对赤泥质多孔陶瓷滤球烧成反应机理探讨发现,原料中各种矿物相在烧成过程中生成液相或固相,反应生成物相主要受原料矿物组成、烧成温度、物相反应活性与烧成气氛等因素影响。粘土类原料的加入使系统有生成莫来石(3Al_2O_3·2SiO_2)晶相的倾向;拜耳法赤泥的加入使系统有生成堇青石(2MgO·2Al_2O_3·5SiO_2)晶相的倾向。系统的高温反应符合Mg-Ca-Al-Si系统反应规律。
The categories and amounts of pollution stuff have continuously increased as the economy and the society develop.Producing new filtration materials by solid wastes plays a significant role in environment-protection.This study used sintered red mud,Bayer red mud and East-lake sediments as the main raw materials to prepare excellent series porous ceramic filtration materials with some additives added to improve forming and sintering properties,which has carried out exploitation and utilization of varied solid wastes.
     The chemical compositions,crystal phases,high-temperature properties and microstructure of the solid wastes sintered red mud,Bayer red mud and East-lake sediments have been tested by XRFA,XRD,TG-DTA and SEM.The results indicated that sintered red mud was suitable to produce low temperature and fast firing Ca-Al-Si system ceramics,Bayer red mud was suitable to produce ceramics with high quality and a large amount of quartz(SiO_2)existed in East-lake sediments could endue samples with higher strength and durability.
     The performances and microstructure of the porous ceramic filtration materials made by red mud were tested by SEM,XRD and EPMA.The results showed that porous ceramic filtration materials could be prepared by either of sintered red mud (S)or Bayer red mud(B),while usage of both two kinds of them was superior to that of either of them.The porosity(Pa)was 37.58%,water absorption(Wa)was 20.44%, bulk density(D)was 1.84kg/m~3,crushing strength was 26.6MPa,acid resistance was 89.17%and alkali resistance was 99.76%,when the optimal sample BS5-2 was fired at 1100℃with 50 wt%total content of red mud in which S:B(sintered red mud to Bayer red mud)was 1:1.2.
     The low-temperature pore-forming material coal powder and the high-temperature pore-forming material graphite were added into the optimal sample BS5-2 to control the porosity and the corresponding performances of as-received samples were measured by SEM and XRD.The results showed that addition of the low-temperature pore-forming material coal powder and the high-temperature pore-forming material graphite could both contribute to control the porosity while the series with graphite added was superior to the other.The porosity(Pa)was 48.21%,water absorption(Wa)was 31.33%,bulk density(D)was 1.54kg/m~3, crushing strength was 10.50MPa,acid resistance was 86.55%and alkali resistance was 97.87%,when the optimal sample G2 was fired at 1120℃with 20 wt% additional content of graphite added.
     The East-lake sediments were used to prepare porous ceramic filtration materials while the high-temperature pore-forming materials dolomite and graphite were added into the optimal sample made by East-lake sediments to control the porosity and the corresponding performances of as-received samples were measured by SEM and XRD.The results showed that addition of the pore-forming materials dolomite and graphite could both contribute to control the porosity while the series with graphite added was superior to the other.The porosity(Pa)was 36.97%,water absorption(Wa)was 20.34%,bulk density(D)was 1.82kg/m~3,crushing strength was 13.50MPa,acid resistance was 96.76%and alkali resistance was 97.38%,when the optimal sample YC2 was fired at 1080℃with 20 wt%additional content of graphite added.
     The reaction mechanism of the porous ceramic filtration materials made by red mud was discussed in this study.It was found that varied crystal phases in raw materials produced liquid phase or solid phase in sintering process and the resultant of reaction depended on factors such as crystal phases of raw materials,sintered temperatures,reaction activity and sintered atmosphere.There was a tendency to generate mullite(3Al_2O_3·2SiO_2)with clay added in the system.There was also a tendency to generate cordierite(2MgO·2Al_2O_3·5SiO_2)with Bayer red mud added. The reaction mechanism in high temperature of this system corresponded to the rule of Mg-Ca-Al-Si system.
引文
[1]李方文,吴建锋,徐晓虹,等.应用多孔陶瓷滤料治理环境污染[J].中国安全科学学报,2006,16(7):112-116
    [2]江昕,尹美珍.多孔陶瓷材料的制备技术及应用[J].现代技术陶瓷,2002(1):15-16
    [3]徐晓虹,钟文波,孙钱平,等.赤泥环保型清水砖的研究[J].武汉理工大学学报,2005,27(10):8-10
    [4]于乾.在烧结砖中应用赤泥的研究[J].科技纵横,2007(11):38-40
    [5]安松琦.赤泥—灰渣在建筑陶瓷上的应用[J].轻金属,2000(12):49-52
    [6]吴建锋,王东斌,徐晓虹,等.利用淤泥研制环保陶瓷滤球[J].佛山陶瓷,2005(2):1-3
    [7]孙钱平,苏贤礼,徐晓虹,等.利用钢渣研制多孔陶瓷滤球[J].佛山陶瓷,2005(9):1-3
    [8]张彦娜,潘志华.不同温度下赤泥的物理化学特征分析[J].济南大学学报,2005,19(4):293-297
    [9]Vincenzo M.Sglavo,Renzo Campostrini,Stefano Maurina,etc.Bauxite 'red mud' in the ceramic industry.Part 1:thermal behavior[J].Journal of the European Ceramic Society 20(2000):235-244
    [10]Vincenzo M.Sglavo,Stefano Maurina,Alexia Conci,etc.Bauxite 'red mud' in the ceramic industry.Part 2:production of clay-based ceramics[J].Journal of the European Ceramic Society 20(2000):245-252
    [11]Kalkan,Ekrem.Utilization of red mud as a stabilization material for the preparation of clay liners[J].Engineering Geology,2006(11):220-229
    [12]徐晓虹,邸永江,吴建锋,等.利用工业废渣研制环保滤球[J].武汉理工大学学报,2004,26(5):12-15
    [13]姚秀敏,谭寿洪,江东亮.孔径可控的多孔羟基磷灰石的制备工艺研究[J].功能材料与器件学报,2001,7(2):152-156
    [14]吴庆祝,薛友祥,孟宪谦,等.堇青石质多孔陶瓷高温过滤材料的研究[J].现代技术陶瓷,2003(4):9-12
    [15]刘得利.硅灰石岩和沸石岩基多孔过滤陶瓷的研制[J].佛山陶瓷,2004(4):37-39
    [16]和峰,刘昌胜.添加成孔剂法制备孔径、气孔率可控的多孔玻璃陶瓷[J].无机材料学报,2004,19(6):1267-1366
    [17]吴皆正,易石阳,欧阳琨.可控微米级多孔陶瓷的研制[J].硅酸盐通报,1993(3):4-9
    [18]Mikol Szafran,Pawel Wisniewski.Effect of the bonding ceramic material on the size of pores in porous ceramic materials[J].Physicochemieal and Engineering Aspects 179(2001):201-208
    [19]王连星,党桂彬.系列孔径多孔陶瓷的研制[J].功能材料,1997(28):186-191
    [20]臧佶,金志浩,王永兰.微孔碳化硅过滤材料的研究[J].西安交通大学学报,2003,34(12):56-58
    [21]J.S.Lee,J.K.Park.Processing of Porous Ceramic Spheres by Pseudo-double-emulsion Method[J].Ceramic International,2003(29):271-278
    [22]J.S.Lee,J.K.Park.Preparation of Porous Ceramic Pellet by Pseudo-double-emulsion Method from 4-phase Foamed Slurry[J].Journal of Materials Science Letters,2001(20):205-207
    [23]吴建锋,郭子瑜,徐晓虹,等.涂覆TiO_2薄膜赤泥质陶瓷滤球的光催化性[J].武汉理工大学学报,2005,27(9):23-25
    [24]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1999
    [25]S.K.Malhotra,S.P.Tehri.Development of bricks from granulated blast furnace slag[J].Construction and Building Materials,1996(3):191-193
    [26]武洪标,武七德,陈文等.无机非金属材料实验[M].武汉:武汉工业大学出版社,1994
    [27]魏爱平.高掺量粉煤灰烧结空心砖生产工艺的比较和选择[J].砖瓦,2000(1):17-19
    [28]范垂宇,弯家立,李勇.利用煤矸石制烧结空心砖[J].中州煤炭,1999(4):8
    [29]张乃从.用湿法球磨工艺制备高掺量粉煤灰烧结空心砖泥料探讨[J].砖瓦,2004(12):17-20
    [30]董风芝,刘心中,杨新春.粉煤灰、赤泥烧结砖的研制[J].矿产保护与利用,2002(5):50-51
    [31]王萍,李国昌,刘曙光.赤泥等工业固体废物制备陶粒的研究[J].中国矿业,2003.12(12):74-77
    [32]许拥胜.烧结砖产品定位与工艺质量控制[J].砖瓦,2005(8):50-51
    [33]林宗寿,赵修建等.无机非金属材料工学[M].武汉,武汉工业大学出版社,1999
    [34]刘康时.陶瓷工艺原理[M].广州,华南理工大学出版社,1990
    [35]丁培.系列赤泥质陶瓷清水砖的研究[D].武汉:武汉理工大学材料科学与工程学院,2007
    [36]董风芝,刘心中,姚德,等.粉煤灰和赤泥的综合利用[J].矿产综合利用,2004(12):37-39
    [37]中华人民共和国国家标准(GB1966-1996-T),多孔陶瓷显气孔率、容重试验方法
    [38]中华人民共和国国家标准(GB1970-1996-T),多孔陶瓷耐酸、耐腐蚀性能试验方法
    [39]中华人民共和国国家标准(GB1964-1996-T),多孔陶瓷抗压强度试验方法
    [40]熊碧玲.陶瓷彩砂的研究[D].武汉:武汉理工大学材料科学与工程学院,2006
    [41]湛轩业,路关生,高隽.高钙质工业废料用于烧结砖的试验研究(二)[J].砖瓦,2005(3):10-14
    [42]李卫东,曹瑛,李金洪.利用天然原料制备钙铝黄长石多孔陶瓷[J].中国非金属矿工业导刊,2006(6):30-32,45
    [43]F.Bouzerara,A.Harabi,S.Achour,etc.Porous ceramic supports for membranes prepared from kaolin and doloma mixtures[J].Journal of the European Ceramic Society 26(2006):1663-1671
    [44]张学斌,邓惠玲,胡晓翠,等.硅藻土多孔陶瓷的耐蚀性及酸/碱处理研究[J].中国非金属矿工业导刊,2006(5):27-29,43
    [45]张学斌,刘丽华,胡晓翠,等.天然沸石多孔陶瓷的烧结动力学[J].硅酸盐学报,2006,34(2):187-191
    [46]张学斌,任祥军,王松林,等.堇青石多孔陶瓷的制备与性能表征[J].硅酸盐学报,2006,34(2):248-250
    [47]任祥军,张学斌,刘杏芹,等.粉煤灰基多孔陶瓷膜的制备研究[J].材料科学与工程学报,2006,24(4):484-488
    [48]湛轩业,路关生,高隽.高钙质工业废料用于烧结砖的试验研究(一)[J].砖瓦,2005(2):10-14
    [49]Janetta Balgaranova,Assen Petkov,Liliana Pavlova.Utilization of Wastes from the Coke-Chemical Production and Sewage Sludge as Additives in the Brick-Clay[J].Water,Air and Soil Pollution,2003(15):103-111
    [50]马鸿文,王英滨,王芳,等.硅酸盐体系的化学平衡:(2)反应热力学[J].现代地质,2006,20(3):386-398
    [51]蔡作乾,王琏,杨根.陶瓷材料辞典IM].北京:化学工业出版社,2002
    [52]张联盟,黄学辉等.材料科学基础[M].武汉::武汉理工大学出版社,2004
    [53]I.smail Demira,Mehmet Orhan.Reuse of waste bricks in the production line[J].Building and Environment,2003(38):1451-1455
    [54]张强.钾长石在陶瓷坯料系统中的反应机理[J].武汉工业大学学报,1999,21(4):42-43
    [55]王国清,占寿祥,欧阳贻德,等.高温下氧化铁红呈色的稳定性[J].化工时刊,2003,17(6):32-35
    [56]郭培民,赵沛,张殿伟.低温下碳还原氧化铁的催化机理研究[J].钢铁钒钛,2006,27(4):1-5
    [57]张智慧,李楠.多孔陶瓷材料制备方法[J].材料导报,2003,17(7):30-31,49
    [58]邸永江.利用工业固体废弃物制备环保陶瓷的研究[D].武汉:武汉理工大学材料科学与工程学院,2004
    [59]李明,沈毅.炭粉做造孔剂制备工艺对多孔羟基磷灰石陶瓷性能的影响[J].河北理工学院学报,2006,28(3):92-95
    [60]邹学权,王新红,武建军,等.用热重—差热—红外光谱技术研究煤粉的燃烧特性[J].煤炭转化,2003,26(1):71-73
    [61]丁书强,曾宇平,江东亮.原位反应结合碳化硅多孔陶瓷的制备与性能[J].无机材料学报,2006,21(6):1397-1403
    [62]夏光华,寥润华,成岳,等.高孔隙率多孔陶瓷滤料的制备[J].陶瓷学报,2004,25(1):24-27
    [63]崔礼生,付希明.白云石矿的综合开发与应用[J].中国粉体工业,2006(3):9-12
    [64]肖力光,盖广清,吴歌.轻烧白云石轻质墙体材料的研究[J].吉林建筑工程学院学报,2000(4):1-7
    [65]Weng Chih-huang,Lin Deng-fong,Chiang Pen-chi.Utilization of Sludge as Brick Materials[J].Advances in Environmental Research,2003(7):679-685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700