MPCF&UV除藻灭菌法参数优化及放大试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类不合理地利用水资源,导致水体出现不同类别,不同程度的污染。其中水中藻类及微生物因其危害的普遍性和爆发性,引起人们越来越多的关注。
     在调研了国内外现有技术之后,综合对比各技术优劣势,本实验室采用多孔过滤与紫外辐射(MPCF&UV)相结合的方式处理水中藻类及细菌。本文在前期实验的基础上,分析MPCF&UV系统除藻灭菌的作用机理,为本系统的进一步研究提供理论依据。通过实验研究滤芯结构参数对处理结果的影响规律,优化运行条件,以期获得系统设计及运行时的关键因素,同时还对处理后水中藻类和细菌的损伤机制、过滤器运行的持续稳定性及再生机制进行研究。建立中试试验装置进行放大试验研究,考察不同操作条件下该系统对典型藻类、细菌的去除结果,确定放大试验中系统处理能力的稳定性。此外,本文还评估了该系统经济可行性。
     首先,通过文献调研和前期实验研究,分别对MPCF除藻、UV除藻、MPCF&UV协同除藻进行分析。揭示壁流式结构的多孔陶瓷过滤器在除藻过程中,主要依靠拦截、沉淀、惯性沉积、附着作用和架桥等作用去除海水中的藻,主导作用会因环境条件不同而异。紫外线主要通过直接辐射作用,摧毁微生物的DNA或RNA,使其死亡。实验中搭建了多孔过滤除藻实验装置平台,以总悬浮颗粒物(TSS)截留率和特征藻种除藻效率为指标,通过正交实验优化多孔滤芯结构参数.包括滤芯通道长度、通道数量和壁孔尺寸,进而获得了优化的处理流量。结果表明:在MPCF过滤器可加工范围内,以壁孔尺寸200目,通道长度152.4mm,通道数1824个型号的过滤器截留效果最佳;单位体积(L)滤芯的优化处理流量为0.6m3/h。同时以优化流量进行持续性实验,获得累计处理水量(V)与水头损失(H)关系,并以滤芯通量恢复率和截留率恢复率为评价指标对滤芯反冲洗时间、流量等条件进行优化设计。
     另外,分别建立UV法和MPCF&UV法实验装置。采用正交分析法实验考察紫外辐射剂量、指示藻种密度和指示藻种尺寸各因素对灭菌效率的影响。比较UV法灭菌和MPCF&UV法灭菌结果,并用扫描电镜(SEM)分析处理前后的细菌形态。结果证实MPCF&UV法的灭菌效果明显优于UV法,MPCF的一级处理能够有效提高紫外线的透射率从而提升紫外的灭菌效果。
     前期实验中研究了MPCF&UV系统在低流量(小于10m3/h)下除藻灭菌效果,初步验证了该系统在除藻灭菌方面的高效性和稳定性。考虑实际应用的需要,在前期实验基础上,放大试验规模,设计、加工一套处理流量为50~100m3/h的中试试验装置。分别对添加指示生物(盐藻)测试用海水和原生海水进行了处理试验,结果表明:放大后的MPCF&UV系统对于盐藻及原生海水中的浮游生物、海洋细菌均保持较高的截留率和灭活率,无放大效应,同时系统的持久性也得到了验证。
     最后,初步分析了多孔陶瓷过滤与紫外辐射相结合法处理含藻废水技术的安装费用和运行费用。其中安装费用主要包括主体部件费用,附件费用及材料费、加工费等:运行费用主要包括电费、设备折旧费和人工费等。计算结果显示:中试试验系统安装费用与系统处理流量的比值低于小试实验系统的比值;通过对比现有技术运行费用,认为MPCF&UV法结合处理含藻废水的方法比同类方法具有更好的经济性。
     综上所述,MPCF&UV系统在处理水体的藻类和细菌方面,具有高效性、稳定性及经济性。放大过程中无放大效应,可直接放大,适用于不同的处理规模,应用前景广阔。
As unreasonable usage of water, different types and different levels of pollution occur in waters. Among these pollution, algae and bacteria have drawn increasingly attention for its universal existance and explosive and unexpected hazards.
     By investigation of the existing technologies, and by comparing the advantages and disadvantages of them, the combination treatment of multi-porous ceramic filtration and ultraviolet radiation (MPCF&UV) is poposed for algae and bacteria in water. On the basis of preliminary experiments, the mechanism of MPCF&UV system on algae and bateria is studied, which provides a theoretical basis for further research. By experimental study on the effects of structure parameters of filter, operating conditions are optimized, and key factors of the design and operation are obtained. Meanwhile, damage of treated algae and bacteria are studied, as well as the sustainability and regeneration of the filter. In the sale-up experiments, typical alga removal effects and bateria inactivation effects are compared under different operation conditions, in order to verify the stabilization of MPCF&UV treatment. Additionally, economic feasibility of the system is also evaluated.
     Firstly, depending on literature investigation and preliminary experimental study, alga removal efficiencies were compared on MPCF, UV, andMPCF&UV treatment respectively. The result showed that wall-flow structure porous ceramic filter removes algae mainly relying on the effects of interception, deposition, inertial sedimentation, asorption and bridging, and the key effects may change with environment. UV lights mainly destroy DNA or RNA of the bacteria via UV radiation to inactivate bacteria.
     MPCF experimental equipment was set up to remove alga, and total suspended solids (TSS) removal efficiencies and typical alga removal efficiencis were chosen as indicators. Orthogonal experiments were designed to optimize the structural parameters of the MPCF, including filtration channel length, number of channels and size of wall pore. Furthermore, optimal flow rate was obtained. The results showed that considering the limitation of processing, the highest removing effects can be achieved by the filter with the following parameters:the size of wall pore is200meshes, the channel length is152.4mm, and the channel number is1824, and the optimal flow rate is0.6m3/h for a1L filter.Meanwhile, a series of experiments were carried out at the optimal flow rate, and the relationship between accumulated treatment volum (V) and head loss (H) was studied. Backwashing conditions include time span and flow rate were detected by evaluating recovery rates on flux and removal efficiencies.
     In addition, the UV and MPCF&UV experimental equipements were set up. By orthogonal analysis, the effects of UV dose, the density and size of indicating algae species on the efficiency of bacteria inactivation were studied experimentally. The inactivation results of UV and MPCF&UV were compared, and the morphology of treated bacteria was analyzed by scanning electron microscope (SEM). It concluded that MPCF&UV is obviously superior to UV on bacteria treatment, and first stage treatment of MPCF can effectively raise transmission rate of UV lights and then improve the inactivation effects.
     The previous study of MPCF&UV system at low flow rates (less than10m3/h) has verified the efficiency and stability in the algae and bacteria treatment. For the practical application, a pilot device at the flow rates of50-100m3/h was designed and established on the basis of the previous study. Water with Dunaliella salina and native seawater have been used respectively to carry treatment tests. The results show that the scale-up MPCF&UV system maintains a high removal efficiency and inactivation efficiency on Dunaliella salina, plankton, and marine bacteria, with no negative amplification effect, and the persistence of the system is verified.
     Finally, the economic feasibility including installment costs and operation costs of MPCF&UV system was evaluated. The installment costs mainly include costs of main component, the accessories, material, and equipment processing. The operation cost mainly includes power consumption fee, equipment depreciation cost, and labor cost. It indicates that the ratio of installment capital to flow rate of the scale-up system is lower than the small-scale equipment. The combination method has better economy than any other similar method.
     In summary, MPCF&UV system has high efficiency, stability and economy on algae and bacteria in water. There is no negative amplification effect for scale-up experiment, and it has broad prospects on application.
引文
[1]Fawell Jkl Blue, green algae and their toxins. Water Supply,1993, 11(3):1.
    [2]周名江,于仁成.有害赤潮的形成机制、危害效应与防治对策.Chinese Journal of Nature, 29(2):72-77.
    [3]Kuehnlw M R, Peeken H, Troeder C et al. The Toroidal Drive. Mechanical Engineering, 1981,103 (2):32-39.
    [4]钱芸,戴树桂,刘广良.富营养化淡水水体中微囊藻毒素的研究进展.环境污染治理技术与设备,2002,3(8):13-17.
    [5]王桂芹,张东明等.水体富营养化的原因、危害及防御对策.吉林农业大学学报.2000,22(专辑):116-118,112.
    [6]P. P. shen et al. Effected of cyan bacteria bloom extract on some parameters of immune function in mice. Toxicology Letters,2003 (143):27-36.
    [7]余冉,吕锡武,费治文,富营养化水体中藻类和藻毒素处理环境导报,2001-4.
    [8]余国忠,李灵芝,赵明云,王占生.纤维直接过滤去除原水藻类.2003,4(1):14-18.
    [9]Chen Y. M., Liu J. C. and Ju Yih-Hsu, Flotation removal of algae from water. Colloids and surface B:Biointerfaces,1998,12 (15):49-55.
    [10]Guo J L, Wang Y L, Lin R X, Tang H X. Calculation model of uniform media filtration capacity. Colloids Surf. A,2002,21 (1-3):237-245.
    [11]张光生,王明星,叶亚新等.太湖富营养化现状及其生态防治对策.中国农学通报,2004,20(3):235-237.
    [12]Yang M, Yu J, Li Z et al. Taihu Lake not to blame for Wuxi's woes. Science,2008, 319 (5860):158.
    [13]万能,宋立荣,王若南等.滇池藻类生物量时空分布及其影响因子.水生生物学报,2008,32(2):184-188.
    [14]董云仙.洱海蓝藻水华研究.云南环境科学,1999,18(4):28-31.
    [15]王凤娟.巢湖东半湖浮游生物与水质状况及营养类型评价.合肥:安徽农业大学,2007.
    [16]舒廷飞,罗琳,温琰茂.海水养殖对近岸生态环境的影响.海洋环境科学,2002,2(21):74-79.
    [17]Braten B. Pollution on Norwegian fish farms. Aquaculture Ireland,1983,14 (7):122-127.
    [18]Funge-Smith, Briggs M R P. Nutrient budgets in intensive shrimp ponds:Implications for sustainability. Aquaculture,1998,164 (18):117-133.
    [19]林钦,贾晓平.养殖水域富营养化与赤潮发生的关系.南海水产养殖,1997,15(12):9-16.
    [20]罗彬,张华,胡雪钦.复合生态技术处理景观用水的工程应用.广东建材,2007,8:146-148.
    [21]Hoffmann J, Kumar S. Globalization:the maritime nexus. In:Grumman's, C. (Ed.), Handbook of Maritime Economics and Business. Lloyds of London Press.2002:35-62.
    [22]Stephan G. Removal of Barriers to the Effective Implementation of Ballast Water Control and Management Measures in Developing Countries. Joint GEF/IMO/UNDP project GloBallast program.1997:11.
    [23]肖笃宁,陈文波,郭福良.论生态安全的基本概念和研究内容.应用生态学报,2002,13(3):355-358.
    [24]Meinesz, A.&Hesse, B. Introduction et Invasion de langue tropical Caulerpa taxi folia en Mediterranean nord-occidentale. Oceanologica Acta,1991,14:71-76.
    [25]Bianchi CN, Morri C. Marine biodiversity of the Mediterranean Sea:situation problems and prospects for research. Marine Pollution Bulletin,2000,40:367-376.
    [26]Nehring S. N on indigenous phytop lank ton species in the NorthSea:supposed region of origin and possible transport vector. Arch Fish Mar Res,1998,46:181-94.
    [27]卢兆曾,李纪忠.水源富营养化问题集危害.山东水利,2005,3:16.
    [28]M Miwa. Effect of chelating agents on the growth of blue-green algae and the release of gasmen. Water Science Technology,1988,120 (8-9):197-203.
    [29]田珍,王娟,孙海丽.饮用水源中藻类繁殖危害及处理.水科学与工程技术,2010,1:9-11.
    [30]Duy T. N, Lam EK, S, Shaw GR, et al. Toxicology and risk assessment of fresh water cyano bacterial (blue-green algae) toxins in water. Rev Environ contam Toxicol,2000, 163:113-186.
    [31]McDermott CM, Fela R, Plude J. Detection of Cyan bacterial Toxins (Microsystems) in water of Northeastern Wisconsin by a New Immunoassay Technique. Toxicon 1995,33:1433-1442.
    [32]Chorus L, Bartram J. Toxic Cyan bacteria in water. E & FN Spon, London and New York, 1999.
    [33]彭海清,谭章荣,高乃云,等.给水处理中藻类的去除.中国给水排水,2002,(2).
    [34]陈全震,何德华.甲藻赤潮对养鲍业的危害及其防治探讨.水产学报,2001,24(2):146-151.
    [35]霍文毅,郝建华,俞志明.有害赤潮数值分析研究进展.海洋与湖沼,1999,30(5):569-574.
    [36]张志道,陆斗定.南麂列岛附近海域的浮游生物和赤潮生物.东海海洋,1996,14(3):13-20.
    [37]俞志明.赤潮灾害的预测与治理.韩晓鹏.海洋科学中若干前沿领域发展趋势的分析与探讨[C].北京:科学出版社,1994.
    [38]熊彩蕾,罗亚田,王丽.藻类对水体的危害及灭藻技术的现状分析.辽宁化工,2009,38(3):173-175.
    [39]连玉武,王艳丽,郑天凌,洪华生.赤潮科学中藻菌关系研究的若干进展.海洋科学,1999,1:35-37.
    [40]Bell, W. and R. Mitchell,1972. The Biological Bulletin marine Biological Laboratory 143:265-277.
    [41]Kodama, M.,1990. In:Toxic Marine Phytoplankton, Edna Granell et al. eds., Elsevier, 52-61.
    [42]Silva, E. S., and S. Franca,1985. Protistologica,21:429-446.
    [43]Wilcox, L. W.,1986. Protoplasma 135:71-79.
    [44]健康杀手新发传染病.中国质量新闻网http://www.cqn.com.cn/NEWS/2007829/.html,2003-0 1-29.
    [45]聂青和,白雪帆,冯志华,等.新发传染病现状与教学思考.中国实用用内科杂杂志,2005,25(3):284-286.
    [46]中华人民共和国卫生部.生活饮用水水质卫生规范.2001.
    [47]王立前,张榆霞.云南省重点湖库水体透明度和叶绿素a建议控制指标的探讨.湖泊科学,2006,18(1):86-90.
    [48]Dahlmann J, Ruhl A, Hummert C, et al. Different methods for toxin analysis in the cyan bacterium Nodularia spumigena (Cyanophyceae). Toxicon,2001,39 (8):1183-1190.
    [49]Oudra B, Loudiki M, Sbiyyaa B, et al. Isolation, characterization and quantification of Microsystems (heptapeptides hepatotoxins) in Microsystems aeruginosa dominated bloom of Lalla Takerkoust lake-reservoir (Moroc-co). Toxicon,2001,39 (9):1375-1381.
    [50]施玮,蒋颂辉,朱惠刚,等.中国饮用水源水中藻类卫生标准的研究.甲生研究,2003,32(2):97-100.
    [51]复旦大学公共卫生学院环境卫生教研室[饮用水派水中蓝藻细胞密度限值]编制说明2005年.
    [52]岳舜琳.组合水处理工艺除藻效率探讨.净水技术,2006,25(2):1-5.
    [53]Yang Z, Perakis A N. Multiattribute decision analysis of mandatory ballast water treatment measures in the US Great Lakes. Transportation Research Part D,2004 (9):81-86.
    [54]Hayes K. Ecological risk assessment for ballast water introductions:A suggested approach. ICES Journal of Marine Science,1998, (55):201-212.
    [55]刘昭青.国际船舶压载水及其沉积物控制和管理.交通环保.2004,25(2):49-50.
    [56]余育聪.船舶压载水及其沉积物控制和管理.江苏船舶.2005,22(5):35-37.
    [57]Marine environment protection committee. Guidelines for approval of ballast water management system (G8). MEPC.125 (53),2005.
    [58]Marine environment protection committee. Procedure for approval of ballast water management systems that make use of active substances (G9). MEPC.169 (57),2008.
    [59]余国忠,李灵芝,张明云,等.纤维直接过滤去除原水藻类.环境污染治理技术与设备,2003,4(1):14-18.
    [60]李镜明,栗心国.辐射流滤池直接过滤处理含藻湖水的试验研究.建筑技术通讯,1992,(1):5-8.
    [61]Cha Jaehwan, Lee Jungjune, BenAim Roger, et al. Flexible fiber filter:potential for algae removal. Journal of Water Supply:Research and Techno!ogy-AQUA,2009,58 (2):153-157.
    [62]Chen Y. M., Liu J. C. and Yih-HsuJu, Flotation removal of algae from water. Colloids and Surfaces B:Biointerfaces,1998,12 (15):49-55.
    [63]Bauer M.J, Bayley R., Chipps M.J., et al. Enhanced rapid gravity filtration and dissolved air flotation for pre-treatment of river thames reservoir water. Water Science and Technology,1998,37 (2):35-42.
    [64]Johnson B. A., Gong B, Bellamy W., et al. Pi lot plant testing of di ssolved air flotation for treating Boston's low-turbidity surface water supply. Water Science and Technology, 1995,31 (3-4):83-92.
    [65]Ferguson C, Logsdon G. S, Curley D., Comparison of dissolved air flotation and direct filtration. Water Science and Technology,1995,31(3-4):113-124.
    [66]Wang Yuheng, Wang Qishan, Zhuo Shengguang et al. Improvement of operational mode of count-current dissolved air flotation process.2010 International Conference on Digital Manufacturing & Automation,839-841.
    [67]Henderson Rita K, Parsons Simon A, Jefferson Bruce. The potential for using bubble modification chemicals in dissolved air flotation for algae removal. Separation Science and Technology,2009,44 (9):1923-1940.
    [68]郑必胜,张国权,蔡妙颜等利用气浮法采收小球藻的生物量海湖盐与化工,1999,28(6):8-11
    [69]Lamber TW, Holmes C F B, Hrudey S E. Microcystin class of toxin health effects and safety of drinking water supplies. Environ Rev 1994 (2):167-186.
    [70]Y. Matsui, T. Aizawa, M. Suzuki, et al. Removal of geosmin and algae by ceramic membrane filtration with super-powdered activated carbon adsorption pretreatment. Water Science & Technology:Water Supply,2007,7 (5-6):43-51.
    [71]杜清华.UV/O3船舶压载水灭菌系统研究:(硕十学位论文).哈尔滨:哈尔滨工业大学,2006.
    [72](?)yvind E, Behrens H L, Brynestad S et al. Challenges in global ballast water management. Marine Pollution Bulletin,2004,48:615-623.
    [73]周明,董金荣,包广旬,赵开弘.浸没式UV-C技术用于自来水厂除藻的研究.华中科技大学学报(自然科学版),2004,32(6):111-113.
    [74]赵春禄,侯孝来,楚晓俊.紫外光预氧化下高岭土复合聚合氯化铝混凝去除水中颤藻.青岛科技大学学报(自然科学版),2010,31(5):477-479.
    [75]Henderson R. K., Parsons S. A., Jefferson B.. Successful removal of algae through the control of zeta potential. Separation Science and Technology,2008,43 (7):1653-1666.
    [76]Clasen J, Mischke U, Drikas M et al. An Improved Method for Detecting Electrophoretic Mobility of Algae during the Destabilization Process of Flocculation:Flocculant Demand of Different Species and the Impact of DOC. Water Services Res Technol,2000,49 (2):89-101.
    [77]王丽,黄进,黄君礼.二氧化氯对蕙和蔡的去除效果研究.化学工程师,1999,10(1):43-44.
    [78]Zhang Yuejun, Zhao Xiaolei, Li Xiaoxiao, et al. Algae-removal efficiency of AS/PDM used for the Taihu Lake prechlorination algae-rich water in summer. Journal of Chemical Engineering of Chinese Universities,2011,25 (2):331-336.
    [79]Zhao Xiaolei, Zhang Yuejun, Li Xiaoxiao, et al. Algae removal efficiencies of AS/PDMDAAC coagulants. Journal of American Water Works Association,2010,102 (7):119-128.
    [80]尹澄清,兰智文,围隔中水华控制研究.环境科学学报.1989,9(1):95-99.
    [81]Zhao Yuhua, Xue Fei, Fu Jinxiang et al. Research on chemical oxidation for algae removal. Journal of shenyang jianzhu university(natural science),2006,22 (5):829-832.
    [82]Martin R. Jekel., Effects and mechanisms involved in preoxidation and particle separation processes. Water Science and Technology,1998,37 (10):1-7.
    [83]Dunlop P. S. M. et al, The photocatalytic removal of bacterial pollutants from drinking water. Photochemistry and Photobiology,2002 (148):355-363.
    [84]Kiyomi Tsuji, TomohikoWatanuki, Ftnnio Kondo et al, Stability of Mieroeystins from cyanobaeteria-iv. Effect of chlorination on decomposition. Toxicon,1997,35(7): 1033-1041.
    [85]David L. Widrig, Kimberly A.Gray, Kim S. McAuliffe. Removal of algal-derived organic material by Preozonation and coagulation:Monitoring changes in organic quality by paralysis-GC-MS. Water Research,1996,30 (11):2621-2632.
    [86]Kim Youngsug, LeeYeongho, ChaiS. Gee, Choi Euiso. Treatment of taste and odor causing substances in drinking Water. Water Science and Technology,1997,35 (8):29-36.
    [87]石颖,马军等.湖泊、水库水的强化混凝除藻的试验研究.环境科学学报,2001,21(2):251-253.
    [88]Ma.J, Liu. W. Effectiveness and mechanism of potassium ferrate(Ⅳ) preoxidation for algae removal by coagulation. Water Research,2002,36 (4):871-878.
    [89]余冉,吕锡武,稻森悠平.生物接触氧化预处理水中藻类及其毒素.中国给水排水,2002,18(12).
    [90]赵承美,张大丽,牛明改,等.上向流生物膜反应器对水中铜绿微囊藻毒素的去除研究.信阳师范学院学报(自然科学版),2011,24(4):525-527.
    [91]李雪梅等.有效微生物群控制富营养化湖泊蓝藻的效应.中山大学学报(自然科学版),2000,39(1):81-85.
    [92]张俊梅.浅谈除藻技术现状及发展.榆林学院学报,2009,19(2):99-100.
    [93][日]水体富营养化的预防与对策.东京:日本工业出版社1991.
    [94]http://baike.baidu.com/view/345434.htm#4
    [95]张朝升,宋金璞,李德强,周莉萍.大梯度磁滤器去除水中藻类研究.给水排水,2001,27(8):22-24.
    [96]丁暘,浦跃朴,尹立红,邱潇潇,李云晖,吴巍.超声除藻的参数优化及其在太湖除藻中的应用.东南大学学报(自然科学版),2009,39(2)354-359.
    [97]梁文艳,曲久辉,谌丽斌.脉冲变频电磁场对水中藻类的抑制及去除效能.环境科学2004,25(4):38-42.
    [98]梅特卡夫和埃迪公司[美].废水工程处理与回用(第四版).北京:化学工业出版社,2004.
    [99]Mirei Mori, Akiko Hamaoto, Akira Takahashi et al. Development of a new water sterilization device with 356 nm UV-LED. Med Bio Eng Comput,2007,45:1237-1241.
    [100]扈庆,李显芳.污水处理厂消毒方式探讨.广东化工,2010,3(39):135-136.
    [101]王雷.马鞍山市第二污水处理厂消毒方式比选及应用.山西建筑,2009,35(33):188-189.
    [102]陈谷.氧化性消毒剂的优劣分析及发展趋势.工业用水与废水,1999,30(2):1-3.
    [103]王永仪.二氧化氯及其在水处理中的应用.化工进展,1996,1:30-33.
    [104]路凯,陈亚妍,李士英,等.二氧化氯特性及其饮水消毒的优缺点.国外医学卫生学分册,2000,27(6):364-367.
    [105]夏志清,杨君,丁从文.臭氧消毒简介.化学教育,2006(10):7-9.
    [106]杨基成,曾抗美,梁宏,等.臭氧法在城市污水消毒中的应用.环境科学与技术,2004.27(1):64-65.
    [107]王祥勇,陈洪斌,阮久丽.污水和再生水臭氧消毒的研究和应用.水处理技术,2010,36(4):19-23.
    [108]Narsetti Renuka, Curry Randy D, McDonald Kenneth F, Nicols Leland M, et al. Application of pulsed electric fields and magnetic pulse comperessor technology for water sterilization. Digest of technical papers-IEEE international pulsed power conference,2007:1282-1285.
    [109]Xin Qing, Zhang Xingwang, Li Zhongjian, et al. Sterilization of oil-field re-injection water using combination treatment of pulsed electric field and ultrasound. Ultrasound Sonochemistry,16 (1):1-3.
    [110]Saito Tsukasa, Handa Taiki, Minamitani Yasushi. Sterilization of fungus in water bt pulsed power gas discharger reactor spraying water droplets for water treatment. IEEJ Transactions on Fundamentals and Materials,128 (4):317-318.
    [111]张曼霞MPCF&UV法处理船舶压载水技术可行性研究:(博十学位论文).大连:大连海事大学.2009.
    [112]陈宝国.微孔滤网除藻的试验研究.给水净化学术会议论文,中国土木工程学会市政工程委员会,1994,6.
    [113]Kong Xiangpeng, Zhu Yimin, Zhang Manxia, Sun Xuejing, Zhang Wei. Simulated Experiment on Minimizing the Presence Chlorella and Bacteria in Ballast Water by Combination of Micro-hole Filtration and UV Radiation. Journal of Advanced Oxidation Technologies,2007,10 (1):186-188.
    [114]朱益民,孔祥鹏,张曼霞,郭明星.多孔过滤和紫外辐射相结合治理船舶压载水生生物入侵装置.中国,发明专利.ZL200610046866.1.授权日期:2008.2.6.
    [115]朱益民,孔祥鹏,张曼霞,郭明星.一种治理船舶压载水生生物入侵的装置.中国,实用新型专利.ZL2006 2 0091472.3.授权日期:2007.8.15.
    [116]Zhang Manxia, Xu Ningwei, Li Changli, Wang Yatong, Zhu Yimin. Micro-pore Ceramic Filter and UV System as Ballast Water Treatment:Preliminary Study on Chlorella Removal and Bacteria Inactivation. Journal of Advanced Oxidation Technologies,2008,11 (1):125-129.
    [117]李昌丽,王亚童,徐宁尉,张曼霞,朱益民.多孔过滤与紫外辐射结合去除模拟压舱水中小球藻.国际航运协会2008年年会暨国际航运技术研讨会论文集,2008,351-354.
    [118]李昌丽MPF&UV结合处理压载水中藻类和细菌的研究:(硕士学位论文).大连:大连海事大学2008.
    [119]Zhang Manxia, Liu Shengjie, Chang Jing, Feng Yan, Ning Yinping, Zhu Yimi. Simulated Experiment on Minimizing Presence of Nitzschia Clostertum in Ballast Water by Micro-pore Filtration and UV Radiation System. Progress in Environmental Science and Technology,2009, Vol.Ⅱ, Part C:1650-1654.
    [120]张曼霞,刘胜杰,冯岩,宁银萍,常静,朱益民.多孔过滤与紫外辐射结合去除模拟压载水中扁藻的研究.海洋环境科学学报.2009,28(2):208-210.
    [121]Zhang Manxia, Liu Shengjie, Tang Xiaojia, Wang Lili, Zhu Yimin. Study on Marine Bacteria Inactivation of Ballast Water by Combination of Micro-pore Ceramic Fi ltration and UV Radiation. The Internationa] Conference on Remote Sensing, Environment and Transportation Engineering.2011, China. Volume 6.5379-5382.
    [122]Zhang Manxia, Liu Shengjie, Tang Xiaojia, Li Xiang, Zhu Yimin. Evaluation of Micro-pore ceramic filtration and UV radiation combination on ballast water treatment. Proceedings of 2010 Internationa] Conference on Digital Manufacturing & Automation.2010, China. Volumel. 699-672.
    [123]姬宝强,壁流式陶瓷颗粒过滤器结构特性分析:(硕士学位论文).大连:大连理工大学,2008.
    [124]任祥军,多孔陶瓷膜材料的研制及在气固分离中的应用研究:(硕士学位论文).安徽:中国科学技术大学.2005.
    [125]刘成圣,王悠,于娟等.UV-B辐射对叉鞭金藻和二角褐指藻光合色素的影响.环境科学,2002,26(7):56.
    [126]林克椿.生物物理学.武汉:华中师范大学出版社,1999.
    [127]孙永明.紫外线技术处理船舶压载水的可行性研究.上海海运学院学报,2002,23(2):22-24.
    []28]布多.微污染水UV—C消毒的探索.蹦藏科技,2004,9:26-28.
    [129]张辰,张欣,吕尔明,肖甲星.紫外线消毒的理论研究.给水排水.2004,30(11):21-24.
    [130]张文华.现代紫外消毒技术在污水处理厂中的应刚.两南给排水,2006,28(3):16-19.
    [131]Kumoko Oguma, Hiroyuki Katayama, Shiichiro Ohgaki. Photo reactivation of Escherichia coli after Low or Medium-Pressure UV Disinfection Determined by an End nuclease Sensitive Site Assay. Applied and Environmental Microbiology,2002,68 (12):6029-6035.
    [132]吴明红,包伯荣.辐射技术在环境保护中的应用.北京:化学工业出版社,2002:56-58.
    [133]周伟良.紫外线在饮用水生产中的应用.净水技术.2002,21(1):38-40.
    [134]张永吉,刘文君.紫外线对自来水中微生物的灭活作用.中国给水排水2005,21(9):1-4.
    [135]李永函,赵文.水产饵料生物学.大连:大连出版社,2002.
    [136]李先强.船舶压载水管理的研究.青岛远洋船员学院学报,2000,21(4):46-50.
    [137]http://pxbt.b2b.hc360.com/supply/38370744.html.
    [138]时艳侠.小球藻藻种鉴定、株系筛选和培养条件优化:(硕十学位论文).青岛:中国海洋大学,2007.
    [139]韦进宝.环境监测手册.北京:化学工业出版社,2006.
    [140]A.比索,R.L.卡贝尔.化工过程放大-从实验室试验到成功的工业规模设计.北京:化学工业出版社.1985.
    [141]汪大翚,雷乐成.水处理新技术及工程设计.北京:化学工业出版社,2001.4.
    [142]http://www.hudong.com/wiki/%E7%9B%90%E8%97%BB.
    [143]忻显.船舶压载水和海洋环保.交通环保,2007,(5):40-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700