载人潜水器多学科设计优化方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
载人潜水器是一种技术密度高、涉及学科面广的复杂工程系统,涵盖多个学科内容,不仅包括传统的水动力学、结构力学、推进理论、操纵和控制理论等,也包括现代的人机工程学等,每个学科又包含很多分支,载人潜水器的设计具有明显的“多学科”特点。随着结构、水动力、控制等学科理论不断完善,计算机技术的飞速发展,人们能够采用更高精度的模型进行学科分析与设计,各学科设计均取得了长足的进步。然而,与各学科或子系统设计蓬勃发展形成强烈对比的是,长期以来,潜水器总体设计方法的发展一直停滞不前,其理论落后、方法陈旧,虽然这些理论和方法在过去数十年发挥了极其重要的作用,为潜水器技术的发展做出了巨大的贡献,但是它们忽视工程系统中各学科之间的耦合效应、不能充分利用学科的发展成果、低效、耗时且成本高昂,这一系列固有缺陷决定了它们已无法适应现代潜水器发展的迫切需要。
     在这种情况下,本文引入在航空领域迅速发展起来的解决复杂系统设计与优化的多学科设计优化方法(Multidisciplinary Design Optimization, MDO),探讨多学科优化方法在载人潜水器设计中应用的可行性和适用性。论文以多学科设计优化算法及其在载人潜水器设计中的应用为核心。论文的主要工作包括以下几个方面:
     1.系统回顾和总结了现有多学科设计优化方法
     分析了载人潜水器设计过程中所涉及的优化问题及其可能的解决方法。对现有多学科设计优化方法进行了综述。重点描述了三种分布式多学科设计优化方法的产生、发展及其在实际工程中的应用情况,介绍了各方法的计算框架,并分析了它们的优缺点和适用情况。
     2.系统深入地研究了多学科协同优化方法
     协同优化方法是一种有效的多学科优化方法,其设计思想、计算框架与现有载人潜水器的设计组织形式相吻合,在载人潜水器设计中最具潜力。
     (1)详细介绍了协同优化方法的设计思想、计算框架、数学描述形式和求解步骤,指出协同优化方法存在的计算困难问题,并分析了产生计算困难的原因。
     (2)通过一个典型的数值算例,对现有几种改进型协同优化方法的计算性能进行了比较研究,研究结果表明,基于现代优化算法——遗传算法的协同优化计算性能最为稳定,可靠性最高。
     3.针对载人潜水器优化设计中的复杂多目标优化问题,发展了能够得到Pareto解集的协同优化方法。
     针对潜水器设计中涉及多个学科的耦合以及数据信息量大、数据关系复杂的问题,本文发展了一种新的多目标协同优化算法。该方法将Pareto遗传算法(PGA)引入协同优化框架。在PGA与协同优化框架结合的过程中,采用目标函数的归一化处理、分级罚函数法、浮点数编码、群体分级和Pareto解集过滤器等技术提高算法的计算效率和可靠性。二者的有机结合充分发挥各自的优势,该方法利用协同方法的分解协调机制将复杂系统的设计问题分解为一个系统级优化问题和几个学科级优化问题。采用PGA作为系统级优化器,不仅可以得到能够反映多目标优化问题实质的、客观的Pareto解集,而且,由于PGA是无需梯度信息的直接搜索算法,从而从根本上消除了协同优化由系统层一致性约束条件引起的收敛困难问题。最后通过一个数学算例证实了本文发展的多目标协同优化方法的有效性。
     4.载人潜水器总体多学科模型的建立
     根据载人潜水器总体设计的特点,将载人潜水器系统划分为外形/水动阻力、推进、能源、结构、重量与容积共5个相对独立的学科。在学科分析的基础上,建立了各学科数学分析模型,提取了设计参数,明确了各学科的输入输出以及它们之间的耦合关系,并编制了相应的分析设计程序。完成了载人潜水器的总体设计的建模工作。
     5.多学科协同优化方法在载人潜水器设计中的应用研究
     (1)利用基于遗传算法的单目标协同优化方法,实现了载人潜水器概念设计阶段的总体优化设计。
     (2)利用本文提出的基于Parato遗传算法的多目标协同优化方法(PGA-CO),实现了载人潜水器概念设计的多目标优化,优化结果表明该方法能得到稳态和均匀的高性能Pareto解集,与单目标优化相比,获得的Pareto解集能使设计者对可能的设计方案有全面认识,更好地进行权衡、折衷和决策。应用研究表明,该方法在载人潜水器总体设计中具有广阔的应用前景。
     6.响应面近似技术在载人潜水器耐压结构设计中的应用研究
     对多学科设计优化中的近似模型技术进行了研究,将二次响应面近似模型应用于潜水器载人耐压球壳结构的优化设计中,载人球壳结构采用ABAQUS软件进行有限元分析,采用中心组合试验设计方法获得初始样本点数据信息,通过对数据点的拟合构造了设计参数和设计目标的二阶响应面近似模型,在响应面模型基础上利用PGA算法进行多目标优化求解,最后得到耐压球壳结构的优化设计,在最优设计点处,近似模型达到了较高的精度。这一研究表明:在载人潜水器学科优化设计中,采用响应面近似模型替代原有复杂的、高精度分析模块进行优化迭代计算,极大地减少了计算量,提高优化计算效率,解决了详细设计阶段学科优化中的计算瓶颈问题,具有较强的工程实用性。
     本文的创新性工作主要体现在以下四个方面:
     (1)本文结合Pareto多目标遗传算法(PGA)和协同优化框架(CO),首次提出了基于PGA的多目标协同优化算法(PGA-CO),通过数值算例的验证和实际工程的应用表明:该方法能有效解决多目标的多学科优化问题,在类似于载人潜水器等复杂工程系统的总体优化设计中极具应用潜力。
     (2)将航空航天领域新近发展起来的多学科设计优化技术运用于载人潜水器的总体优化设计中。首次建立了包含水动力外形、推进、能源、结构及重量容积共5个学科在内的载人潜水器总体多学科优化数学模型,并采用多目标多学科协同优化算法(PGA)求解,获得了优化结果。
     (3)首次将多学科近似模型技术应用于载人潜水器的耐压结构优化设计中,基于响应面近似模型的耐压结构优化设计方法,能显著减少计算量,优化效率高,能够满足工程设计的精度要求,该方法工程实用性强。
     (4)通过一个典型MDO数学算例对现有的多种协同优化方法进行了比较研究,得到了一些有益的结论,为协同优化算法理论和应用的进一步研究提供参考。
     通过本文研究,表明多学科设计优化方法在提高载人潜水器总体优化设计技术方面具有巨大潜力,本文工作可作为进一步研究多学科设计优化方法的工程应用基础。
Human Occupied Vehicle (HOV) is a complex system involving many different disciplines such as Hydrodynamics, structure, propulsion, weight/volume and cruise control, etc. HOV design is characterized by multidisciplinary interactions in which participating disciplines are intrinsically linked to one another. HOV design is also a complicated multistage process. In conceptual design phase and preliminary design phase, multidisciplinary optimization is especially significant for improving integration performance of HOV. However, for HOV design, it is really difficult to realize multidisciplinary optimization by conventional optimization. The difficulties are that such an integrated implementation is but dealing with the complex couple relationship among the disciplines, also subjected to complexities introduces as a result of a large number of design variables and constraints. The conventional optimization methods for general design of HOV are not capable of solving these problems.
     Under this circumstance, it is necessary to find new way for optimization design of HOV. Multidisciplinary design optimization (MDO) method has been emerged from aeronautics and astronautics fields, especially for such complicated engineering integrated optimization problems.
     The objective of this work is to explore MDO method and its application in HOV design. The main contents and contributions of this thesis may be summarized as follows:
     (1) Exiting MDO methods are reviewed and analyzed. This thesis reviews some of MDO approaches and focuses mainly on solution strategies, characters and recent advances of distributed MDO approaches. The advantages and disadvantages of these methods are discussed and analyzed.
     (2) Collaborative Optimization (CO) is a potential MDO method. In our work, CO is systematically investigated. Firstly, the motivation, architecture, mathematical description of CO is introduced in detail. Secondly, several varieties of CO are investigated and analyzed. Through numerical examples, the CO based on GA (GA-CO) method is proven to have better convergence performance and higher robust.
     (3) In order to deal with complicated multi-objective optimization problem in HOV design, multi-objective CO is investigated and developed in our study. We describe the novel integration of Pareto Genetic Algorithm (PGA), one of multi-objective optimization methods within the collaborative optimization framework, which remain the main metrics of CO architecture and ability of PGA to seeking non-inferior solution set. Introduction of PGA which is a direct search algorithm to CO can relieve the convergence difficulties in system-level. At the same time, the PGA enables the designer to select the fittest solution among the Pareto optimal set in according with their preference and the nature of the design problem. We have used some strategies such as regularization of objectives, graded penalized function technique to remove constraints, float code, Pareto rank of population and Pareto set filter of objective in the integration of PGA within CO. Through a numerical examp1e, our developed method is proven to be correct and effective.
     (4) Establishing the disciplinary analysis model According to the vehicle’s characteristics, HOV system is decomposed into five disciplines such as shape/hydrodynamics, structure, propulsion, energy and weight/volume. And then, each of these disciplines is analyzed, the mathematical models for all disciplines are established, and the inputs and outputs of disciplinary models are defined. These models are proven to be correct and efficient by system analysis, and can be used in the optimization design.
     (5) The developed PGA-CO in our study is applied to solve the HOV design problem. The PGA-CO is successfully used in the conceptual design of the HOV. A robust and well-distributed noninferior set is obtained, which can help the designers to understand the project and make decisions. Through this application, the presented methods are proven to be applicable and have the potential for multidisciplinary design optimization of HOV.
     (6) Approximation is one of the most important critical techniques in MDO. In this study, the structure multi-objective optimal design of the pressure spherical hull in the HOV is completed with a combined optimal method and this method is based on Response Surface Method (RSM) and Pareto Genetic Algorithm (PGA). The FEM model of the Pressure Spherical Hull is built firstly by ABAQUS. With the Design of Experiment (DOE), the response property of design objects can be obtained. The response surface model is fitted with these samples. PGA is used in subsequent optimal design. Finally, the optimal design of the pressure spherical hull is obtained. Optimization design of structure based on the response surface model is proven to be efficient and effective.
引文
[1] Sobieszczanski-Sobieski J, Haftka R T. Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments [J]. Structural Optimization, 1997, 14(1):1-23.
    [2]余雄庆,多学科优化算法及其在飞机设计中的应用研究[D],南京航空航天大学,1999.
    [3]王书河,何麟书,张玉珠.飞行器多学科设计优化软件系统[J].北京航空航天大学学报, 2004.31(1): 51-55.
    [4]胡峪.飞机多学科设计优化及其应用研究[D],西北工业大学, 2001,6.
    [5]罗世彬.高超声速分析器机体/发动机一体化及总体多学科设计优化方法研究[D],国防科学技术大学, 2004,4.
    [6] McAllister C D, Simpson T W, Kurtz P H, Yukish M. Multidisciplinary design optimization test based on autonomous underwater vehicle design [A]. The 9th AIAA/ISSOM symposium on Multidisciplinary Analysis and Optimization[C]. Atlanta, Georgia, Sept. 4-6, 2002.
    [7] Belegundu A D, Halber E, Yukish M A, Simpson T W. Attribute-based multidisciplinary optimization of undersea vehicles [A]. AIAA-2000-4865, the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. Long Beach, CA, Sept. 6-8, 2000.
    [8] Yukish M, Simpson T W. Requirements on MDO imposed by the undersea vehicle conceptual design problem[A]. AIAA-paper, the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. Long Beach, CA, Sept. 6-8, 2000.
    [9]卜广志.鱼雷总体综合设计理论与方法研究[D].西北工业大学, 2003.
    [10] Liu Wei, Cui WeiCheng. Multidisciplinary Design Optimization(MDO): A promising tool for the design of HOV [J]. Journal of Ship Mechanics, 2004, 8(6):95-112.
    [11] Liu Wei, Gou Peng, Cao Anxi, Cui Wei-cheng. Application of Hierarchical Bilevel Framework of MDO Methodology to AUV Design Optimization [J]. Journal of Ship Mechanics, 2006, 10 (6): 122-130.
    [12] Cao Anxi, Zhao Min, Liu Wei, Cui Weicheng. Application of Multidisciplinary Design Optimization in the Conceptual Design of a Submarine [J]. Journal of Ship Mechanics, 2007, 11(3):373-382.
    [13] Giesing J, Barthelemy J M. A summary of Industry MDO Applications and Needs, An AIAA White Paper, the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis andOptimization[C]. St. Louis, Missouri, Sept. 2-4, 1998.
    [14]钟毅芳,陈伯鸿,王周宏.多学科综合优化设计原理与方法[M],武汉,华中科技大学出版社2006.4:26.
    [15] Simpson T W, Mauery, T M and Korte J J, et al. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization [J]. AIAA Journal, 2001, 39(12): 2233-2241.
    [16] Salas A O, Townsend J C. Framework Requirements for MDO Application Development[R]. AIAA paper, 98-4740. 1998.
    [17] Balling R J, Sobieszczanski–Sobieski J. Optimization of coupled systems: A critical overview of approaches [J]. AIAA Journal, 1996, 34(1):6–17.
    [18] Adelman H M, Mantay W R. Integrated Multidisciplinary Design Optimization of Rotorcraft [J]. Journal of Aircraft, 1991, 28(1): 22–28.
    [19] Grossman B, Strauch G, Eppard W H, Gürdal Z, Haftka R T. Integrated Aerodynamic/Structural Design of a Sailplane Wing[J]. Journal of Aircraft, 1988, 25(9): 855–860.
    [20] Livne E, Schmit L A, Friedmann P P. Integrated Structure/Control/Aerodynamic Synthesis of Actively Controlled Composite Wings [J]. Journal of Aircraft, 1993, 30(3):387–394.
    [21] Walsh J L, Weston R P, Samareh J A, Mason B H, Green L L, Biedron R T. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles, Part 2: Preliminary Results [A]. AIAA- 2000-0419, Proceedings of the 38th AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada, January 10-13, 2000.
    [22] Lavelle T, Plencner R. Concurrent Optimization of Airframe and Engine Design [A]. AIAA- 92-4713, the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization[C]. Cleveland, Ohio, Sept. 21–23, 1992.
    [23] Livne E. Alternative Approximations for Integrated Control/Structure Aeroservoelastic Synthesis [J]. AIAA Journal, 1993, 31(6):1100–1112.
    [24] Renaud J E, Gabriele G A. Approximation in Non-Hierarchic System Optimization [J]. AIAA Journal, 1994, 32(1):198-205.
    [25] Hutchison M G, Unger E R, Mason W M, Grossman B, Haftka R T. Variable Complexity Aerodynamic Optimization of a High-Speed Civil Transport Wing [J]. Journal of Aircraft, 1994, 31(1): 110–116.
    [26] Kroo I M. Distributed Multidisciplinary Design and Collaborative Optimization [A]. VKI lecture series on Optimization Methods & Tools for Multi-criteria/ Multidisciplinary Design[C]. November15-19, 2004.
    [27] Sobieszczanski-Sobieski J. Sensitivity of Complex, Internally Coupled Systems [J]. AIAA Journal, 1990, 28(1): 153–160.
    [28] Sobieszczanski-Sobieski, J. Optimization by Decomposition: A Step from Hierarchic to Non-Hierarchic Systems [A]. The 2nd NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization [C]. Hampton, VA, Sept. 28–30, 1988.
    [29] Wujek B A, Renaud J E, Batill S M, Brockman J B. Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed Computing Environment[J]. Concurrent Engineering, 1996, 4(4): 361-377.
    [30] Renaud J E, Gabriele G A. Improved Coordination in Non-Hierarchic System Optimization [J]. AIAA Journal, 1993, 31(12):2367-2373.
    [31] Renaud J E. Second Order Based Multidisciplinary Design Optimization Algorithm Development [A]. DE-Vol.65-2, Advances in Design Automation, Volume 2, ASME, Gilmore B J, Hoeltzel D A, Azarm S, and Eshenauer H A (Ed.), pp. 347-357, 19th Design Automation Conference [C]. Albuquerque, New Mexico, Sept. 19-22, 1993.
    [32] Eason E, Wright J. Implementation of Non-Hierarchic Decomposition for Multidisciplinary System Optimization [A]. AIAA-92-4822, the 4th AIAA/NASA/USAF/OAI Symposium on Multi- disciplinary Analysis and Optimization[C]. Cleveland, Ohio, Sept. 21–23, 1992.
    [33] Eason E, Nystrom G, Burlingham A, Nelson E. Robustness Testing of Non-hierarchic Multidisciplinary System Optimization[A]. The 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. Panama City Beach, Florida, Sept. 7–9, 1994.
    [34] Balling R J, Wilkison C A. Execution of multidisciplinary design optimization approaches on common test problems [J]. A IAA Journal, 1997, 35 (1) : 178~186.
    [35] Bloebaum C L. An Intelligent Decomposition Approach for Coupled Engineering Systems [A]. AIAA-92-4821, the 4th AIAA/ NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization[C]. Cleveland, Ohio, Sept. 21–23, 1992.
    [36] Korngold J, Gabriele G, Renaud J E, Kott G. Application of Multidisciplinary Design Optimization to Electronics Package Design [A]. AIAA-92-4704-CP, Part 1, the 4th AIAA/NASA /USAF/OAI Symposium on Multidisciplinary Analysis and Optimization[C]. Cleveland, Ohio, Sept. 21–23, 1992.
    [37] Korngold J, Gabriele G. Integrating Design for Manufacturing of Electronic Packages in a Multidisciplinary Design Analysis and Optimization Framework [A]. AIAA-94-4254, the 5thAIAA/USAF/NASA/ISSMO Symposium on Multi disciplinary Analysis and Optimization[C]. Panama City Beach, Florida, Sept. 7–9, 1994.
    [38] Wujek B A, Renaud J E, Johnson E W, Brockman J B, Batill S M. Design Flow Management and Multidisciplinary Design Optimization in Application to Aircraft Concept Sizing[A]. AIAA-96-0713, the 34th AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada, January 15–18, 1996.
    [39] Stelmack M A, Batill S M, Beck B C, et al. Application of the Concurrent Subspace Design Framework to Aircraft Brake Component Design Optimization[R]. AIAA paper, 98-2033, 1998.
    [40] Yu X Q, Stelmack M A, Batill S M. An application of the concurrent subspace design (CSD) to the preliminary design of a low-Reynolds number UAV [R]. AIAA paper, 98-4917, 1998.
    [41] Batill S M, Stelmack M A, Yu X Q, Multidisciplinary design optimization of an electric-powered unmanned air vehicle[J]. Aircraft Design, 1999 (2):1-18.
    [42] Backer C A, Grossman B, Haftka R T, et al. HSCT configuration design space exploration using aerodynamic response surface approximations [A]. AIAA-98-4803, the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. St. Louis, Missouri, Sept. 2-4, 1998.
    [43] Sellar R S, Batill S M, Renaud J E. Concurrent Subspace Optimization Using Gradient-Based Neural Network Response Surface Mappings [A]. AIAA-96-4019, the 6th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. Washington, September, 1996.
    [44] Batill S M, Stelmack M A, Sellar R S. Framework for multidisciplinary design based upon response surface approximations [J]. Journal of Aircraft, 1999, 36(1):287-297.
    [45]邢小楠,徐元铭,李烁,杨笑菡.神经网络响应面逼近在飞机总体优化设计中的应用[J].机械设计与研究, 2004, 20(1): 69-71.
    [46]张科施,李为吉,李响.飞机概念设计的多学科综合优化技术[J].西北工业大学学报, 2005, 23(1):102-106.
    [47] Lokanathan A N, Brockman J B, Renaud J E. A Multidisciplinary Optimization Approach to Integrated Circuit Design [A]. Proceedings of Concurrent Engineering: A Global Perspective, CE95 Conference[C]. McLean, Virginia, August 23–25, 1995. 121–129.
    [48] Sobieszczanski-Sobieski J, Agte J, Sandusky R Jr. Bi-level integrated system synthesis (BLISS)[A]. AIAA-1998-4916, the 7th AIAA/USAF/NASA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. St. Louis, Missouri, Sept. 2-4, 1998.
    [49] Kodiyalam S, Sobieszczanski-Sobieski J. Bi-level integrated system synthesis with response surfaces [J]. AIAA Journal, 2000, 38(8): 1485-1497.
    [50] Sobieszczanski-Sobieski J, Emiley M, Agte J, Sandusky R Jr. Advancement of Bi-Level Integrated System Synthesis (BLISS)[A]. AIAA-2000-421, 38th Aerospace Sciences Meeting and Exhibit[C]. Reno, NV, January 10-13, 2000.
    [51] Sobieszczanski-Sobieski J, Kodiyalam S. BLISS/S: A New Method for Two-level Structural Optimization[R]. AIAA-99-1345, 1999.
    [52] Sobieszczanski-Sobieski J, Altus T, Phillips M, Sandusky R Jr. Bi-level Integrated System Synthesis for Concurrent and Distributed Processing [J]. AIAA Journal, 2003, 41(10): 1996-2002.
    [53] Altus T D. A Response Surface Methodology for Bi-Level Integrated System Synthesis (BLISS) [R]. AIAA Paper, NASA CR-2002-211652, May 2002.
    [54] Kim H, Ragon S, Soremekun G, Malone B, Sobieszczanski-Sobieski J. Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis[A]. AIAA-2004-4545, the 10th AIAA/ ISSMO Multidisciplinary Analysis and Optimization Conference[C]. Albany, New York, Aug. 30-1, 2004.
    [55] Brown N F. Evaluation of Multidisciplinary Optimization (MDO) Techniques Applied to a Reusable Launch Vehicle [A]. The 43rd AIAA Aerospace Sciences Meeting and Exhibit[C], Reno, Nevada, January 10-13, 2005.
    [56] Kim H, Ragon S, Mullins J, Sobieszczanski-Sobieski J. A Web-based Collaborative Environment for Bi-Level Integrated System Synthesis (BLISS)[A]. AIAA 2006-1618, the 47th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference[C]. Newport, Rhode Island, May 1–4, 2006.
    [57] Kodiyalam S, Yuan C. Evaluation of Methods for Multidisciplinary Design Optimization (MDO), Part II[R]. AIAA Paper, NASA/CR-2000-210313, 2000.
    [58] Kroo I M, Altus S, Braun R D, Gage P, Sobieski I. Multidisciplinary Optimization Methods for Aircraft Preliminary Design[R]. AIAA-94-4325-CP, the 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. Panama City Beach, Florida, Sept. 7–9, 1994: 697-707.
    [59] Braun R D, Moore A A, Kroo I M. Collaborative architecture for launch vehicle design [J]. Journal of Spacecraft and Rockets, 1997, 34(4):478-486.
    [60] Cormier T A, Scott A, Ledsinger L, McCormick D, Way D, Olds J. Comparison of collaborative optimization to conventional design techniques for a conceptual RLV[A]. AIAA-2000-4885, the 8thAIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. Long Beach, CA, Sept. 6-8, 2000.
    [61] Manning V. High Speed Civil Transport Design via Collaborative Optimization [D]. Stanford University, 1999.
    [62] Sobieski I P, Kroo I M. Aircraft design using collaborative optimization [A]. AIAA Paper 96-0715, the 34th AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada, January 15–18, 1996.
    [63] Jun S, Jeon Y, Rho J, Lee D. Application of Collaborative Optimization Using Response Surface Methodology to an Aircraft Wing Design [A]. AIAA-2004-4442, the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference[C]. Albany, New York, Aug. 30-1, 2004.
    [64]薛飞,余雄庆,姚卫星,轻型飞机机翼气动/结构协同优化研究[J].计算力学学报, 2005, 22(4): 488-491.
    [65]白小涛,李为吉.基于近似技术的协同优化方法在机翼设计优化中的应用[J].航空学报, 2006, 27(5): 847-850.
    [66] Rawlings M, Balling R, Collaborative optimization with disciplinary conceptual design [A]. AIAA- 1998-4919, the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. St. Louis, Missouri, Sept. 2-4, 1998.
    [67] Rohl P J, He B, Finnigan P M. A collaborative optimization environment for turbine engine development[R]. AIAA Paper, No. 98-4734, 1998.
    [68] Huque Z, Jahingir N. Application of Collaborative Optimization on a RBCC Inlet/Ejector System[A]. AIAA-2002-3604, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit[C]. Indianapolis, Indiana, July 7-10, 2002.
    [69] Alexandrov N M, Lewis R M. Comparative properties of collaborative optimization and other approaches to MDO[R]. ICASE Report, No. 99-24, July, 1999.
    [70] Alexandrov N M, Lewis R M. Analytical and Computational Properties of Distributed Approaches to MDO[A]. AIAA-2000-4718, the 8th AIAA/USAF /NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. Long Beach, CA, Sept. 6-8, 2000.
    [71] Alexandrov N M, Lewis R M. Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design [J]. AIAA Journal, 2002, 40(2):301-309.
    [72] Braun R D, Gage P, Kroo I M. Implementation and performance issues in collaborative optimization [A]. AIAA-96-4017, the 6th AIAA/USAF/NASA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. Washington, September, 1996.
    [73]李响,李为吉.利用协同优化方法实现复杂系统分解并行设计优化[J].宇航学报, 2004, 25(3):300-304.
    [74] Lin JiGuan. Analysis and Enhancement of Collaborative Optimization for Multidisciplinary Design [J]. AIAA Journal, 2004, 42 (2): 348-360.
    [75] Sobieski I P, Kroo I M. Collaborative Optimization using Response Surface Estimation [J]. AIAA Journal, 2000, 38 (10): 1931-1939.
    [76]余雄庆,薛飞,穆雪飞,姚卫星,刘克龙,黄爱凤.用遗传算法提高协同优化方法的可靠性[J].中国机械工程, 2003, 14(21): 1808-1881.
    [77]周盛强,向锦武.飞机总体协同优化中的一种混合混沌算法[J].北京航空航天大学学报, 2006, 32(8): 908-911.
    [78]刑文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.
    [79] Tappeta R V, Renaud J E. Multiobjective collaborative optimization [J]. Journal of Mechanical Design, 1997, 119(3): 403-411.
    [80]王小平,曹文明.遗传算法理论、应用与软件实现[M].西安:西安交大出版社, 2002.
    [81] Srinivas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithm [J]. IEEE Trans. On systems, Man and Cybernetics, 1994, 24(4).
    [82] Chen D. Least weight design of 2- D and 3- D geometrically nonlinear structures using a genetic algorithm [D]. Ph.D. dissertation, The University of Memphis, Memphis, Tennessee, 1997.
    [83] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [ J ]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) : 182– 197.
    [84] Goldberg D E, Richardson J. Genetic Algorithm with Sharing for MultiModel Function Optimization [A]. Genetic Algorithm and their Applications: Proc. Of the 2nd Int’1, Conf. on Genetic Algorithm[C]. 1987.
    [85]朱继懋.潜水器设计[M].上海:上海交通大学出版社.1992:200.
    [86]苏玉民,庞永杰.潜艇原理[M].哈尔滨:哈尔滨工程大学, 2005, 111-112.
    [87] Allmendinger E E. etc., Submersible Vehicle Systems Design [R], the Society of Naval Architects and Marine Engineers, 1990.
    [88] 7000m载人潜水器模型水下阻力试验[R],中国船舶科学研究中心科技报告, 2002.
    [89] http://www.tecnadyne.com/
    [90]刘正元, 7000米载人潜器无动力潜浮运动研究[R],中国船舶科学研究中心科技报告,2002.
    [91]桂长清.蓄电池产品选用技巧[J].通讯电源技术, Vol.21(1): 37-39.
    [92] 7000米载人潜水器初步设计—载体结构分册[R],中国船舶科学研究中心科技报告, 2002.
    [93]陆蓓,深海载人潜水器耐压球壳极限强度分析[D],上海交通大学硕士论文, 2004.
    [94]蒋新松,封锡盛,王棣棠.水下机器人[M].辽宁辽宁科学技术出版社, 1999.
    [95] Potter I J. A systematic Experimental and analytical investigation of the autonomous underwater vehicle design process with particular regard to power system integration [D]. PHD thesis, department of mechanical engineering, University of Calgary.1998.
    [96] Barthelemy J–F M and Haftka R T. Approximation Concepts for Optimum Structural Design - A Review. Structural Optimization, 1993, 5(3):129-144.
    [97] Otto J C, Landman D and Patera A T. A Surrogate Approach to the Experimental Optimization of Multielement Airfoils. AIAA-96-4138. The 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, Sept. 4-6, 1996.
    [98] Yesilyurt S, Patera A T. Surrogates for Numerical Simulations; Optimization of Eddy- Promoter Heat Exchangers. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1-4): 231-257.
    [99] Simpson T W, Mauery T M, Korte J J, Mistree F. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. Journal of Aircraft, 2001, 39(12): 2233-2241.
    [100] Toropov V, Zadeh P. Use of Global Approximations in the Collaborative Optimization Framework [A]. AIAA-2004-4654, the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference[C]. Albany, New York, Aug. 30-1, 2004.
    [101]陈魁.试验设计与分析[M].北京,清华大学出版社, 2005.
    [102]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社, 2001.
    [103]石磊.试验设计基础.重庆:重庆大学出版社,1997.
    [104] Giunta, A A. Aircraft Multidisciplinary Design Optimization Using Design of Experiments Theory and Response Surface Modeling Methods [D]. PHD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1997.
    [105] Wackernagel H. Multivariate geo-statistics [M]. Heidelberg: Springer-Verlag, 1995.
    [106] Giunta A A, Watson L T. A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models [J]. AIAA-98-4758 , the 7th AIAA/USAFINASA/ISSMO Symposium on Multidisciplinary Analysis Optimization, St. Louis, MO, Sept. 2-4, 1998.
    [107] Simpson T W, Mauery T M, Korte J J, and Mistree F. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization. AIAA-98-4755. the 7th AIAA/USAFINASA/ISSMO Symposium on Multidisciplinary Analysis Optimization, St. Louis, MO, Sept. 2-4, 1998.
    [108] Jin R, Chen W. and Simpson T W. Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria [J]. Journal of Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
    [109]徐秉铮,张百灵,韦岗.神经网络理论与应用[M].广州:华南理工大学出. 1994.
    [110]王洪元,史国栋.人工神经网络技术及其应用[M].北京:中国石化出版社. 2002.
    [111]庄茁,张帆,岑松,等. ABAQUS非线性有限元分析与实例[M].北京:科学出版社, 2005.
    [112]肖建,林海波. Python编程基础[M].北京:清华人学出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700