认知无线网络决策与管理关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源管理及决策是认知无线网络中受到广泛关注的关键技术,具有广阔的应用前景。本文选题来源于国家863计划等项目,具有重要的理论意义和实际意义。
     本文在对认知无线网络决策与资源管理的基本原理进行了深入研究的基础上,主要完成了以下具有创新性的研究成果:
     针对低信噪比环境下单用户频谱感知效率低的问题,提出了一种基于分布式Ad Hoc网络的协作波束形成技术。该技术利用了协作波束形成具有方向性增益的特点,能够有效地抑制噪声,提高了接收信噪比增益,且不需要任何先验信息。仿真表明该方法能够有效提高频谱感知效率。
     针对认知无线网络频谱分配问题,提出了一种基于层次分析(AHP)算法和图论着色定理相结合的频谱决策分配模型。模型中考虑了频谱可用时间、带宽、延迟等因素与业务特性进行匹配,选出最合适的频谱资源分配给用户。两种算法相结合细化了频谱决策分配机制,既保证了次用户的使用效益又兼顾了网络整体效益,提高了频谱利用率,并能降低次用户的频谱切换次数。
     针对认知无线网络功率控制问题,提出了一种基于非合作博弈理论的功率控制模型。模型中设计了一种基于信干比(SIR)的代价函数,兼顾了主用户对次用户的干扰因素。仿真结果表明该算法提高了功率利用率,同时还提高了认知无线网络中次用户容量和收敛速度,能够很好地满足认知无线网络环境中对功率快速高效分配的需要。
     针对认知引擎中多目标优化算法效率低的问题,提出了一种基于进制量子粒子群算法的认知引擎模型。由于算法引入了量子特性,使其具备非线性和不确定性的特点,收敛速度快且精度高,弥补了传统优化算法寻优效率低的缺点。通过OFDM系统验证了算法的高效性,能够很好地在认知引擎中起到多目标优化的作用,达到了对无线资源优化决策的目的。
     论文最后对全文进行了总结,并对与论文研究方向相关的领域进行了展望。
Decision making and Management are key technologies in cognitive radio networks, which are of widespread concern and have broad application prospects. This dissertation is supported by the 863 Project and other funding, and has important theoretical and practical significance.
     Based on the comprehensive study on the basic principles of resource decision making and management in cognitive radio networks, the main contributions and innovative ideas in the dissertation include:
     For the problem that single user tend to be low efficient in spectrum sensing in low SNR environments, this paper proposed a collaborative beamforming technique based on the distributed ad hoc network. While this method does not require any prior information, it can effectively suppress noise and improve the received SNR gain by taking advantage of the directional gain of beamforming. Through the analysis based on the energy detector, this method is proved to be effective in enhancing the efficiency of spectrum sensing.
     For the problem of spectrum allocation in cognitive radio networks, a spectrum decision making and allocation model which incorporates the AHP (Analytic Hierarchy Process) algorithm and the graph coloring theory is proposed. The model considers matching some factors of the spectrum, such as the spectrum available time, bandwidth, and delay, with different service characteristics to allocate the most appropriate spectrum resources to specific users. The combination of the two algorithms can refine the spectrum decision making and allocation mechanism, guarantee the utilization of both secondary users and the entire network, improve the network spectrum efficiency, and reduce the number of spectrum switches of secondary users.
     For the problem of power control in cognitive radio networks, this paper proposes a power control model based on the non-cooperative game theory. In this model a SIR-based cost function is devised, which takes into account the interference from primary users to secondary users. Simulation results show that the algorithm can improve the power efficiency, increase the capacity of secondary users in cognitive radio networks, and achieve faster convergence speed, well adapting to needs of fast and efficient power allocation in the environments of cognitive radio networks.
     For resolving the low efficiency of multi-objective optimization algorithms in cognitive engines, a binary quantum particle swarm optimization algorithm is proposed for cognitive engines. Due to the introduction of the quantum properties which can provide nonlinear and uncertain characteristics, the algorithm has faster convergence speed and higher accuracy, thus making up for the low efficiency of traditional optimization algorithms in seeking optimal solutions. The performance of the algorithm is verified through the OFDM system, and the simulation results show that the algorithm can play a favorable effect of multi-objective optimization, achieving the goal of optimizing radio resource decision making.
     Finally, the content of the whole dissertation is summarized and several valuable research directions are also discussed.
引文
[1]Cabric, O'Donnell, Chen and Brodersen, Spectrum Sharing Radios, IEEE Circuits and Systems Magazine,6(2),2006, pp.30-45.
    [2]Federal Communication Commission, Spectrum Policy Task Force Report, ET Docket No.02-155, Nov.02,2002.
    [3]Federal Communication Commission. Facilitating opportunities for flexible, efficient, and reliable spectrum use employing Cognitive Radio technologies, NPRM & Order, ET Docket No.03-108, FCC 03-322, Dec.30,2003.
    [4]J Mitola, G J Maquire, Cognitive radios:making software radios more personal. IEEE Personal Communications,1999,6.
    [5]J. Mitola, Cognitive Radio:An Integrated Agent Architecture for Software Defined Radio, PhD Dissertation, Royal Institute of Technology, Sweden, May 2000.
    [6]HAYKIN S. Cognitive radio:brain-empowered wireless communication, Selected Areas in communications, IEEE Journal,2005,23(2), pp.201-220.
    [7]ITU-P WP8A Contributions. http://www.itu.int/md/R03-WP8A-C/en.
    [8]陈劫,吴非,认知无线电标准化进展,中兴通讯技术2007年6月,第13卷第3期.
    [9]Akyildiz, I.F, Won-Yeol Lee, Vuran, M.C, Mohanty, S, A survey on spectrum management in cognitive radio networks, IEEE Communication Magazine,2008, pp.40-48.
    [10]Weiss S, Jondra F, Spectrum pooling:an innovative strtegy for the enhancement of spectrum efficiency, IEEE communications Magazine,2004,42, pp.8-14.
    [11]Capar F, Martoyo I, Weiss T, et al, Comparison of bandwith utilization for controlled and uncontrolled channel assignment in a spectrum pooling system, IEEE 55th Vehicular Technology Conference VTC Spring 2002, Birmingham,2002, pp.1069-1073.
    [12]Akyildiz I F, Altunbasak Y, Fekri Y, et al, Adapt Net:adaptive protocol suite for next generation wireless internet. IEEE Communication Magazine 2004,42(3), pp.128-138.
    [13]Josehp Mitola III. Cognitive Radio Architecture:The Engineering Foundations of Radio XML. Weiley Press,2006.
    [14]周贤伟,王建萍,王春江,《认知无线电》,北京:国防工业出版社,2008.
    [15]F.K.Jondral, Software-Defined Radio-Basic and Evolution to Cognitive Radio, EURASIP J. Wireless Commun and Networking,2005.
    [16]向新,软件无线电原理与技术,西安电子科技大学出版社,2008年5月第1版.
    [17]Ekram Hossain and Vijay Bhargava, Cognitive Wireless Communication Networks, Springer,2007.
    [18]R. W. Brodersen, A. Wolisz, and D. Cabiric, et al., CORVUS:a cognitive radio approach for usage of virtual unlicensed spectrum, White Paper, Berkeley Wireless Research Center, UC Berkeley, Jul.29,2004.
    [19]Rutgers大学WINLAB实验室,http://www.winlab.rutgers.edu/Index.html.
    [20]Project Summary, NeTS-ProWIN:high performance cognitive radio platform with integrated physical and network layer capabilities, WINLAB, Rutgers University.
    [21]Project Summary, NeTS-ProWIN:cognitive radio for open access to spectrum, WINLAB, Rutgers University.
    [22]Virginia Polytechnic CWT Introduction, http://www.cognitiveradio.wireless.vt.edu.
    [23]MacKenzie, A.B, Reed, J.H, Athanas, P, Bostian, C.W, et al, Cognitive Radio and Networking Research at Virginia Tech, IEEE of the Proceedings,2009, pp.660-668.
    [24]EU IST Project E2R II (End-to-End Reconfigurability-Phase 2), http://www.e2r.motlab.com.
    [25]Karlsruhe大学通信研究所,http://www.int.uni-karlsruhe.de/english/288.php
    [26]M. Oner and F. Jondral, Extracting the channel allocation information in a spectrum pooling system exploiting cyclostationarity, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC,2004, pp.551-555.
    [27]国家自然科学基金委员会,2008年重点项目指南(信息科学部调控重点项目),http://www.nsfc.gov.cn/nsfc/cen/xmzn/2008xmzn/02zd/06.htm.
    [28]北京邮电大学,973课题“认知无线网络基础理论与关键技术研究”启动会,http://www.bupt.edu.cn/news/view.asp?id=3229.
    [29]IEEE 802.22 Working Group on Wireless Regional Area Networks, http: //www.ieee802.org/22.
    [30]D. Cabric, Implementation Issues in Spectrum Sensing for Cognitive Radios, Conference Record of the Thirty-Eighth Asilomar Conference on Signals Systems and Computers, vol.1,2004, pp.772-776.
    [31]Ben Letaief, K, Wei Zhang, IEEE of Proceedings,2009,97(5), pp.878-893.
    [32]A. Ghasemi and E. S. Sousa, Collaborative spectrum sensing for opportunistic access in fading environments, in New Frontiers in Dynamic Spectrum Access Networks,2005. DySPAN 2005, pp.131-136.
    [33]G. Ganesan, Y. Li, Agility improvement through cooperative diversity in cognitive radio, IEEE Global Telecommunication(Globecom),2005, pp.2505-2509.
    [34]D. Cabric, A. Tkachenko, R. Brodersen, Spectrum sensing measurements of pilot, energy, and collaborative detection, IEEE Military Commun Conf,2006, pp.1-7.
    [35]T. Weiss, J. Hillenbrand, A. Krohn, F.Jondral, Efficient signaling of spectral resources in spectrum pooling systems, IEEE Symposium on Commun,2003.
    [36]D. Cabric, S.Mishra, D. Willkomm, etc, A cognitive radio approach for usage of virtual unlicensed spectrum,1ST Mobile and Wireless Communications Summit, June,2005.
    [37]T. Weiss, J. Hillenbrand, F. Jondral, A diversity approch for the detection of idle spectral resources in spectrum pooling systems, Scientific Colloquium, Ilmenau, Germany,2003, pp.37-38.
    [38]C. Sun, W. Zhang, K.B.Letaief, Cooperative spectrum sensing for cognitive radios under bandwith constraints, IEEE conference on Wireless communication and Networking,2007, pp.1-5.
    [39]N. Ahmed, D.Hadaller, S.Keshav, GUESS:gossiping updates for efficient spectrum sensing, International workshop on Decentralized resource sharing in mobile computing and networking,2006, pp.1-5.
    [40]"Cooperative spectrum sensing in cognitive radio networks", in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Marland, USA, Nov,2005, pp.137-143.
    [41]Yucek. T, Arslan. H, a survey of spectrum sensing algorithms for cognitive radio application, IEEE Communications&Tutorials,2009,11(1), pp.116-130.
    [42]S.Shankar, C.Cordeiro, K.Challapali, Spectrum agile radios:utilization and sensing architectures, IEEE Conference on Symposium in Dynamic Spectrum Access Networks,2005, pp.160-169.
    [43]B. Wild, K. Ramchandran, Detecting primary receivers for cognitive radio application, in Proc. IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, Nov,2005, pp.124-130
    [44]Beibei Wang, Liu, K.J.R, Advances in Cognitive Radio Networks:A Survey, IEEE Journal of Selected Topics in Signal Processing,2011, pp.5-23.
    [45]刘鑫,谭学治,认知无线电中OFDM多用户频谱分配,哈尔滨工程大学学报,2009,30(10),1165-1169.
    [46]Clemens Kloeck, Holger Jaekel, Friedrich K, Jondral, Dynamic and local combined pricing, allocation and billing system with cognitive radios, in the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN),2005, pp.73-81.
    [47]Marcus, M.J, Real time spectrum markets and interruptible spectrum:new concepts of spectrum use enabled by cognitive radio, The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2005, pp.512-517.
    [48]Qing Zhao, Sadler,B.M, A Survey of Dynamic Spectrum Access, IEEE Signal Processing Magazine,2007, pp.79-89.
    [49]Beibei Wang,Zhu Ji,Liu,K.J.R, Primary-Prioritized Markov Approach for Dynamic Spectrum Access, International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2007, pp.507-515.
    [50]贺新颖,郭彩丽,曾志民,基于概率密度估计的认知无线电动态频谱接入算法,北京邮电大学学报,2009,32(1),108-112.
    [51]王文焕,王衍文.认知无线电在宽带无线通信系统中的应用,中兴通讯技术,2006.8(4).
    [52]尹长川,罗涛,乐光新,多载波宽带无线通信技术,北京邮电大学出版社,2004.
    [53]周晓飞,张宏刚,《认知无线电原理及应用》,北京邮电大学出版社,2007年.
    [54]罗涛,乐光新,《多天线无线通信原理与应用》,北京邮电大学出版社,2004.
    [55]An He, Kyung Kyoon Bae, Timothy R. Newman, etc, A Survey of Artificial Intelligence for Cognitive Radios, IEEE Transactions on Vehicular Technology, Vol.59, No.4, May 2010, pp.1578-1592.
    [56]赤伟,葛利佳,陈世娥,张玉,认知无线电中的人上智能技术,移动通信2010年1月下,15-20.
    [57]Sherman, M, Mody, A.N, Martinez, R, Rodriguez, C, Reddy, R, IEEE Standards Supporting Cognitive Radio and Networks, Dynamic Spectrum Access, and Coexistence, IEEE Communication Magazine,2008, pp.72-79.
    [58]The IEEE 802.11h-2003 Standard, http://standards.ieee.org/getieee802/download /802.11h-2003.pdf.
    [59]饶毓,曹志刚,认知无线电技术的标准化进程,2009年全国无线电应用与管理学术会议论文集,25-31.
    [60]IEEE P802.22TM/D.4.8 Draft Standard for Wireless Regional Areas Networks, IEEE 802.22 draft standard, Draft 0.4.8, March 2008.
    [61]IEEE P1900 Working Group. Available from:http://grouper.ieee.org/groups/ scc41/oindex.html.
    [1]Ian F Akyildiz, Won-Yeol Lee, Mehmet C Vuran. Next generation/danamic spectrum access/cognitive radio woreless networks. A survey, computer networks 50,2006, pp.2127-2195.
    [2]Steven M.Kay著,罗鹏飞,张文明,刘忠,赵艳丽译,统计信号处理基础-估计与检测理论,电子工业出版社.
    [3]C. Cordeiro, K. Challapali, D. Birru, and N. Sai Shankar, IEEE 802.22:The first worldwide wireless standard based on cognitive radios in DySPAN 2005, pp. 328-337.
    [4]Cabric D. Implementation Issues in Spectrum Sensing for Cognitive Radios, Conference Record of the Thirty-Eighth Asilomar Conference on Signals Systems and Computers, vol.1,2004, pp.772-776.
    [5]MacKenzie, A.B, Reed, J.H, Athanas, P, Bostian, C.W, et al, Cognitive Radio and Networking Research at Virginia Tech, IEEE of the Proceedings,2009, pp.660-668.
    [6]李红岩,认知无线电中频谱检测的研究进展,现代电信科技,2008,10(10),49-53.
    [7]刘琪,认知无线电物理层关键技术研究,北京邮电大学博士学位论文,2009.5.
    [8]李世鹤,TD-SCDMA第三代移动通信系统标准,人民邮电出版社,2004.
    [9]N. M. Neihart, S. Roy, and D. J. Allstot, A parallel, multi-resolution sensing technique for multiple antenna cognitive radios, IEEE International Symposium on Circuits and Systems,2007, pp.2530-2533.
    [10]S. Huang, Z. Ding, and X. Liu, Non-intrusive cognitive radio networks based on smart antenna technology, in Proceedings of International Conference on Communication,2007, pp.4862-4867.
    [11]A. Pandharipande and J.-P. M. G. Linnartz, Performance analysis of primary user detection in a mutiple antenna cognitive radio, IEEE International Conference on Communications,2007, pp.6482-6486.
    [12]Xiaolong Ma, Guican Chen, Robust adaptive beamforming for cyclostationary signals in spectrum detection of cognitive radios, International Conference on Networks Security, Wireless Communications and Trusted Computing,2009, Vol 1, pp.387-390.
    [13]Xiaohua Lian, H.Nikookar, Jianjing Zhou, Adaptive Robust Beamformers for Cognitive Radio, Proceedings of the European Wireless Technology Conference, 2008, pp.103-106.
    [14]Zhigang Xu, Qi Liu, Chengshi Zhao,Zheng Zhou; Kyung Sup Kwak, Spectrum sense utilizing multi-antenna beams scanning in cognitive radio networks, IEEE International Symposium on Communications and Information Technology,(ISCIT 2009), pp.1369-1374.
    [15]Yu Deng, Burr A.G, Pearce D. Grace D, Distributed beamforming for cognitive radio networks, ChinaCom 2008, pp.1206-1210.
    [16]Ochiai.H, Mitran.P, Poor, H.V, Tarokh. V, Cllaborative Beamforming for Distributed Wireless Ad Hoc Sensor Networks, IEEE Transactions on Signal Processing.Vol.53, pp.4110-4124.
    [17]Hult T, Mohammed A, Cooperative Beamforming for Wireless Sensor Networks, EuCAP 2007, pp.1-4.
    [18]A. Molisch, wireless communication, Wiley-IEEE Press,2005.
    [19]鄢社锋,马远良,传感器阵列波束优化设计及应用,科学出版社,2009.
    [1]Beibei Wang, Liu, K.J.R, Advances in Cognitive Radio Networks:A Survey, IEEE Journal of Selected Topics in Signal Processing,2011, pp.5-23.
    [2]罗高峰,工征录,认知无线电中动态频谱分配问题的研究,计算机工程应用技术,2009,5(2),456-457.
    [3]徐俊明著,《图论及其应用》,中国科学技术大学出版社,2002年.
    [4]Wei Wang, Xin Liu, List-Coloring Based Channel Allocation for Open Spectrum Wireless Networks, in Proc of IEEE VTC,2005, pp.690-694.
    [5]廖楚林,认知无线电频谱分配算法研究,硕士学位论文,电子科技大学,2007.
    [6]Clancy T, Arbaugh W, Measuring interference temperature, Virginia tech symposium on wireless personal communications,2006.
    [7]Clancy T, Arbaugh W, Stochastic analysis of the interference temperature model, IEEE ISIT,2006.
    [8]S. Haykin, Cognitive radio:brain empowered wireless communications, IEEE Journal on Selected Area of Communication,2005, Vol.23, No.2, pp.201-220.
    [9]冯文江,李俊,认知无线电中基于Kriging方法的干扰温度空域分布估计,重庆大学学报,2011,34(2),58-63.
    [10]Clemens Kloeck, Holger Jaekel, Friedrich K, Jondral, Dynamic and local combined pricing, allocation and billing system with cognitive radios, in the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN),2005, pp.73-81.
    [11]莫文承,认知无线电的频谱分配算法研究,西安电子科技大学硕士学位论文,2008.
    [12]sd aaty T. L., Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process, RWS Pubs,2000.
    [13]Agusti R., Sallent O, Perez-Romero J. et al., A Fuzzy-Neural based Approach for Joint Radio Resource Management in a Beyond 3G Framework, in Proc. First Int. Conf. on Quality of Service in Heterogeneous Wired/Wireless Networks, Mar.2004, pp.216-224.
    [14]Li-Chun Wang, Chen, A, Hung-Hsi Chen, Network Selection with Joint Vertical and Horizontal Handoff in Heterogeneous WLAN and Mobile WiMax Systems, IEEE Vehicular Technology Conference, VTC2007-Spring 65th, pp.794-798.
    [15]Kaplan, M, Buzluca, F, A dynamic spectrum decision scheme for heterogeneous cognitive radio networks, International Symposium on Computer and Information Sciences,2009, pp.697-702.
    [16]Yuming Ge, Yi Sun, Shan Lu, ADSD:An Automatic Distributed Spectrum Decision Method in Cognitive Radio Networks, IEEE International Conference on Future Information Networks,2009, pp.253-258.
    [17]贺昕,李斌,异构无线网络切换技术,北京邮电大学出版社,2008年6月,第1版.
    [18]http://www.scribd.com/doc/854630/AHP-Textbook, September,2008.
    [19]苏曦,基于认知系统中频谱特性的动态频谱分配与接入机制、资源优化方法研究,北京邮电大学博士研究生学位论文,2010,5.
    [20]Chunyi Peng, Haitao Zheng, Ben Y. Zhao, Utilization and Fairness in Spectrum Assignment for Opportunistic Spectrum Access, ACM Mobile Networks & Applications,2006,11 (4), pp.1-19.
    [21]周贤伟,王建萍,干春江,《认知无线电》,北京:国防工业出版社,2008.
    [1]Tao Qin, Leung, C, A Cost Minimization Algorithm for a Multiuser OFDM Cognitive Radio System, IEEE Pacific Rim Conference on Communication, Computers and Signal Processing,2007, pp.518-521.
    [2]邱晶,冯文江,邹卫霞,多小区OFDMA系统中的分布式资源分配策略研究,北京邮电大学报,2008,35(2),340-344.
    [3]喻的雄,蔡跃明,吴丹,钟卫,OFDMA上行链路中基于博弈论的子载波和功率分配算法,电子与信息学报,2010,32(4),775-780.
    [4]Nash J. Equilibrium points in n-person Games. Proceeding of the National Academy of Science,1950,36(1), pp.48-49.
    [5]Drew Fudenberg and Jean Tirole, Game Theory, The MIT Press, Cambridge,1991.
    [6]陈钊,《信息与激励经济学》,上海:格致出版社,上海三联出版社,上海认命出版社,2004.
    [7]Axelrod R, The evolution of cooperation. New York:Basic Books,1984.
    [8]张维迎,《博弈论与信息经济学》,上海:恪致出版社,上海三联出版社,上海人民出版社,2004.
    [9]张国鹏,基于博弈论的无线网络资源竞争与协作机制研究,西安电子科技大学博士学位论文,2009.4.
    [10]MacKenzie A.B, Wicker S.B, Game theory in communications:motivation, explaination, and application to power control, Global Telecommunications Conference,2001, Vol.2, pp.821-826.
    [11]Zhiming yin, Jianying Xie, Pingbao Lv, An ecnonmic model for power control in wireless CDMA data networks, Communication Technology Proceedings,2003.Vol. 2, pp.835-838.
    [12]Foschini G J, Miljanic Z, A Simple distributed autonomous power control algorithm and its convergence, IEEE Trasactions on Vehicular Technology,1993. Vol.42, No. 4, pp.641-646.
    [13]Saraydar C U. Mandayam N B, and Goodman D J, Efficient power control via pricing in wireless data networks, IEEE Transactions on communications,2002, Vol. 50, No.2, pp.291-303.
    [14]赵成林,李鹏,蒋挺,快速收敛的认知无线电功率控制算法,北京邮电大学学报,2009,32,].
    [15]杨春刚,李建东,李维英等,认知无线电中基于非合作博弈的功率分配方法,西安电子科技大学学报,2009,36(1),1-4.
    [16]Vivek Srivastava, James Neel, Allen B. Mackenzie, et al, Using game theory to analyze wireless Ad Hoc networks, IEEE Communications Surveys & Tutorials, 2005 7(4), pp.46-56.
    [17]Meshkati, F., Mung Chiang Poor, H.V. Schwartz, S.C, A game-theoretic approach to energy-efficient power control in multicarrier CDMA systems, IEEE J.Sel. Areas Commun.,2006,24(6), pp.1115-1129.
    [18]T.Alpcan, T.Basar, R.Srikant, and E.Atman, CDMA uplink power control as a noncooperative game, IEEE Conference Proceeding,2001.Vol.8, pp.197-202.
    [19]Koskie S. Gajic Z. A nash game algorithm for SIR-based power control in 3G wireless CDMA wireless networks, IEEE/ACM Trasactions on Networking, 2005.Vol.13, No.5, pp.1017-1026.
    [20]喻的雄,蔡跃明,吴丹,钟卫,CDMA系统中一种新的分布式博弈功率控制算法,电子与信息学报,2008,32(2),443-446.
    [21]程世伦,杨震,基于信十比的认知无线电自适应功率控制算法,电子与信息学报,2008,30(1),59-62.
    [22]R.D Yates. A framework for uplink power control in cellular radio system. IEEE Journal on Selected Areas in Communications,1995.Vol.13. No.5, pp.121-124.
    [1]Mitola, J. Maguire, G.Q, Jr. Cognitive radio:making software radios more personal, IEEE Wireless Communications,1999,6(4), pp.13-18.
    [2]S. Haykin, Cognitive radio:brain empowered wireless communications, IEEE Journal on Selected Area of Communication,2005, Vol.23, No.2, pp.201-220.
    [3]Newman, T.R, Evans, J.B. Parameter Sensitivity in Cognitive Radio Adaption Engines, IEEE Symposium on Dynamic Spectrum Access Networks,2008. DySPAN, 2008.3rd:1-5.
    [4]周贤伟,王建萍,王春江,《认知无线电》,北京:国防工业出版社,2008.
    [5]Mody A N, Blatt S R, Mills D G, et al, Recent Advances in Cognitive Communications, IEEE Communication Magazine,2007, pp.54-61.
    [6]A. He, K.Bae, T.Newman, J.Gaeddert, K.Kim, R.Meono, L.Morales, J.Neel, Y.Zhao, J.H.Reed, and W.H. Tranter, "A Survey of artificial intelligence for cognitive radio," IEEE Trans Veh. Technol,2010.
    [7]"Open System interconnection-Reference Model (OSI-RM). FED-STD-1037C: Telecomunications:Glossary of Telecommunication Terms, " National Communications Systems(NCS),1996.
    [8]MacKenzie, A.B, Reed, J.H, Athanas, P, Bostian, C.W, et al, Cognitive Radio and Networking Research at Virginia Tech, IEEE of the Proceedings,2009, pp.660-668.
    [9]赤伟,葛利佳,陈世娥,张玉,认知无线电中的人工智能技术,移动通信2010年1月下,15-20.
    [10]Bruce A. Fette著,赵知劲,郑仕链,尚俊娜,《认知无线电技术》,科学出版社,2008.5.
    [11]EI-Khamy, S.E, Aboul-Dahab, M.A, Attia, Mohamed M. Attia. A hybrid of particle swarm optimization and genetic algorithm for multicarrier Cognitive Ratio, IEEE Conference on Radio Science,2009,7(9), pp.1-7.
    [12]Xiao-qin Zhang, Yu-qing Huang, Hong Jiang, et al. Design of cognitive radio node engine based on genetic algorithm, IEEE Conference on Information Engineering, 2009, pp.22-25.
    [13]T. W. Rondeau, B. Le, D. Maldonado, et al. Cognitive radio formulation and implementation, IEEE Proceedings of CrownCom.2006, pp.1-10.
    [14]Povalac, K, Marsalek, R. Adjusting of the multicarrier communication system using binary particle swarm optimization, IEEE International Conference on Radioelektronika,2009, pp.251-254.
    [15]J. Kennedy and R. Eberhart. Particle swarm optimization, Proceedings of the IEEE international Conference on Neural Networks,1995,4, pp.1942-1984.
    [16]陈希祥,邱静,刘冠军,基于混合二进制粒子群-遗传算法的测试优化选择研究,仪器仪表学报,2009,30(8),1674-1680.
    [17]李炜,石连生,梁成龙,基于粒子群优化的VB-LSSVM算法研究辛烷值预测建模,仪器仪表学报,2009,30(2),335-339.
    [18]罗航,王厚军,黄建国,等,基于PSO的三参数威布尔分布参数的联合估计方法[J].仪器仪表学报,2009,30(8),1604-1612.
    [19]J. Kennedy, R. Eberhart. A discrete binary version of the particle swarm algorithm, IEEE international Conference on Systems, Man and Cybernetics,1997,5, pp.4104-4109.
    [20]蒋荣华,王厚军,龙兵,基于离散粒子群算法的测试选择,电子测量与仪器学报,2008,22(2),11-15.
    [21]赵知劲,徐世宇,郑仕链等,基于二进制粒子群算法的认知无线电决策引擎,物理学报,2009,58(7),5118-5125.
    [22]侯艳丽,赵春晖,胡佳伟,基于粒子群算法的故障测试集优化,电子测量与仪器学报,2008,22(4),21-25.
    [23]J Sun, B Feng, W Xu, Particle Swarm Optimization with Particles Having Quantum Behavior, IEEE Proc of congress on Evolutionary Computation. USA,2004, pp.325-331.
    [24]Sun Jun, Xu Weibo, A global search Strategy of Quantum-behaved Particle Swarm Optimizer, Proceeding of IEEE Conference on Cybernetics and Intelligent Systems, 2004, pp.111-116.
    [25]Jun Sun, Wenbo Xu, Wei Fang, et al, Quantum-Behaved particle Swarm Optimization with Binary Encoding, Springer-Verlag Berlin Heidelberg,2007, pp.376-385.
    [26]奚茂龙,孙俊,耿汝年等,基于二进制编码QPSO算法的移动机器人路径规划,系统仿真学报,2009,21(17),5516-5523.
    [27]周頔,孙俊,须文波,基于二进制具有量子行为的粒子群算法的多边形近似,计算机应用,2007,27(8),2030-2032.
    [28]Mwangoka, J.W, Ben Letaief, K, Zhigang Cao, Robust End-to-End QoS Maintenance in Non-Contiguous OFDM Based Cognitive Radios,IEEE International Conference on Communications(ICC'2008), pp.2905-2909.
    [29]T. Newman, B, Barker, A, Wyglinski, A, et al. Minden, Cognitive Engine Transceiver for Multicarrier Wireless System, Wiley Journey on Wireless Communications and Mobile Computing,2007,7(9), pp.1129-1142.
    [30]J. Proakis. Digital Communications,4th edition. McGraw-Hill,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700