华北玉米下垫面湍流输送特征及参数化方案比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕涡旋相关资料的处理方法和应用目标,利用中国气象局固城生态站2004年6月11日至10月20日玉米全生育期测量资料,详细分析了快速变化的农作物覆盖下垫面涡旋相关资料的预处理和质量控制方法,系统研究了湍流及湍流通量的统计特征,分析了地表能量平衡状况,估算了华北玉米生育期对大气的碳汇,并对比分析了模式中常用的几种通量参数化方案。主要结论如下:
    1、平均时间、坐标旋转与通量修正是资料预处理与质量控制中的重要问题,本文研究表明:(1)积分时间尺度在不同长度序列和不同变量之间变化较大,不适宜作为确定涡旋相关资料平均时间的依据。(2)平均时间低于30分钟有通量低估现象,高于l小时日变化型出现较大不稳定,30分钟到l小时之间通量无明显增加或减小。合理的平均时间应不低于30分钟,同时不高于1小时。(3)对于快速生长变化的下垫面,根据作物生长阶段,分时段平面拟合旋转坐标,能有效地订正资料中的倾斜和扰动。(4)经典的WPI,修正方法对水汽的作用估计过高,可能存在对潜热通量和CO2通量修正过量问题,Liu修正方法理论上较为合理,能够有效修正密度影响。(5)坐标旋转和通量修正使能量闭合率上升2.6%。
    2、湍流和湍流通量的基本统计特征分析表明:(1)水平风的平均湍流强度为0.2,垂直风的平均湍流强度为O.l。(2)风速和标量的方差、协方差均符合相似规律。方差相似函数与文献中平原地区的相似函数比较接近,但稳定条件下温度和水汽相似函数差.别较大。协方差相似函数表明动量输送在中性条件下效率最高,感热输送随稳定性绝对值增大而增大,潜热始终从地面向大气输送,输送效率随稳定度增大而减小。(3)三维速度谱与Kaimal et al.(1972)的经典谱具有大致相同的特征,但温度谱的惯性副区出现较宽收缩带。小湍涡对动量的输送比感热输送更为有效。
    3、地表能量平衡分析表明:(1)白天能量闭合率平均为78.3%,夜间平均仅有12.6%,整个生育期能量闭合率平均为77.9%。自天能量闭合率有明显的日变化和季节变化规律,下午能量闭合率普遍高于上午,随玉米生长和季节演变能量闭合率逐渐下降。(2)玉米整个生育期中,潜热一直是能量消耗的主要形式,占净辐射比例为32~54%,感热占净辐射比例14~37%,土壤热通量占净辐射比例11~l 8%,剩余项占净辐射比例4~28%,植被冠层的热储存是能量不闭合的主要原因。(3)讨论了能量不平衡的其他原因,认为源区差异对本文的能量不平衡有一定的贡献,能量各分量的位相差异可能是导致能量不平衡的原因之一。(4)地表反照率变化范围为0.07~O.18,出现概率最大为O.12。正午波文比在玉米播种和收获时期高达3.6,在玉米生长阶段维持在0.5左右。
    4、CO_2浓度和通量的分析表明:(1)人类播种和焚烧秸秆等活动对CO_2,浓度有
For best understanding the turbulent exchange of energy and mass betweenatmosphere and land surface, eddy covariance measurements were conductedover a typical agriculture field on the North China Plain. In this paper,we focus on corn growing period (from 11 June to 20 October, 2004), in whichthe characters of land cover vary rapidly with corn growing. Our study includethe data process and quality control technique, the statistical charactersof turbulent transfer and fluxes, the energy balance of surface, the netexchange of CO_2 between corn surface and atmosphere, and the fluxparameterization schemes near surface during corn growing. Main concludesare as following:
    1. Averaging, coordinate rotation and fluxes correction are importantissues in data processing procedure. Our study indicates that (1) Integraltime scale does not fit to determine the averaging time period because ofits variation with time series length and measurement variables. Fluxesincrease with increasing of average period from 2 min to 30 min, while ithas not visible increase or decrease from 30 min to 1 hour. When average periodlonger than 1 hour, fluxes appear much unstable daily pattern, and withoutsystematical increase or decrease with prolonging averaged period. So, wesuggest that the reasonable averaging period for our data should be neithershorter than 30 min, nor longer than 1 hour. (2) Planar fit coordinaterotation, which is recommended by the fluxes community recently, is performwell when applied to the divided periods according to corn growth rather thanto the whole raw data. (3) Density correction of latent heat flux and CO_2flux are necessary for our data, because they enhance the energy closure andremove the falsity of CO_2 uptake. We commend Liu method (Liu, 2005) insteadof WPL method (Webb et al.,1980) that was generally used in recent decades,because WPL method magnify the water vapor's variation. (4) Both coordinaterotation and fluxes density correction can increase the energy closure, totalas 2.6%, indicate that data processing might become energy sink if withoutproper process procedure. Data process is also important to enhance theestimation accuracy of net exchange of CO_2 between ecosystem and atmosphere.
    2. The analyses of statistical characters of turbulent transfer showthat: (1) Averaged turbulent intensity are 0.2 and 0.1 for horizontal andvertical wind fluctuation, respectively. (2) All of the variance andcovariance of wind and scalars obey the Monin-Obukhov similarity theory. The
    variance similarity functions from our data are close to that of plain areafrom literature expect for temperature and water vapor in stable condition.Thecovariance similarity functions appear much difference from literature.They show that momentum transfer is more effectively in nature conditionrather than stable and unstable condition. Sensible heat transfer will bestronger with the increase of absolute value of stability. Latent heat fluxis always from surface to atmosphere, and transfer efficiency decrease withthe increase of stability. (3) Spectral of wind components are similar tothose in Kaimal et al (1972) if we exchange u and v direction. But temperaturespectral appears widedegradation zone in the inertial subrange. Thecospectrum of momentum and sensible heatare quite different from literature.They do not obey the -4/3 law of slope in inertial subrange, and predictedthat larger eddies are relatively more efficient in transporting heat thanmomentum in vertical direction.3.Examing of surface energy balance indicates that: (1) The averagedenergy closure is in the order of 78.3%, 12.6% and 77.9% for day time, nighttime and the whole data sets, respectively. Energy closure is alwaysincreased from morning to afternoon during day. While, it is usuallydecreased with corn growth, at the range of 93% to 67% from mid June to earlyOctober. (2) Latent heat is always the main energy consume form of radiationenergy over the whole experiment. It takes 32-54% of net radiation fromseeding period to harvesting period. Meanwhile, sensible heat takes 14-37%,soil heat takes 11-18% and residual energy takes 4-28%, respectively. It isevident that the heat storage of corn canopy contributes to the energyimbalance at a large degree. (3) Discussing of the other causes to energyimbalance, we agree that footprint difference may be a driver to energyimbalance in our experiment. In addition, we consider the lag of time phaseof energy component to net radiation might be one of the reasons for ill energyclosure. (4) Surface albedo varies at the range of 0.07-0.18 during ourexperiment, with the maximum probability of 0.12. Bowen ratio at noon is aslarge as 3.6 during the seeding and harvesting period, and keep in 0.5 duringmain growth period.4.Investigating of net CO2 exchange between corn surface and atmospheregets to following results:(1) Human's field activities (e.g. tillage andfiring the residual) influence on CO2 concentration rather than on CO2 flux.(2) The concentration of CO2 holds diurnal cycle during the whole period ofmeasurement, but CO2 flux has not visible diurnal cycle until the corn canopydeveloped to some degree. The peak (vale) value of CO2 concentration usuallyappears at sunrise (sunset), related to the altering direction of CO2 flux.(3) Corn surface serve as carbon sink to atmosphere from young canopy stageto mature stage, and carbon source before it. The maximum daily carbon taking
    of corn canopy occurs at the abloom stage, as -10.1 gC m-2day-1, followedby spin-ripe stage (-9 gC m-2day-1) and jointing stage (-7.1 gC m-2day-1).Over the whole period, the net exchange of CO2 flux is -176 gC m-2 atmeasurement height. We noted that the different methods mentioned in chapter2 might bringas large as 160% bias to the total CO2 sink in our experiment.(4) The most proper net radiation condition for corn canopy assimilate CO2is 470 Wm-2. Both high temperature and high moisture is good for corn plantassimilation of CO2 from atmosphere, especially at noon, and more effectivelyfor mature canopy than young canopy.5. The research of flux parameterization shows that: (1) For estimatingwind speed at the height of 16 m during our experiment, it is feasible thataerodynamic roughness length z0 is fixed to 0.27 m through the whole period,and the zero displacement height d is fixed to 0 (1.8 m) before (after) midAugust. (2) By comparing measurement fluxes of momentum, sensible heat andlatent heat with that from parameterization schemes, we find that the schemessuch as Businger(1971), Dyer(1974), Beljaars (1991), which employ z/L asstability variable, perform not better than those of using bulk Richardsonnumber RiB as stability variable, such as Louis(1982) and Uno(1995). Amongthese schemes, Uno(1995) scheme is optimum for our experiment. Results stresson that differentiating ZT and zq from z0 is very important for the simulationof corn surface fluxes.
引文
1、Stull R.D., An introduction to boundary layer meteorology, Kluwer Academic Publishers, Netherlands,1988,PP:666.
    2、Kaimal J.C. and Businger J.A., A continuous wave sonic anemometer-thermometer, Journal of applied meteorology, 1963,Vol.2,156-164.
    3、Coppin P.A and Taylor K.J., A three-component sonic anemometer/ thermometer system for general micrometeorological research. Boundary-Layer Meteorology, 1983, Vol.27, 27-42.
    4、Ohtaki E. and Matsui T, Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor. Boundary-Layer Meteorology , 1982,Vol.24:109-119.
    5、Intergovernmental Panel on Climate Change, Climate Change 2001: The Scientific Basis, The Carbon Cycle and Atmospheric Carbon Dioxide.
    6、Kaimal J.C. and Wyngaard J.C., Deriving power spectra from a three-component sonic anemometer. Journal of applied meteorology ,1968,Vol.7:827-837.
    7、Horst T.W. Spectral transfer function for a three-component sonic anemometer. Journal of applied meteorology,1973,Vol.12:1072-1075.
    8、Baldocchi, D. D., Falge E., Gu L.H. et al. Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor,and energy flux densities. Bulletin of American Meteorological Society,2001,82:2415-2434.
    9、于贵瑞,张雷明,孙晓敏等,亚洲区域生态系统碳通量观测研究进展,中国科学 D缉 地球科学,2004,34(增刊 II):15-29.
    10、 Kaimal, J. C. and Haugen, D. A.: 1969, ‘Some Errors in the Measurement of Reynolds Stress', J. App. Meteorol. 8, 460–462.
    11、 Gordon A. and Mcbean, Instrument requirements for eddy correlation measurements. Journal of applied meteorology, 1972,Vol.11:1078-1084.
    12、 Desjardins R.L. and Lemon E. R., Limitations of an eddy-correlation technique for the determination of the carbon dioxide and sensible heat fluxes. Boundary-Layer Meteorology,1974,Vol.5:475-488.
    13、 Freihe C. A., Effects of sound speed fluctuations on sonic anmometer measurements. Journal of applied meteorology ,1976, Vol.15,607-610.
    14、 Wyngaard J.C. The effects of probe-induced flow distortion on atmospheric turbulence measurements. Journal of applied meteorology , 1981, Vol.20: 784-794.
    15、 Kaimal J.C. , Gaynoy J.E., Zimmerman H.A. et al., Mininizing flow distortion errors in a sonic anemometer, Boundary-Layer Meteorology, 1990,Vol.53:103-115;
    16、 Wilczak,J. Oncley S. and Stage S.A.,Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology,2001,Vol.99:127-150.
    17、 Finnigan J J, Clement R, Malhi Y, Leuning R, Cleugh H,. A revaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Boundary-Layer Meteorology, 2003,107,1-48.
    18、 Kaimal J.C., Atmospheric Boundary Layer Flows, Oxford University Press, New York Oxford, 1994:pp 289.
    19、 Finnigan J J, . A revaluation of long-term flux measurement techniques. Part II: Coordinate systems. Boundary-Layer Meteorology, 2004,113,1-41.
    20、 Paw U.K.T., Baldocchi D.D.,Meyers T., and Wilson K.B., Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology, 2000, Vol.97:487-511.
    21、 Baldocchi D., Finnigan J., Wilson K.T., Paw U., and Falge E., On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology, 2000, Vol. 96:257-291.
    22、 Lee X, Massman W and Law B., Handbook of Micrometeorology: A Guide for surface Flux measurement and analysis. Kluwer Academic Publisherd, 2004, pp:250.
    23、 Sakai R K., Fitzjarrald D R. and Moore K. E., Importance of low-frequency contributions to eddy fluxes observed over rough surfaces, J. Appl. Meteorol., 2001,40,2178-2192.
    24、 Berger B W, Davis K J, Yi C et al., Long-term carbon dioxide fluxes from a very tall tower in a Northern forest: flux measurement methodology. Journal of Atmospheric and Oceanic Technology, 2001, 18: 529-542.
    25、 Jones E P, and Smith S D. A first measurement of sea-air CO2 flux by eddy correlation, J.Geophys. Res. 1977,82:5990-5992.
    26、 Bakan S. Note on the eddy covariance method for CO2 flux measurements. Boundary-Layer Meteorology, 1978,14:597-600.
    27、 Jones E P, and Smith S D. The air density correction to eddy flux measurements. Boundary-Layer Meteorology, 1978,15:357-360.
    28、 Brook R R. The influence of water vapour fluctuations on turbulent fluxes. Boundary-Layer Meteorology, 1978,15:481-487.
    29、 Smith S D, and Jones E P. Dry-air boundary conditions for correction of eddy flux measurement. Boundary-Layer Meteorology, 1979,17:375-379.
    30、 Webb E.K., Pearman G.I. and Leuning R., Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteotol. Soc. 1980,Vol.106:85-100.
    31、 Kramm G, Dlugi R., and Lenschow D H. A re-evluation of the Webb Correctio using density-weighted averages. J.Hydrol. 1995,166:283-292.
    32、 Lee X. On Micrometeorological observations of surface-air exchange over tall vegetation., Agricultural and Forest Meteorology,1998,Vol.91:39-50.
    33、 Liu H.P., An alternative approach for CO2 flux correction caused by heat and water vapour transfer. Boundary-Layer Meteorology, 2005, Vol.115:151-168.
    34、 Aray S.P. Introduction to micrometeorology. Academic Press, London, 1988,PP:307.
    35、 Wilson K., Goldstein A., Falge E., Aubinet M., Baldocchi D., Berbigier P., Bernhofer C., Ceulemans R., Dolman H., Field C., Grelle A., Ibrom A., Law B,E., and Kowalski A., Energy balance closure at fluxnet sites. Agricultural and Forest Meteorology ,2002, Vol.113:223-243.
    36、 李正泉,于贵瑞,温学发,张雷明,任传友,伏玉玲,中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价,中国科学 D 缉 地球科学,2004,34(增刊 II):46-56.
    37、 Gao Z., Determination of soil heat flux in a Tibetan short-grass prairie. Boundary-Layer Meteorology ,2005,Vol.114:165-178.
    38、 Buchan G D., Soil heat flux and soil surface energy balance: a clarification of concepts. In : proceeding s of the fourth Australasian Conference on heat and mass transfer. University of Caterbury, Christchurch, New Zealand.
    39、 Schmid, H.P., Experimental design for flux measurements: matching scales of observations and fluxes. Agric. For.Meteorol. 1997,87, 179–200.
    40、 Aubinet M., Grelle A., Ibrom A., Rannik U., Moncrieff J., Foken T., Kowalski P., Martin P.,Berbigier P., Bernhofer Ch., Clement R., Elbers J., Granier A., Grunwald T., Morgenster K.,Pilegaard K., Rebmann C., Snijders W., Valentini R., and Vesala T., Estimates of the Annual Net Carbon and Water Exchange of European Forests: The EUROFLUX Methodology',Adv. Ecol. Res. 2000,vol.30: 113–174.
    41、 Su H.B., Schmid H.P., Grimmond C.S.B., Vogel C.S., and Oliphant A.J., Spectral characteristics and correction of long-term eddy-covariance measurements over two mixed hardwood forests in non-flat terrain., , Boundary-Layer Meteorology 2004,Vol.110:213-253.
    42、 Kaimal J.C., Wyngaard J.C., and Cote O.R., Spectral characteristics of surface-Layer turbulence., Quart. J. Roy. Meteorol. Soc. 1972, Vol.98:563-589.
    43、 Amiro B.D. Drag coefficients and turbulence spectra within three boreal forest canopies. Boundary-Layer Meteorology,1990,Vol.40:227-246.
    44、 Blanken P.D., Black T.A., Neumann H.H.,Hartog G.D., Yang P.C., Nesic Z., Staebler R., Chen W., and Novak M.D., Turbulent flux measurements above and below the overstory of a boreal aspen forest. Boundary-Layer Meteorology, 1998,Vol.89:109-140.
    45、 温学发,于贵瑞,孙晓敏,刘允芬,复杂地形条件下森林植被湍流通量测定分析,中国科学 D 辑 地球科学,2004,Vol.34(增刊 II):57-66.
    46、 Martano P., Estimation of surface roughness length and displacement height from single-level sonic anemometer data., Journal of Applied Meteorology, 2000,Vol.39:708-715.
    47、 Gao Z., and Bian L., Estimation of aerodynamic roughness length and displacement height of an urban surface from single-level sonic anemometer data. Aust. Met. Mag., 2004, Vol.53:21-2.
    48、 Gao Z, Bian L., and Zhou X., Measurements of turbulent in the near-surface layer over a rice paddy in China., J. Geophys. Res., 2003,Vol.108(D13):4387.
    49、 Baldocchi D., Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 2003, Vol.9:479-492.
    50、 曹明奎,于贵瑞,刘纪远,李克让,陆地生态系统碳循环的多尺度实验观测和跨尺度机理模拟, 中国科学 D 缉 地球科学,2004,34(增刊 II):1-14.
    51、 Wofsy S.C., Goulden M. L., Munger J.W., Fan S. M., Bakwin P.S., Daube B.C., Bassow S.L., and Bazzaz F. A., Net exchange of CO_2 in a Mid-Latitude forest. Science, 1993,Vol.260:1314-1317.
    52、 Vermetten A.W.M., Ganzeveld L. Jeuken A. Hofschreuder P., and Mohren G.M.J., CO_2 uptake by a stand of Douglas fir:flux measurements compared with model calculations. Agricultural and Forest Meteorology,1994, Vol.72:57-80.
    53、 Valentini R.P., de Angelis, Matteucci G.,Monaco R., Dore S., and Scarascia-Mugnozza G. E.,.seasonal Net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biol. 1996,Vol.2 :199-208.
    54、 Greco S., and Baldocchi D.D., Seasonal variations of CO_2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biol., 1996, Vol.2:183-198.
    55、 Goulden M.L., Munger J.W., Fan S.M., Daube, B.C., and Wofsy S. C., Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science, 1996a, Vol.271:1576-1578.
    56、 Goulden M.L., Munger J.W., Fan S.M., Daube, B.C., and Wofsy S. C., Measurement of carbon storage by long-term eddy correlation: Methods and a critical assessment of accuracy. Global Change Biol, 1996b, Vol.2:169-182.
    57、 Foken Th. And Wichura B.,Tools for quality assessment of surface –based flux measure ments. Agricultural and Forest Meteorology,1995. Vol.78:83-105.
    58、 Moncrieff J.B., Mahli Y., and Leuning R., The propagation of errors in long term measurements of land atmosphere fluxes of carbon and water. Global Change Biol., 1996,Vol.2:231-240.
    59、 Baldocchi D. D., and Meyers T. P., On using eco-physiological, Micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and gaseous deposition fluses over vegetation. Agricultural and Forest Meteorology, 1998, Vol.90:1-26.
    60、 Lindroth A., Grelle A., and Moren A.S., Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity., Global Change Biol, 1998, Vol.4:443-450.
    61、 Black T.A., den Hartog, G., Neumann H., Blanken P., Yang P., Nesic Z., Chen S., Russel C., Voroney P., and Staebler R., Annual cycles of CO_2 and water vapor fluxes above and within a boreal aspen stand. Global Change Biol, 1996, Vol.2:219-230.
    62、 Twine T.E., Kustas W.P., Norman J.M., Cook D.R., Houser P.R., Meyers T.P., Prueger J.H., Starks P.J., and Wesely M.L., Correcting eddy-variance flux underestimates over a grassland., 2000,Vol.103:279-300.
    63、 张永强,沈彦俊,刘昌明等,华北平原典型农田水、热与 CO_2 通量的测定,地理学报,2002,57:333~342
    64、 陆龙骅,程彦杰,卞林根,等. 长江三角洲典型稻作区近地层二氧化碳等湍流通量的观测研究,地球物理学报,2003,46(6):751~759
    65、 卞林根,高志球,陆龙骅,等. 长江下游农业生态区 通量的观测研究,应用气象学报,2005,16(6):828~834 CO_2
    66、 秦钟,于强,许守华,胡秉民等,华北平原农田水热通量与作物水分利用效率的特征与模拟,中国科学 D 辑地球科学,2004,34(增刊 II),183-192。
    67、 刘辉志,涂刚,董文杰,等. 半干旱地区地气界面水汽和二氧化碳通量的日变化及季节变化,大气科学,2006,30(1):108~118
    68、 徐世晓,赵新全,李英年等,青藏高原高寒灌丛CO_2通量日和月变化特征,科学通报,2005,50(5):481-485.
    69、 Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol.,2001,107,43~69。
    70、 杨大升等,动力气象学,气象出版社,北京,1980,pp:423.
    71、 谌志刚,近低层大气湍流参数求解方法的比较及其应用,中国气象科学研究院硕士论文,北京:中国气象局图书馆,2004.
    72、 徐静琦,杨殿荣译,边界层气象学导论,青岛海洋大学出版社,1991,pp:457
    73、 卞林根,陆龙骅,程彦杰等,青藏高原东南部昌都地区近地层湍流输送的观测 研究,应用气象学报,2001,12:1-13.
    74、 Andreas E, Hill R J, Gosz J R, et al., Statistics of surfacelayer turbulence over terrain with metre-scale heterogeneity. Boundary-Layer Meteorology, 1998,86:379~408.
    75、 Tillman J E. The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J. Appl. Meteorol., 1972,11:783~792.
    76、 Choi T, Hong J, Kim Joon, et al., Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements. J. Geophys. Res., 2004,109,D21106,doi:10.1029/2004JD004767.
    77、 余锦华,刘晶淼,任健,长江三角洲常熟地区近地层湍流特征的研究,南京气象学院学报,2001,24(4):536~544.
    78、 赵鸣,苗曼倩,王彦昌,边界层气象学,气象出版社,北京,1991,pp:465.
    79、 De Bruin H A R, Kohsiek W, and Van Den hurk B J J M., A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapor using standard deviation and structure parameter of scalar meteorological quantities. Boundary. Layer Meteorol., 1993, 63:231~257.
    80、 Wyngaard J C, Cote O R, and Izumi Y,. Local free convection, similarity, and the budgets of shear stress and heat flux, J. Atmos. Sci., 1971, 28: 1171~1182.
    81、 Wesely, M. L., 1988: Use of variance techniques to measure dry air-surface exchange rates, Bound.-Layer Meteorol., 44, 13-31.
    82、 Sorbjan, Z, 1989: Structure of the atmospheric boundary layer, Prentice Hall, New Jersey, 315.
    83、 Kader, B. A., and A. M. Yaglom, 1990: Mean fields and fluctuation moments in unstable stratified turbulent boundary layers, J. Fluid Mech., 212, 637-662.
    84、 Weaver, H., 1990: Temperature and humidity flux-variance relations determined by one-dimensional eddy correlation, Bound.-Layer Meteorol., 53, 77-91.
    85、 Katul, G. G., S. M. Goltz, C.-I, Hsieh, Y. Cheng, F. Mowry, and J. Sigmon, 1995: Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain, Bound.-Layer Meteorol., 74, 237-260.
    86、 Roth, M. and R. T. Oke, 1995: Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patch urban surface, J. Atmos. Sci., 52, 1863-1874.
    87、 Asanuma, J., and W. Brutsaert, 1999: Turbulence variance characteristics of temperature and humidity in the unstable atmospheric surface layer above a variable pine forest, Water Resour. Res., 35:2, 515-521.
    88、 Katul, G. G. and C.-I Hsieh, 1999: A note on the flux-variance similarity relationships for heat and water vapor in the unstable atmospheric surface layer, Bound.-Layer Meteorol., 90, 327-338.
    89、 Bian L, Gao Z, Sparrow M, et al., Turbulent variance characteristics of temperature and humidity over a non-uniform land surface for an agricultural ecosystem in china. Advances in Atmospheric Sciences, 2006, in press.
    90、 Su H. B. and Leclerc M.Y., Large-eddy simulation of trace gas footprints from infinite crosswind line sources inside a forest canopy. In: Proceedings of the 23rd Conference on Agricultural and Forest Meteorology. Preprints. American Meteorological Society, Boston, MA, pp:388-391.
    91、 Dyer A J, A review of flux-profile relationships. Bound.-Layer Meteorol., 1974,7: 363~372.
    92、 HOgstrOm U. Analysis of turbulent structure in the surface layer with a modified formulation for near neutral conditions. J. Atmos. Sci., 1990,47:1949~1972.
    93、 Baker J.M. and Griffis T.J., Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques. Agric. For. Meteorol.,2005,128,163-177.
    94、 Beljaars A C M, and Holtslag A A M., Flux Parameterization over land surface for atmosoheric models., J. Appl. Meteo. 1991,30: 327~341.
    95、 Garratt J R, The atmospheric boundary layer, Cambridge University press, 1992,pp:316.
    96、 Louis J F, A parametric model of vertical eddy fluxes in the atmosphere., Boundary Layer Meteorology, 1979, 17:187~202.
    97、 Louis J F, Tiedtle M and Geleyn J F., A short history of the PBL Parameterization at ECMWF', Proceedings of the 1981 ECMWF Workshop on Olanetary Boundary Layer Parameterization, 1982, 59~80.
    98、 Uno I, Cai X M, Steyn D G, and Emori S., A simple extension of the louis method for rough surface layer modeling. Boundary Layer Meteorology, 1995,76:395-409.
    99、 Gash J.H.C., A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements. Boundary-Layer Meteorology,1986, Vol.35:409-414.
    100、 Schuepp P.H., Leclerc M.Y., Macpherson J.I., Desjardins, R.L., Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorology, 1990, Vol.50:355-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700