基于平均场理论的颗粒材料离散颗粒集合-Cosserat连续体模型多尺度模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒材料广泛存在于自然界和工程实际中,如岩石、土壤、粮食、药品等。一般说来颗粒材料由随机分布的离散颗粒及其间孔隙流体组成,具高度非均质性。颗粒材料力学行为的理论研究与数值模拟是岩土力学、陶瓷烧制等工程科学中的重要课题,引起了众多研究者的关注。
     颗粒材料宏观上通常模型化为连续体,数值模拟一般采用有限单元法(或无网格方法)。连续体途径的优势在于主要未知变量数目依赖于宏观有限单元网格密度,较为有限,因而在工程实际问题中得到广泛应用;缺点在于唯象本构关系包含很多没有物理意义、很难确定的参数。颗粒材料在细观上模型化为离散颗粒集合体,数值模拟采用离散单元法。其优势在于体现材料的离散颗粒本质,能够模拟各种破坏现象;缺点在于应用于实际问题时所需颗粒数目巨大(上亿甚至更多的颗粒),计算量难以接受。颗粒材料的多尺度方法研究则提供了一条能够充分利用二者优势避免各自缺点的途径。
     本论文致力于发展基于平均场理论的细观离散颗粒集合-宏观Cosserat连续体模型的多尺度模拟方法,内容包括:(1)推导非均质Cosserat连续体平均场理论的Hill定理,给定合适的表征元(representative volume element, RVE)边界条件;(2)建立细观离散颗粒集合-宏观Cosserat连续体模型的多尺度计算均匀化方法;(3)发展基于细观方向平均模型的颗粒材料宏观Cosserat连续体本构关系。
     在平均场理论框架内实施非均质材料的均匀化模拟首先需要提出Hill定理,它为正确给定RVE边界条件提供了依据。基于Cosserat连续介质控制方程,参考经典Cauchy连续体Hill定理,本文推导了非均质Cosserat连介质平均场理论的Hill定理。从该Hill定理出发,详细分析和讨论了各种形式的RVE边界条件,并据此给出了满足细-宏观Hill-Mandel能量等价条件、符合平均场理论基本假定的RVE边界条件,为基于Cosserat连续体模型的细-宏观均匀化模拟提供了坚实基础。
     基于经典连续体计算均匀化方法和所推导Cosserat连续介质平均场理论基本公式,本文发展了颗粒材料多尺度计算均匀化方法,细观尺度上采用基于离散颗粒模型的离散单元法,宏观尺度上采用基于Cosserat连续体模型的有限元法。该方法在宏观尺度有限单元内的每个积分点处设定一个反映材料细观离散颗粒微结构的RVE,通过RVE边值问题的计算求解获得材料在该点处的局部宏观响应,包括积分点的应力和切线模量矩阵。详细分析和推导了该计算均匀化方案实施过程中的关键环节,包括RVE边界条件的给定和转换、离散颗粒集合体RVE刚度阵的分块与凝聚、宏观率形式应力和微曲率表达式及其一致性切线模量张量的推导,以及宏观积分点处切线模量矩阵的组集和形成。该方法能够有效计及离散颗粒微结构及其演变信息,而不需要提供复杂的、包含许多没有明确物理意义且不易识别的材料参数的唯象宏观本构关系,并且在模拟材料宏观响应的同时,还能够显示相应的微结构响应特征。数值算例结果显示出所发展方法的有效性和可应用性。
     考虑到细观颗粒不仅具有平移自由度,还具有独立的旋转自由度;颗粒间不仅存在接触力还能够传递力矩,基于经典连续体细观微-方向模型(micro-directional model),发展了基于细观方向平均模型的颗粒材料宏观Cosserat连续体本构关系。在细观尺度上考虑了颗粒的旋转自由度及颗粒间接触力矩,RVE内接触分布的概率密度函数体现了材料微结构对宏观各向异性和非均质性的影响,运动学分量的细宏观联系通过Cosserat连续体平均场理论的Hill-Mandel能量等价条件建立。具体给出了均质、各向同性Cosserat连续体弹性常数的细观参数表达式。分别给出了基于离散单元法数值模拟和本文理论公式预测的典型离散颗粒集合体的宏观响应量,二者的一致性说明了所发展模型的有效性。此外,本文所发展理论公式也为合理解释离散单元法数值模拟结果提供了参考依据。
Granular materials exist widely in nature and engineering practice, such as rock, soil, food supplies and medicament etc. Generally speaking, granular materials are composed of randomly packed discrete particles partially or fully filled with void fluids and are characterized with highly heterogeneity. Theoretical and numerical studies of mechanical behavior of granular materials are challenging tasks in engineering science and attract the interests of the researchers from a variety of disciplines.
     Granular materials are modeled in the macroscopic view as continuum, which is discretized by means of the finite element method (FEM) (and/or its alternatives such as the mesh-free method) for the numerical simulation of macro-mechanical behaviors in the material domain. The advantage of the continuum approach lies in that the number of primary unknown variables to be determined is rather limited depending on the FE mesh density so that the approach has been widely and effectively applied to engineering problems. However, the disadvantage of the approach is that phenomenological constitutive relations based on the continuum model include many parameters with no physical meaning and difficult to be identified.
     On the other hand, granular materials are modeled in the microscopic view as a discrete particle assembly, which is consistent with the physical characteristics of granular materials. The numerical simulation of mechanical behaviors for the particle assembly is performed by using the discrete element method (DEM). The advantages of the approach lie not only in the rationality and simplicity of constitutive relations defined at particle contacts so that the realistic constitutive behaviors of granular materials can be effectively described and predicted, but also in the detection of the mechanisms of different types of material failure processes. However, the motions of a huge number of particles (even billions of particles) need to be quantitatively determined in its applications to engineering problems, which is far beyond of the computer capability even nowadays.
     Many efforts have been devoted to develop the multi-scale methods for granular materials to fully exert the advantages of both macro and micro approaches and to avoid their respective disadvantages.
     The present work is focused on the multi-scale modeling of discrete particle assembly Cosserat continuum model for granular materials in the frame of average-field theory, including:(1) Derivation of Hill's lemma of the average-field theory for heterogeneous Cosserat continuum, with which proper boundary conditions for the representative volume element (RVE) are presented; (2) Development of the computational homogenization method for granular materials modeled as discrete particle assembly and Cosserat continuum in micro- and macro- scales respectively; (3) Development of a multi-scale constitutive relation of macro Cosserat continuum description for granular materials in light of the micro-directional model proposed for classical Cauchy continuum in the literature.
     The presentation of Hill's lemma is first required to properly specify RVE boundary conditions for micro-macro homogenization modeling of heterogeneous materials in the frame of average-field theory. On the basis of Hill's lemma for classical Cauchy continuum, a version of Hill's lemma is systematically derived for micro-macro homogenization modeling of heterogeneous Cosserat continuum. According to the derived Hill's lemma, different types of statically admissible stress boundary conditions and/or kinematically admissible displacement boundary conditions to be imposed on the RVE are extracted and discussed. Then proper RVE boundary conditions are determined to satisfy the Hill-Mandel energy condition and fundamental assumptions of the first-order average-field theory. This work provides the foundation of the following studies of micro-macro homogenization methods for granular materials.
     In light of the computational homogenization approach and the derived formulae of average-field theory for heterogeneous Cosserat continuum, a micro-macro computational homogenization scheme of discrete particle assembly-Cosserat continuum model for granular materials is developed in the present work.
     DEM is employed for the microscopic analysis and FEM is adopted for the macroscopic computation. The detailed procedure of the developed computational homogenization scheme is given and discussed. With the link between the discrete particle assembly and its Cosserat continuum equivalent in an individual RVE, the boundary conditions prescribed on the RVE modeled as Cosserat continuum are transformed into those prescribed to the peripheral particles of the RVE modeled as the discrete particle assembly. The average stresses and strains and their variations over the RVE defined for Cosserat continuum equivalent are then determined by the physical quantities of the discrete particle assembly.. The consistent macroscopic modular tensors and the macroscopic constitutive relations defined at the integration point are formulated in terms of the averaged behavior of associated microstructures.
     As the proposed micro-macro computational homogenization procedure is used within the finite element framework, there is no need to specify the macroscopic constitutive relation at the macroscopic integration points. The results of typical numerical examples for granular materials demonstrate the validity of developed method and its advantages in comparison to existing computational homogenization methods of granular materials in the literature.
     In accordance with the nature of the granular medium in the sense that each discrete particle at the micro-scale possesses rotational degrees of freedom in addition to translational degrees of freedom in kinematics and is capable of bearing and transmitting couples from one particle to the other in contact in kinetics, a micromechanically based constitutive model is developed for macro Cosserat continuum description of granular materials in light of the micro-directional model proposed to describe the constitutive behavior of classical Cauchy continuum. The effects of micro structures/properties on the anisotropy and heterogeneity of macroscopic constitutive behaviors are embodied with the probability density function of the contact distribution. The micro-macro transitions of kinematical quantities are fulfilled by means of Hill-Mandel condition of the average-field theory for heterogeneous Cosserat continuum. To analyze the asymptotic trend and to validate the proposed model, the micromechanically-based expressions of macroscopic elastic constants for the materials under homogeneous and isotropic assumptions are particularly derived. The validity of the developed model is verified through the comparisons of the theoretical predictions given by the derived formulae and numerical results obtained by using the discrete element method on overall behavior of a regularly packed granular assembly. Moreover, the derived formulae also provide theoretical interpretations to the numerical results obtained by the discrete element method.
引文
离散元求解模块。应用该程序分析了颗粒材料中的若干典型例题,数值算例结果显示出
    所发展方法的有效性和可应用性。
    [1]王光谦,熊刚,方红卫.颗粒流动的一般本构关系[J].中国科学(E辑),1998,28(3):282-288.
    [2]鲍德松,张训生,徐光磊,等.平面颗粒流的瓶颈效应及其与速度的关系[J].物理学报,2003,52(2):401-404.
    [3]Orpe A V, Khakhar D V. Solid-fluid transition in a granular shear flow [J]. Physical Review Letters,2004,93(6):068001.
    [4]Babic M, Shen H H, Shen H T. The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations [J]. Journal of Fluid Mechanics,1990, 219:81-118.
    [5]季顺迎.非均匀颗粒介质的类固-液相变行为及其本构模型[J].力学学报,2007,39(2):223-237.
    [6]Vanel L, Claudin P H, Bouchaud J P H, et al. Comparison Between Theoretical Models and New Experiments [J]. Physical Review Letters,2000,84:1439-1442.
    [7]Mobius M E, Lauderdale B E, Nagel S R, et al. Brazil-nut effect:Size separation of granular particles [J]. Nature,2001,414:270-270.
    [8]Bak P, Tang C, Wiesenfeld K. Self-organized criticality [J]. Physical Review A,1988, 38:364-374.
    [9]De Gennes P G. Granular matter:a tentative view [J]. Reviews of Modern Physics,1999, 71(2):S374-S382.
    [10]鲍德松,张训生.颗粒物质与颗粒流[J].浙江大学学报,2003,30:514-517.
    [11]Samdadani A. Segregation, Avalanching and metastability of dry and wet granular materials [D]. Clark:Clark University,2002.
    [12]Nedderman R M. In static and kinetic of granular matter [M]. London:Cambridge University Press,1992.
    [13]Coulomb C A. Essai sur une application des regles de maximis et minimis a quelques problemes de statique, relatifs a l' architecture [J]. Memoires de Mathematique & de Physique,1773,4:343-367.
    [14]Coulomb C A. Essai surune application des regles de maximis et minimis a quelques. problemes de statique, relatifs al' architecture [J]. Memoires de Mathematique & de. Physique,1776,7:343-382.
    [15]Biot M A. Mechanics of deformation and acoustic propagation in porous media [J]. Journal of Applied Physics,1962,33:1482-1498.
    [16]Biot M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics,1941,12:155-164.
    [17]Fredlund D G, Rahardjo H. Soil mechanics for unsaturated soils [M]. New York:John Wiley & Sons,1993.
    [18]Prevost J H. Mechanics of continuous porous media [J]. International Journal of Engineering Science,1980,18(6):787-800.
    [19]Terzaghi K. Theoretical Soil Mechanics [M]. New York:John Wiley & Sons,1943.
    [20]Zienkiewicz O C, Shiomi T. Dynamic behaviour of saturated porous media:The generalized Biot formulation and its numerical solution [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1984,8(1):71-96.
    [21]武文华.非饱和土中热—水力—力学—传质耦合过程模拟及土壤环境工程中的应用[D].大连:大连理工大学,2002.
    [22]刘泽佳.多孔介质中化学—热—水力—力学耦合分析与混合元方法[D].大连:大连理工大学,2005.
    [23]张俊波.含液多孔介质中失稳现象理论研究及应变局部化的有限元-无网格耦合方法[D].大连:大连理工大学,2009.
    [24]Bazant Z P, Belytschko T, Chang, T P. Continuum theory for strain-softening [J]. Journal of Engineering Mechanics,1984,110(12):1666-1692.
    [25]De Borst R, Muhlhaus H B. Gradient-dependent plasticity:formulation and algorithmic aspects [J]. International Journal for Numerical Methods in Engineering,1992,35: 521-539.
    [26]Larsson R, Runesson K, Sture S. Finite element simulation of localized plastic deformation [J]. Archive of Applied Mechanics,1991,61:305-317.
    [27]李锡夔,Cescotto S.梯度塑性的有限元分析及应变局部化模拟[J].力学学报,1996,28:575-584.
    [28]Anderson T B, Jackson R. A fluid mechanical description of fluidized beds [J]. I&EC Fundam,1967,6:527-539.
    [29]Gidaspow D. Hydrodynamics of fluidization and heat transfer:supercomputer modeling [J]. Applied Mechanics Reviews,1986(39):1-22.
    [30]Enwald H, Peirano E, Almstedt A E. Eulerian two-phase flow theory applied to fluidization [J]. International Journal of Multiphase flow,1996,22:21-66.
    [31]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2001,52:1-12.
    [32]De Borst R. Simulation of strain localization:a reappraisal of the Cosserat continuum [J]. Engineering Computations,1991,8:317-332.
    [33]De Borst R. A generalisation of the J2-flow theory for polar continua [J]. Computer Methods in Applied Mechanics and Engineering,1993,103:347-362.
    [34]De Borst R, Sluys L J. Localization in a Cosserat continuum under static and dynamic loading conditions [J]. Computer Methods in Applied Mechanics and Engineering,1991, 90:805-827.
    [35]Muhlhaus H B, Vardoulakis I. The thickness of shear bands in granular materials [J]. Geotechnique,1987,37(3):271-283.
    [36]Muhlhaus H B. Application of Cosserat theory in numerical solutions of limit load problems [J]. Ingenieur-Archiv,1989,59:124-137.
    [37]Dietsche A, Steinmann P, Willam K. Micropolar elasticity and its role in localization [J]. International Journal of Plasticity,1993,9:813-831.
    [38]Steinmann P. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity [J]. International Journal of Solids and Structures, 1994,31(8):1063-1084.
    [39]Papanastasiou P, Vardoulakis I. Numerical treatment of progressive localization in relation to borehole stability [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1992,16:389-424.
    [40]Cramer H, Findeiss R, Steinl G. An approach to the adaptive finite element analysis in associated and non-associated plasticity considering localization phenomena [J]. Computer Methods in Applied Mechanics and Engineering,1999,176(1-4):187-202.
    [41]Li X K, Tang H X. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation [J]. Computers and Structures,2005,83(1):1-10.
    [42]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique,1979,29:47-65.
    [43]Oda M, Iwashita K. Mechanics of Granular Materials [M]. Rotterdam:A. A. Ballkema,1999.
    [44]Campbell C S, Brennen C E. Computer simulation of granular shear flows [J]. Journal of Fluid Mechanics,1985,151:167-188.
    [45]Campbell C S, Brennen Ce Chute flows of granular materials:some computer simulations [J]. Journal of Applied Mechanics,1985,152:172-178.
    [46]Kishino Y. Disc model analysis of the granular media [M]. In:Jenkins J T, Satake M. Micromechanics of granular materials. Amsterdam:Elsevier Science Publishers,1988: 143-152.
    [47]Kishino Y. Computer analysis of dissipation mechanism in granular media [M]. In:Biarez & Gourves. Powders and Grains. Rotterdam:Balkema,1989:323-330.
    [48]Thornton C. Interparticle sliding in the presence of adhesion [J]. Journal of Physics D:Applied Physics,1991,24:1942-1946.
    [49]Oda M, Konishi J, Nemat-Nasser S. Experimental micromechanical evaluation of strength of granular materials:effects of particular rolling [J]. Mechanics of Materials,1982, 1:269-283.
    [50]Bardet J P. Observations on the effects of particle rotations on the failure of idealized granular materials [J]. Mechanics of Materials,1994,18:159-182.
    [51]Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear and development by DEM [J]. Journal of Engineering Mechanics,1998,124:285-292.
    [52]Vu-Quoc L, Zhang X. An elastoplastic contact force-displacement model in the normal direction:displacement - driven version [J]. Proceedings of the Royal Society of London A,1999,455:4013-4044.
    [53]Vu-Quoc L, Zhang X, Lesburg L. Normal and tangential force -displacement relations for frictional elasto-plastic contact of spheres [J]. International Journal of Solids and Structures,2001,38:6455-6489.
    [54]Feng Y T, Han K, Owen D R J. Some computational issues numerical simulation of particulate systems [C]. Fifth world congress on computational mechanics, Vienna, Austria,2002:1-11.
    [55]Jiang M J, Yu H S, Harris D. A novel discrete model for granular material incorporating rolling resistance [J]. Computers and Geotechnics,2005,32:340-357.
    [56]Fortin J, Millet O, Saxce G D. Numerical simulation of granular materials by an improved discrete element method [J]. International Journal for Numerical Methods in Engineering,2005,62:639-663.
    [57]王泳嘉.离散单元法—一种适用于节理岩石力学分析的数值方法.见:第一届全国岩石力学数值计算及模型试验讨论会论文集.吉安:西南交通大学出版社,1986:32-37.
    [58]俞万禧.离散单元法的基本原理及其在岩体工程中的应用.见:第一届全国岩石力学数值计算及模型试验讨论会论文集.吉安:西南交通大学出版社,1986:43-46.
    [59]徐泳,黄文彬.离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [60]汪远年,李世海.断续节理岩体随即模型三维离散元数值模拟[J].岩石力学与工程学报,2004,23(21):3652-3658.
    [61]汪远年,李世海.三维离散元计算参数选取方法研究[J].岩石力学与工程学报,2004,23(21):3658-3664.
    [62]俞良群,邢纪波.筒仓装卸料时力场及流场的离散单元法模拟[J].农业工程学报,2000,16:15-19.
    [63]周健,池泳.砂土力学性质的细观模拟[J].岩土力学,2003,21(3):271-274.
    [64]周健,张刚,孔戈.渗流的颗粒流细观模拟[J].水力学报,2006,37(1):28-32.
    [65]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33:483-490.
    [66]刘凯欣,高凌天.离散元法在求解三维冲击动力学问题中的应用[J].固体力学学报,2004,25(2):181-815.
    [67]彭政,厚美瑛,史庆藩,等.颗粒介质的离散态特性研究[J].物理学报,2007,56(2):1195-1202.
    [68]王光谦,傅旭东.快速颗粒流本构关系在固液两相流中的使用条件初探[J].应用基础与工程科学学报,2000,8(4):416-424.
    [69]Ji S Y, Shen H H. Characteristics of temporal spatial parameters in quasi solid-fluid phase transition of granular materials [J]. Chinese Science Bulletin,2006,51(6): 646-654.
    [70]楚锡华.颗粒材料的离散颗粒模型与离散-连续耦合模型及数值方法[D].大连:大连理工大学,2007.
    [71]秦建敏.基于离散元模拟的土力学性能研究及应变局部化基本理论分析[D].大连:大连理工大学,2007.
    [72]Hori M, Nemat-Nasser S. On two micromechanics theories for determining micro-macro relations in heterogeneous solids [J]. Mechanics of Materials,1999,31:667-682.
    [73]Bensoussan A, Lions J L, Papanicolaou G. Asymptotic methods in periodic structures [M]. Amsterdam:Noth-Holland,1978.
    [74]Andrianov I V, Awrejcewica J, Barantsev R G. Asymptotic approaches in mechanics:New parameters and procedures [J]. Applied Mechanics Reviews,2003,56(1):87-110.
    [75]Gambin B, Kroner E. High order terms in the homogenized stress-strain relation of periodic elastic media [J]. Physica Status Solidi,1989,51:513-519.
    [76]Schrefler B A, Lefik M, Galvanetto U. Correctors in a beam model for unidirectional composites [J]. Mechanics of Composties Materials and Structures,1997,4(2):159-190.
    [77]Boutin C. Microstructural effects in elastic composites [J]. International Journal of Solids and Structures,1996,33(7):1023-1051.
    [78]Galvanetto U, Ohmenhauser F, Schrefler B A. A homogenized constitutive law for periodic composite materials with elasto-plastic components [J]. Composite Structures,1997, 39(3):263-271.
    [79]Fish J, Chen W. Higher-oder homogenization of initial/boundary-value problem [J]. Journal of Engineering Mechanics,2001,127(12):1223-1230.
    [80]Fish J, Chen W, Nagai G. Non-local dispersive model for wave propagation in heterogeneous media:multi-dimensional case [J]. International Journal for Numerical Methods in. Engineering,2002,54(3):347-363.
    [81]Zhang H W, Zhang S, Bi J Y, et al. Thermo-mechanical analysis of periodic multiphase materials by a multi-scale asymptotic homogenization approach [J]. International Journal for Numerical Methods in Engineering,2007,69(1):87-113.
    [82]曹礼群,崔俊芝.整周期复合材料弹性结构的双尺度渐近分析[J].应用数学学报,1999,22(1):38-46.
    [83]崔俊芝,曹礼群.一类具有小周期系数的椭圆型边值问题的双尺度渐近分析方法[J].计算数学,1999,21(1):19-28.
    [84]Hill R. Elastic properties of reinforced solids:some theoretical principles [J]. Journal of the Mechanics and Physics in Solids,1963,11:357-372.
    [85]Hashin Z. Theory of mechanical behavior heterogeneous media [J]. Applied Mechanics Reviews,1964,17:1-9.
    [86]Hashin Z. Analysis of composites-a survey [J]. Journal of Applied Mechanics,1983, 50:481-505.
    [87]Mura T. Micromechanics of defects in solids [M]. Boston:Martinus Nijhoff Publishers,1987.
    [88]Nemat-Nasser S, Hori M. Micromechanics:overall properties of heterogeneous materials [M]. New York:Noth-Holland,1999.
    [89]Qu J M, Cherkaoui M. Fundamentals of micromechanics of solids [M]. New Jersey:John Wiley & Sons,2006.
    [90]杜咰.连续体力学引论[M].北京:清华大学出版社,1985.
    [91]吕洪生,曾新吾.连续体力学[M].长沙:国防科技大学出版社,1999.
    [92]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1998.
    [93]Drugan W J, Willis J R. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites [J]. Journal of the Mechanics and Physics in Solids,1996,44:497-524.
    [94]Ren Z Y, Zheng Q.S. A quantitative study of minimum sizes of representative volume elements of cubic polycrystals-numerical experiments [J]. Journal of the Mechanics and Physics in Solids,2002,50:881-893.
    [95]Liu C. On the minimum size of representative volume element:an experimental investigation [J]. Experimental Mechanics,2005,45(3):283-243.
    [96]Ostoja-Starzewski M. Microstructural randomness versus representative volume element in thermomechanics [J]. Journal of Applied Mechanics,2002,69:25-35.
    [97]Kanit T, Forest S, Galliet I, et al. Determination of the size of the representative volume element for random composites:statistical and numerical approach [J]. International Journal of Solids and Structures,2003,40:3647-3679.
    [98]Stroeven M, Asks H, Sluys L J. Numerical determination of representative volumes for granular materials [J]. Computer Methods in Applied Mechanics and Engineering,2004, 193:3221-3238.
    [99]Gitman I M, Askes H, Sluys L J. Representative volume:Existence and size determination [J]. Engineering Fracture Mechanics,2007,74(16):2518-2534.
    [100]Eshelby, J D. The determination of the elastic field of an ellipsoidal inclusion and related problems [J]. Proceedings of the Royal Society of London A,1957,240:367-396.
    [101]Eshelby J D. The elastic field outside an ellipsoidal inclusion [J]. Proceedings of the Royal Society of London A,1959,252:561-569.
    [102]Hershey A V. The elasticity of an isotropic aggregate of anisotropic cubic crystals [J]. Journal of Applied Mechanics,1954,21:236-240.
    [103]Kerner E H. The elastic and thermo-elastic properties of composite media [J]. Proceedings of the Royal Society of London B,1956,69:801-808.
    [104]杜善义,王彪.复合材料细观力学基础[M].北京:科学出版社,1999.
    [105]Mclaughlin R. A study of the differential scheme for composite materials [J]. International Journal of Engineering Science,1977,15:237-244.
    [106]Hashin Z. The differential scheme and its application to cracked materials [J]. Journal of the Mechanics and Physics in Solids,1988,36:719-734.
    [107]Mori T, Tanaka K. Averaging stress in.matrix and average energy of materials with misfitting inclusions [J]. Acta Metallurgica,1973,21:571-574.
    [108]Christensen R M. A critical evaluation for a class of micromechanics models [J]. Journal of the Mechanics and Physics in Solids,1990,38:379-404.
    [109]Voigt W. Uber die Beziehung zwischen den beiden elastizitatskonstanten isotroper Korper [J]. Wied. Ann. Physik,1889,38:573-587.
    [110]Reuss A Z. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle [J]. Z. Angew. Math. Phys.,1929,9:49-58.
    [111]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials [J]. Journal of the Mechanics and Physics of Solids,1963, 11:127-140.
    [112]Suquet P M. Local and global aspects in the mathematical theory of plasticity [M]. In:Bianchi G, Sawczuk A. Plasticity today:modelling, methods and applications. London: Elsevier Applied Science Publishers,1985:279-310.
    [113 Guedes J M, Kikuchi. N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods [J]. Computer Methods in Applied Mechanics and Engineering,1990,83:143-198.
    [114]Terada K, Kikuchi N. A class of general algorithms for multi-scale analysis of heterogeneous media [J]. Computer Methods in Applied Mechanics and Engineering,2001, 90:5427-5464.
    [115]Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenisation theory and Voronoi cell finite element method [J]. International Journal of Solids and Structures,1995,32(1):27-62.
    [116]Terada K, Hori M, Kyoya T, et al. Simulation of the multi-scale convergence in computational homogenization approach [J]. International Journal of Solids and Structures,2000,37:2285-2311.
    [117]Smit R J M, Brekelmans W A M, Meijer H E H. Prediction of the mechanical behaviour of non-linear heterogeneous systems by multi-level finite element modeling [J]. Computer Methods in Applied Mechanics and Engineering,1998,155:181-192.
    [118]Miehe C, Schotte J, Schroder J. Computationalmicro-macro transitions and overall moduli in the analysis of polycrystals at large strains [J]. Computional Material Science,1999,16:372-382.
    [119]Miehe C, Schroder J, Schotte J. Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials [J]. Computer Methods in Applied Mechanics and Engineering,1999,171:387-418.
    [120]Miehe C, Koch A. Computational micro-to-macro transition of discretized microstructures undergoing small strain [J]. Archive of Applied Mechanics,2002,72: 300-317.
    [121]Michel J C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure:a computational approach [J]. Computer Methods in Applied Mechanics and Engineering,1999,172:109-143.
    [122]Kouznetsova V, Brekelmans W A M, Baaijens F P T. An approach to micro-macro modeling of heterogeneous materials [J]. Computational Mechanics,2001,27:37-48.
    [123]Feyel F, Chaboche J L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials [J]. Computer Methods in Applied Mechanics and Engineering,2000,183:309-330.
    [124]Kaneko K, Terada K, Kyoya T, et al. Global-local analysis of granular media in quasi-static equilibrium [J]. International Journal of Solids and Structures,2003, 40:4043-4069.
    [125]罗熙淳,梁迎春,董申.分子动力学在纳米机械加工技术中的应用[J].中国机械工程,1999,10(6):692-697.
    [126]Kouznetsova V, Geers M G D, Brekelmans W A M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme [J]. International Journal for Numerical Methods in Engineering,2002,54:1235-1260.
    [127]Kouznetsova V, Geers M G D, Brekelmans W A M. Multi-scale second-order computational homogenization of multi-phase materials:a nested finite element solution strategy [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:5525-5550.
    [128]Ebinger T, Steeb H, Diebels S. Modeling macroscopic extended continua with the aid of numerical homogenization schemes [J]. Computional Material Science,2005,32: 337-347.
    [129]Forest S, Dendievel R, Canova G R. Estimating the overall properties of heterogeneous Cosserat materials [J]. Modelling and Simulation in Materials Science and Engineering, 1999,7:829-840.
    [130]Yuan X, Tomita Y. Effective properties of Cosserat composites with periodic microstructure [J]. Mechanics Research Communications,2001,28(3):265-270.
    [131]Li X K, Liu Q P. A version of Hill's lemma for Cosserat continuum [J]. Acta Mechanica Sinca,2009,25:499-506.
    [132]Larsson R, Diebels S. A second-order homogenization procedure for multi-scale analysis based on micorpolar kinematics [J]. International Journal for Numerical Methods in Engineering,2006,69(12):2485-2512.
    [133]Wagner G L, Liu W K. Coupling of atomistic and continuum simulations using a bridging scale decomposition [J]. Journal of Computational Physics,2003,190:249-274.
    [134]Kadowaki H, Liu W K. Bridging multi-scale method for localization problems [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:3267-3302.
    [135]Park H, Liu W K. A introduction and tutorial on multi-scale analysis in solids [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:1733-1772.
    [136]Hou T Y, Wu X H. A multi-scale finite element method for elliptic problems in composite materials and porous media [J]. Journal of Computational Physics,1997,134(1): 169-189.
    [137]薛禹群,叶淑君,谢春红,等.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004,(7):7-13.
    [138]Hughes T J R, Fei joo G R, Luca M, et al. The variational multiscale method:a paradigm for computational mechanics [J]. Computer Methods in Applied Mechanics and Engineering, 1998,166:3-24.
    [139]Masud A, Hughes T J R. A stabilized mixed finite element method for Darcy flow [J]. Computer Methods in Applied Mechanics and Engineering,2002,191:4341-4370.
    [140]Masud A, Khurram R A. A multiscale/stabilized finite element method for the advection-diffusion equation [J]. Computer Methods in Applied Mechanics and Engineering,2004,193(21-22):1997-2018.
    [141]Li S F, Gupta A, Liu X H, et al. Variational eigenstrain multiscale finite element method [J]. Computer Methods in Applied Mechanics and Engineering,2004,193(17-20): 1803-1824.
    [142]Onate E. Multiscale computational analysis in mechanics using finite calculus:an introduction [J]. Computer Methods in Applied Mechanics and Engineering,2003, 192(28-30):3043-3059.
    [143]Jenny P, Lee S H, Tchelepi H A. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation [J]. Journal of Computational Physics,2003,187(1): 47-67.
    [144]Jenny P, Lee S H, Tchelepi H A. Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media [J]. Journal of Computational Physics,2006,217(2):627-641.
    [145]E W N, Engquist B. The heterogeneous multi-scale methods [J]. Communications in Mathematical Science,2003,1(1):87-132.
    [146]Ren W Q, E W N. Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics [J]. Journal of Computational Physics,2005,204(1):1-26.
    [147]陈培敏,严宁宁.小周期结构Helmholtz方程的多尺度计算[J].工程数学学报,2004,21(8):145-149.
    [148]Abdulle A, E W N. Finite difference heterogeneous multi-scale method for homogenization problems [J]. Journal of Computational Physics,2003,191(1):18-39.
    [149]高红星,愈树文.求解多尺度双曲型问题的一种新方法[J].科学技术与工程,2006,6(12):1596-1598.
    [150]Liu W K, Chen Y, Uras R A, et al. Generalized multiple scale reproducing kernel particle methods [J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1): 91-158.
    [151]Liu W K, Jun S. Multiple scale reproducing kernel particle methods for large deformation problems [J]. International Journal for Numerical Methods in Engineering, 1998,41(7):1339-1362.
    [152]张艳芬,周进雄,张智谦,等.二维应力集中问题的多尺度RKPM自适应分析[J].强度与环境,2005,32(1):16-20.
    [153]张智谦,周进雄,王学明,等.基于多尺度再生核质点法的h型自适应分析[J].应用数学与力学,2005,26(8):972-978.
    [154]Dorobantu M, Engquist B. Wavelet-based numerical homogenization [J]. SI AM Journal on Numerical Analysis,1998,35(2):540-559.
    [155]Stfantos G K, Aliabadi M H. Multi-scale boundary element modeling of material degradation and fracture [J]. Computer Methods in Applied Mechanics and Engineering, 2007,197(7):1310-1329.
    [156]Evesque P,. Adjemian F. Stress fluctuations and macroscopic stick-slip in granular materials [J]. European Physics Journal E,2002,9:253-259.
    [157]Koyama T, Jing L. Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-a particle mechanics approach [J]. Engineering Analysis with Boundary Elements,2007,31:458-472.
    [158]Kruyt N P. Statics and kinematics of discrete Cosserat-type granular materials [J]. International Journal of Solids and Structures,2003,40:511-534.
    [159]Ehlers W, Ramm E, Diebels S, et al. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses [J]. International Journal of Solids and Structures,2003,40:6681-6702.
    [160]Zhang X, Jeffrey R G, Mai Y W. A micromechanics-based Cosserat-type model for dense particulate solids [J]. Z. Angew. Math. Phys.,2006,57:682-707.
    [161]Tordesillas A, Walsh S D C. Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media [J]. Powder Technology,2002,124:106-111.
    [162]Gardiner B S, Tordesillas A. Micromechanics of shear band [J]. International Journal of Solids and Structures,2004,41:5885-5901.
    [163]Christoffersen J, Mehrabadi M M. A micromechanical description of granular material behavior [J]. Journal of Applied Mechanics,1981,48:339-344.
    [164]Chang C S, Kuhn M R. On virtual work and stress in granular media [J]. International Journal of Solids and Structures,2005,42:3773-3793.
    [165]Bagi K. Analysis of microstructural strain tensors for granular materials [J]. International Journal of Solids and Structures,2006,43:3166-3184.
    [166]Duran 0, Kruyt N P, Luding S. Analysis of three-dimensional micro-mechanical strain formulations for granular materials:Evaluation of accuracy [J]. International Journal of Solids and Structures,2010,47:251-260.
    [167]Chang C S, Chao S J, Chang Y. Estimates of elastic moduli for granular material with anisotropic random packing structure [J]. International Journal of Solids and Structures,1995,32(14):1989-2008.
    [168]Hicher P Y, Chang C S. Evaluation of two homogenization techniques for modeling the elastic behavior of granular materials [J]. Journal of Engineering Mechanics,2005, 131:1184-1194.
    [169]Chang C S, Gao J. Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation [J]. Acta Mechanica,1996,115:213-229.
    [170]Cambou B, Dubujet P, Emeriault F, et al. Homogenization for granular materials [J]. European Journal of Mechanics A/Solids,1995,14:255-276.
    [171]Nicot F, Darve F, Rnvo Groups Natural Hazards and Vulnerability of Structures. A micro-macro approach to granular materials [J]. Mechanics of Materials,2005,37: 980-1006.
    [172]Li X, Yu H S, Li X S. Macro-micro relations in granular mechanics [J]. International Journal of Solids and Structures,2009,46:4331-4341.
    [173]Walsh S D C, Tordesillas A. A thermomechanical approach to the development of micropolar consititutive models of granular media [J]. Acta Mechanica,2004,167: 145-169.
    [174]Collins I F. Elastic/plastic models for soils and sands [J]. International Journal of Mechanical Science,2005,47:493-508.
    [175]Einav I. Breakage mechanics-Part Ⅰ:theory [J]. Journal of the Mechanics and Physics of Solids,2007,55:1274-1297.
    [176]何巨海,张子明,艾亿谋,等.基于细观力学的混凝土有效弹性性能预测[J].河海大学学报,2008,36(6):801-805.
    [177]宁建国,王慧,朱志武,等.基于细观力学方法的冻土本构模型研究[J].北京理工大学学报,2005,25(10):847-851.
    [178]朱其志,胡大伟,周辉,等.基于均匀化理论的岩石细观力学损伤模型及其应用研究[J].岩石力学与工程学报,2008,27(2):266-272.
    [179]Tsutsumi S, Kaneko K. Constitutive response of idealized granular media under the principal axes rotation [J]. International Journal of Plasticity,2008,24:1967-1989.
    [180]Miehe C, Dettma J. A framework for micro-macro transitions in periodic particle aggregates of granular materials [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:225-256.
    [181]Andrade J E, Tu X. Multiscale framework for behavior prediction in granular media [J]. Mechanics of Materials,2009,41:652-669.
    Fr表征了颗粒在空间的排列,如对椭圆形颗粒集合,颗粒的长轴方向的统计分布可以通
    过Fr的体现。同理也可以用类似的方式定义颗粒方向密度函数Er(θ)来表征长轴方向为
    θ的颗粒的分布密度。上述各种描述颗粒材料的几何量中,基于颗粒的几何度量多用于描述构成材料的颗
    粒的基本几何性质,比如颗粒形状、尺寸、粒度等,以及相应的颗粒材料的分类,如本
    章2.2-2.3节所述;接触法向及分支向量多用于颗粒材料等效应力的定义;微单元以及
    各种几何系统是颗粒材料等效应变定义的基础,如本论文第三章3.2节所述;接触方向
    密度函数以及接触结构张量则为建立颗粒材料的解析形式多尺度本构关系提供了基础,
    参见本论文第三章3.3节内容。综上所述,建立对颗粒类材料在颗粒尺度上的物理、几何性质的认识,并作出恰当
    的度量,既有助于对颗粒材料宏观本构属性(比如抗剪强度)的理解和描述,也是在多
    尺度均匀化方法中建立颗粒材料细-宏观物理量衔接及相应多尺度本构关系的基础。
    [1]Oda M, Iwashita K. Mechanics of Granular Materials [M]. Rotterdam:A. A. Ballkema,1999.
    [2]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique,1979,29:47-65.
    [3]Alsaleh M I. Numerical modeling of strain localization in granular materials using Cosserat theory enhanced with microfabric properties [D]. Louisiana:Louisiana State University,2004.
    [4]De Gennes P G. Granular matter:a tentative view [J]. Reviews of Modern Physics,1999, 71:S374-S382.
    [5]吴爱祥,孙业志,刘湘平.散体动力学理论及其应用[M].北京:冶金工业出版社,2002.
    [6]吴清松,胡茂彬.颗粒流的动力学模型和实验研究进展[J].力学进展,2002,32:250-258.
    [7]鲍德松,张训生.颗粒物质与颗粒流[J].浙江大学学报,2003,30:514-517.
    [8]Sitharam T G, Nimbkar M S. Micromechanical modeling of granular materials:effect of particle size and gradation [J]. Geotechnical and Geological Engineering,2000,18: 91-117.
    [9]陆厚根.粉体工程导论[M].上海:同济大学出版社,1993.
    [10]谢洪勇.粉体力学与工程[M].北京:化学工业出版社,2003.
    [11]陈万佳[译].散粒体结构力学[M].北京:中国铁道出版社,1983.
    [12]Yu B M. Some Fractal characters of porous media [J]. Fractals,2001,9:365-372.
    [13]Tagus F J, Matin M A, Perfect E. Simulation and testing of self-similar structures for soil particles-size distributions using iterated functions systems [J]. Geoderma,1999, 88:191-203.
    [14]Perrier E, Bird N, Rieu M. Generalizing the fractal model of soil structure:the pore-solid fractal approach [J]. Geoderma,1999,88:137-164.
    [15]Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions:analysis and limitations [J]. Soil Science Society of America Journal,1992,56:62-369.
    [16]黄定向,刘本培,陈源.土壤的性质[M/OL].http://jpkc.cug.edu.cn/jpkc/dqkxgl/web/webpages/9_2_2.htm
    [17]Jia X, Williams R A. A packing algorithm for particle of arbitrary shapes [J]. Powder Technology,2001,120:175-186.
    [18]Thomas P A, Bray J D. Capturing nonsphererical shape of granular media with disk clusters [J]. Journal of Geotechnical and Geoenvironmental. Engineering,1999,125:169-178:
    [19]Gotoh K. Particle shape characterization[C]. In:Iinoya K, Gotoh K, Higashitani K (Eds). Powder technology handbook.1997:43-55.
    [20]Berryman J G. Definition of dense random packing[C]. In:Shahinpor M. Advances in the mechanical and the flow of granular materials-Vol. Ⅰ. Clausthal, Germany:Trans Tech Publications.1983:1-18.
    [21]基础及土力学基本概念[M/OL].http://www.docin.com/p-24794390.html
    [22]Herrmann H J. Granular matter. Physica A,2002,313:188-210.
    [23]Rothenburg L, Bathurst R J. Analytical study of induced anisotropy in idealized granular materials [J]. Geotechnique,1989,39:601-614.
    [24]Oda M, Nemat-Nasser, S, Mehrabadi M M. A statistical study of fabric in a random assembly of spherical granules [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1982,6:77-94.
    [25]Bagi K. Stress and strain in granular assemblies [J]. Mechanics of Materials,1996, 22:165-177.
    此外,Tsutsumi和Kaneko[38]将该方法推广到三维情况,并且分析了颗粒材料的各向异性和非共轴性等本构行为。Miehe和Dettmar[36]讨论了将基于平均场理论Hill-Mandel能量等价条件的计算均匀化过程推广到颗粒材料中的一些基本问题。Andrade和Tu[39]在连续体有限元法计算塑性框架内,通过离散单元法计算宏观本构更新算法所需的内状态变量参数,发展了一个颗粒材料力学行为分析的准-协同(semi-concurrent)多尺度计算方法,有效地模拟了颗粒材料的分岔现象。
    一方面,随着固体力学多尺度分析方法的广泛发展与应用以及人们对颗粒材料的固有多尺度本质特征的深入认识,针对颗粒材料的多尺度计算方法也越来越多地受到人们的关注与重视。其中基于平均场理论的多尺度计算均匀化方法以其独有的优势成为人们广泛关注与大力发展的有效途径之一。另一方面,以上所述方法宏观上均采用经典连续体,相应地细观没有考虑颗粒的转角自由度以及颗粒间的接触力矩作用,因而未能很好地反映颗粒材料的物理实际。因此发展能够充分考虑颗粒材料细观物理实际、并能有效俘获颗粒材料宏、细观复杂力学行为的多尺度计算方法成为了近年来人们研究的热点问题。
    [1]孙其诚,金峰.颗粒物质的多尺度结构及其研究框架[J].物理,2009,38(4):225-232
    [2]Chang C S, Chang Y, Kabir M G. Micromechanical modeling for stress-strain behavior of granular soils, Ⅰ:Theory [J]. Journal of Geotechnical Engineering,1992,118(12): 1959-1974.
    [3]Cambou B, Chaze M, Dedecker F. Change of scale in granular materials [J]. European Journal of Mechanics A/Solids,2000,19:999-1014.
    [4]Nguyen N-S, Magoariec H, Cambou B, et al. Analysis of structure and strain at the meso-scale in 2D granular materials [J]. International Journal of Solids and Structures, 2009,46:3257-3271.
    [5]Oda M, Iwashita K. Mechanics of Granular Materials [M]. Rotterdam:A. A. Ballkema,1999.
    [6]Christoffersen J, Mehrabadi M M, Nemat-Nasser S. A Micromechanical description of granular material behavior [J]. Journal of Applied Mechanics,1981,48:339-345.
    [7]Kanatani K. A theory of contact force distribution in granular materials [J]. Powder Technology,1981,28:167-172.
    [8]Kruyt N.P, Rothenburg L. Micromechanical definition of the strain tensor for granular materials [J]. Journal of Applied Mechanics,1996,118:706-711.
    [9]Bagi K. Stress and strain in granular assemblies [J]. Mechanics of Materials,1996, 22:165-177.
    [10]Bagi K. Microstructural stress tensor of granular assemblies with volume forces [J]. Journal of Applied Mechanics,1999,66:934-936.
    [11]Bardet J P, Vardoulakis I. The asymmetry of stress in granular media [J]. International Journal of Solids and Structures,2001,38:353-367.
    [12]Kruyt N P. Statics and Kinematics of discrete Cosserat-type granular materials [J]. International Journal of Solids and Structures,2003,40:511-534.
    [13]Kuhn M R. Discussion of "The asymmetry of stress in granular media" [J. P. Bardet and Ⅰ. Vardoulakis, International Journal Solids Struct.2001, Vol.38, No.2, pp.353-367] [J]. International Journal of Solids and Structures,2003,40:1805-1807.
    [14]Bardet J P, Vardoulakis Ⅰ. Reply to Dr. Kuhn's discussion [J]. International Journal of Solids and Structures,2003,40:1808-1809.
    [15]Chang C S, Kuhn M R. On virtual work and stress in granular media [J]. International Journal of Solids and Structures,2005,42:2373-3779.
    [16]Satake M. Tensorial form definitions of discrete-mechanical quantities for granular assemblies [J]. International Journal of Solids and Structures,2004,41:5775-5791.
    [17]Fortin J, Millet O, Saxce G D. Construction of an averaged stress tensor for a granular medium [J]. European Journal of Mechanics A/Solids,2003,22:567-582.
    [18]Li X, Yu H S, Li X S. Macro-micro relations in granular mechanics [J]. International Journal of Solids and Structures 2009,46:4331-4341.
    [19]Bagi K. Analysis of microstructural strain tensor for granular assemblies [J]. International Journal of Solids and Structures,2006,43:3166-3184.
    [20]Kuhn M. Structural deformation in granular materials [J]. Mechanics of Materials,1999, 31:407-429.
    [21]Cambou B, Chaze M, Dedecker F. Change of scale in granular materials [J]. European Journal of Mechanics A/Solids,2000,19:999-1014.
    [22]Satake M. Mirco-Mechanical definition of strain tensor for granular assembles [C]. 15th ASCE Engineering Mechanics Conference, New York,2002:2-5.
    [23]Sullivan C O, Bray J D, Li S H. A new approach for calculating strain for particulate media [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003,27:859-877.
    [24]Duran 0, Kruyt N P, Luding S. Analysis of three-dimensional micro-mechanical strain formulations for granular materials:Evaluation of accuracy [J]. International Journal of Solids and Structures,2010,47:251-260.
    [25]Li X K, Chu X H, Feng Y T. A discrete particle model and numerical modeling of the failure modes of granular materials [J]. Engineering Computations,2005,22:894-920.
    [26]Ehlers W, Ramm E, Diebels S, et al. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses [J]. International Journal of Solids and Structures,2003,40:6681-6702.
    [27]刘其鹏,武文华.颗粒材料平均场理论的多尺度方法:理论方面.岩土力学,2009,30(4):879-884.
    [28]Tordesillas A, Walsh S D C. Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technology,2002,124(1-2): 106-111.
    [29]Chang C S, Liao C L. Constitutive relation for a particulate medium with the effect of particle rotation [J]. International Journal of Solids and Structures,1990,26: 437-453.
    [30]Chang C S, Gao J. Second-gradient constitutive theory for granular material with random packing structure [J]. International Journal of Solids and Structures,1995,32: 2279-2293.
    [31]Chang C S, Gao J. Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation [J]. Acta Mechanica,1996,115:213-229.
    [32]Liao C L, Chang T P, Young D H, et al. Stress-strain relationship for granular materials based on the hypothesis of best fit [J]. International Journal of Solids and Structures, 1997,34:4087-4100.
    [33]Hicher P Y, Chang C S. Evaluation of two homogenization techniques for modeling the elastic behavior of granular materials [J]. Journal of Engineering Mechanics,2005, 131:1184-1194.
    [34]Cambou B, Dubujet P, Emeriault F, et al. Homogenization for granular materials [J]. European Journal of Mechanics A/Solids,1995,14:255-276.
    [35]Nicot F, Darve F, RNVO Groups Natural Hazards and Vulnerability of Structures. A micro-macro approach to granular materials [J]. Mechanics of Materials,2005,37: 980-1006.
    [36]Miehe C, Dettma J. A framework for micro-macro transitions in periodic particle aggregates of granular materials [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:225-256.
    [37]Kaneko K, Terada K, Kyoya T, Kishino Y. Global-local analysis of granular media in quasi-static equilibrium[J]. International Journal of Solids and Structures,2003, 40:4043-4069.
    [38]Tsutsumi S, Kaneko K. Constituitive response of idealized granular media under the principal axes [J]. International Journal of Plasticity,2008,24:1967-1989.
    [39]Andrade J E, Tu X. Multiscale framework for behavior prediction in granular media [J]. Mechanics of Materials,2009,41:652-669.
    (1)推导了一个用于非均质Cosserat连续体细-宏观均匀化模拟过程的Hill定理形式。
    (2)从Hill定理出发,系统分析和讨论了各种类型的RVE边界条件,并据此确定了恰当的强形式RVE边界条件,使得细-宏观联系同时满足Hill-Mandel能量等价条件和一阶平均场理论基本假定。
    (3)经典Cauchy连续体平均场理论中常用的RVE周期边界条件仅对于变量ui和σki成立,而对Cosserat连续体模型中的特有变量ωi和μki,RVE周期边界条件不能够保证同时满足一阶平均场理论基本假定和Hill-Mandel能量等价条件,有待进一步研究。
    (4)所提出的RVE边界条件对于在平均场理论框架内建立Cosserat类非均质材料的细宏观分量之间的正确关联是非常重要的,它为推导相应的细-宏观本构关系,以及在多尺度计算均匀化途径中推导宏观一致性切线模量张量奠定了基础,为正确求解非均质微结构RVE的力学响应、以及恰当地建立跨尺度均匀化模拟过程提供了理论指导与实施保障。
    [1]Hill R. Elastic properties of reinforced solids:some theoretical principles [J]. Journal of the Mechanics and Physics in Solids,1963,11:357-372.
    [2]Qu J, Cherkaoui M. Fundamentals of Micromechanics of Solids [M]. New Jersey:John Wiley & Sons,2006.
    [3]陈少华,王自强.应变梯度理论进展[J].力学进展,2003,33(2):207-216.
    [4]Zhang H W, Wang H, Liu Z G. Quadrilateral isoparametric finite elements for plane elastic Cosserat bodies [J]. Acta Mechanica Sinica,2005,21(4):388-394.
    [5]Dai T M. Renewal of Basic Laws and Principles for Polar Continuum Theories (Ⅺ)--Consistency Problems [J]. Applied Mathematics and Mechanics,2007,28(2):147-155.
    [6]Li X K, Tang H X. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization [J]. Computers and Structures,2005,83:1-10.
    [7]Suquet P M. Local and global aspects in the mathematical theory of plasticity [M]. In: Sawczuk A, Bianchi G. Plasticity today:Modelling, methods and applications. London: Elsevier Applied Science Publishers,1985:279-310.
    [8]Michel J C, Moulinec C, Suquet P M. Effective properties of composite materials with periodic macrostructure:a computational approach [J]. Computer Methods in Applied Mechanics and Engineering,1999,172:109-143.
    [9]胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法[J].力学进展,2001,31(3):361-393.
    [10]Forest S, Sab K. Cosserat overall modeling of heterogeneous materials [J]. Mechanics Research Communications,1998,25(4):449-454.
    [11]Forest S, Dendievel R, Canova G R. Estimating the overall properties of heterogeneous Cosserat materials [J]. Modelling and Simulation in Materials Science and Engineering., 1999,7:829-840.
    [12]Yuan X, Tomita Y. Effective properties of Cosserat composites with periodic microstructure [J]. Mechanics Research Communications,2001,28(3):265-270.
    [13]Hu G K, Liu X N, Lu T J. A variational method for non-linear micopolar composites [J]. Mechanics of Materials,2005,37:407-425.
    [14]Chang C S, Kuhn M R. On virtual work and stress in granular media [J]. International Journal of Solids and Structures,2005,42:3773-3793.
    [15]Onck, P R. Cosserat modeling of cellular solids [J]. C. R. Mecanique,2002,330:717-722.
    [16]Van der Sluis O, Schreurs P J G, Brekelmans W A M, et al. Overall behaviour of heterogeneous elastoviscoplastic materials:effect of microstructural modeling [J]. Mechanics of Materials,2000,32:449-462.
    [17]Terada K, Hori M, Kyoya T, et al. Simulation of the multi-scale convergence in computational homogenization approach [J]. International Journal of Solids and Structures,2000,37:2285-2311.
    [18]Kouznetsova V, Brekelmans W A M, Baaijens F P T. An approach to micro-macro modeling of heterogeneous materials [J]. Computational Mechanics,2001,27:37-48.
    [19]Kouznetsova V, Geers M G D, Brekelmans W A M. Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme [J]. International Journal for Numerical Methods in Engineering,2002,54:1235-1260.
    通过对一系列典型数值算例结果的分析,显示出本章所发展方法的有效性和可应用性。通过不同RVE尺寸对材料宏观行为影响的多尺度模拟与分析,对颗粒材料多尺度计算均匀化方法中RVE尺寸的确定和选择给出了建议,为后续研究工作奠定基础。
    本章工作致力于基本理论框架、算法公式的构建和实现,以及基本数值例题的考核与验证。作为对该多尺度计算均匀化方法的初步探索和尝试,本章工作充分显示了该方法的有效性和可发展潜力。继续深入发展基于平均场理论的、高效的颗粒材料多尺度计算均匀化方法,并将其应用于工程实际问题,具有重要的理论意义与应用价值。
    [1]Hill R. Elastic properties of reinforced solids:some theoretical principles [J]. Journal of the Mechanics and Physics of Solids,1963,11:357-372.
    [2]Hashin Z. Analysis of composite materials-A survey [J]. Journal of Applied Mechanics, 1983,50:481-505.
    [3]Suquet P M. Local and global aspects in the mathematical theory of plasticity [M]. In: Sawczuk A, Bianchi G. Plasticity today:Modeling, methods and applications. London: Elsevier Applied Science Publishers,1985:279-310.
    [4]Michel J C, Moulinec H, Suquet P M. Effective properties of composite materials with periodic macrostructure:a computational approach [J]. Computer Methods in Applied Mechanics and Engineering,1999,172:109-143.
    [5]Nemat-Nasser S, Hori M. Micromechanics:overall properties of heterogeneous materials [M]. Amsterdam:Elsevier,1999.
    [6]Miehe C, Koch A. Computational micro-to-macro transitions of discretized microstructures undergoing small strains [J]. Archive of Applied Mechanics,2002,72: 300-317.
    [7]Forest S, Dendievel R, Canova G R. Estimating the overall properties of heterogeneous Cosserat materials [J]. Modelling and Simulation in Materials Science and Engineering, 1999,7:829-840.
    [8]Forest S, Sab K. Cosserat overall modeling of heterogeneous materials [J]. Mechanics Research Communications,1998,25(4):449-454.
    [9]Yuan X, Tomita Y. Effective properties of Cosserat composites with periodic microstructure [J]. Mechanics Research Communications,2001,28(3):265-270.
    [10]Chang C S, Kuhn M R. On virtual work and stress in granular media [J]. International Journal of Solids and Structures,2005,42:3773-3793.
    [11]Smit R J M, Brekelmans W A M, Meijer H E H. Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modeling [J]. Computer Methods in Applied Mechanics and Engineering,1998,155:181-192.
    [12]Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media [J]. Computer Methods in Applied Mechanics and Engineering,2001, 190:5427-5464.
    [13]Kouznetsova V, Brekelmans W A M, Baaijens F P T. An approach to micro-macro modeling of heterogeneous materials [J]. Computational Mechanics,2001,27:37-48.
    [14]Kouznetsova V, Geers M G D, Brekelmans W A M. Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme [J]. International Journal for Numerical Methods in Engineering,2002,54:1235-1260.
    [15]Qu J, Cherkaoui M. Fundamentals of Micromechanics of Solids [M]. New Jersey:John Wiley & Sons,2006.
    [16]Oda M, Iwashita K. Mechanics of Granular Materials [M]. Rotterdam:A. A. Ballkema,1999.
    [17]楚锡华.颗粒材料的离散颗粒模型与离散-连续耦合模型及数值方法[D].大连:大连理工大学,2006.
    [18]Bagi K. On the concept of jammed configurations from a structural mechanics perspective [J]. Granular Matter,2007,9:109-134.
    [19]Kuhn M R, Chang C S. Stability, bifurcation, and softening in discrete systems:a conceptual approach for granular materials [J]. International Journal of Solids and Structures,2006,43:6026-6051.
    [20]Plesha M E, Edil T B, Bosscher P J. Modeling particle damage in discrete element simulations [M]. In:Computer Methods and Advances in Geomechanics. Rotterdam: A. A.Balkema,2001:581-585.
    [21]楚锡华,李锡夔.离散颗粒多尺度分级模型与破碎模[J].大连理工大学学报,2006,46:319-325.
    [22]Crisfield M A, Moita G F. A co-rotational formulation for 2-D continua including incompatible modes [J]. International Journal for Numerical Methods in Engineering, 1996,39:2619-2633.
    [23]Jetteur P H, Cescotto S. Mixed finite element for the analysis of large inelastic strains [J]. International Journal for Numerical Methods in Engineering,1991,31: 229-239.
    [24]Li X K, Cescotto S. Finite element method for gradient plasticity at large strains [J]. International Journal for Numerical Methods in Engineering,1996,39:619-633.
    [25]Darve F, Nicot, F. On incremental non-linearity in granular medial:phenomemological and multi-scale views (Part Ⅰ) [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29:1387-1409.
    [26]Nicot F, Darve F. On the elastic and plastic strain decomposition in granular materials [J]. Granular Matter,2006,8:221-237.
    [27]Nicot F, Darve F. Micro-mechanical bases of some salient constitutive features of granular materials [J]. International Journal of Solids and Structures,2007,44: 7420-7443.
    [28]秦建敏.基于离散元模拟的岩土力学性能研究及应变局部化理论分析[D].大连:大连理工大学,2007.
    [29]Kaneko K, Terada K, Kyoya T, et al. Global-local analysis of granular media in quasi-static equilibrium[J]. International Journal of Solids and Structures,2003, 40:4043-4069.
    [30]武文华.非饱和土中热-水力-力学-传质耦合过程模拟及土壤环境工程中的应用[D].大连:大连理工大学,2002.
    [31]温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2008.
    [32]唐洪祥.基于Cosserat连续体模型的应变局部化有限元模拟[D].大连:大连理工大学,2007.
    [33]Evesque P, Adjemian F. Stress fluctuations and macroscopic stick-slip in granular materials [J]. European Physical Journal E,2002,9:253-259.
    [34]Koyama T, Jing L. Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-a particle mechanics approach [J]. Engineering Analysis with Boundary Elements,2007,31:458-472.
    [35]Ehlers W, Ramm E, Diebels S, et al. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses [J]. International Journal of Solids and Structures,2003,40:6681-6702.
    [36]Tordesillas A, Walsh S D C. Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media [J]. Powder Technology,2002,124:106-111
    [37]Geers M G D, Kouznetsova V G, Brekelmans W A M. Multi-scale computational homogenization: Trends and challenges [J]. Journal of Computational and Applied Mathematics,2010, 234(7):2175-2182. 个半径为0.75cm的颗粒集合体;(3)1225个半径1.0cm的颗粒集合体。切向滑动刚度系数kt=1.0×106N/m,其他材料参数保持不变。从图6.7可以看出,随着颗粒半径的增加剪切带宽度增加,与理论预测结果一致。
    本章发展了颗粒材料基于宏观经典连续体描述的多尺度微-方向本构模型,其中宏观采用Cosserat连续体,细观同时考虑颗粒间的接触力和力矩。离散颗粒微结构对宏观行为的影响通过接触分布的概率密度函数体现,运动学分量的细宏观联系根据平均场理论能量等价条件确定。给出了宏观均质、各向同性Cosserat连续体弹性常数的细观力学表达式。
    从本章所发展的多尺度本构模型出发,结合宏观Cosserat连续体弹性常数间关系的基本假定,建议了二维Cosserat连续体内尺度参数表达式。与文献中已有工作相比,其特点在于该表达式通过多尺度本构关系的严格推导得到并且完全由颗粒的细观参数表不。
    对一颗粒集合体采用离散单元法数值模拟其宏观力学行为。数值模拟结果与理论预·测结果的一致性显示了(定性地)本章所发展本构模型的有效性。另一方面,本章所推导颗粒材料宏观本构参数的细观力学表达式(式(6.63)-(6.64)、(6.67)、(6.70)-(6.71))也为合理解释离散单元法模拟得到的数值结果提供了参考依据。
    后续研究工作是:细观颗粒间各向异性接触分布和非均匀颗粒尺寸分布因素的考虑,以及与之对应的颗粒材料宏观弹塑性行为的表征。采用离散单元法对各种不同尺寸、随机分布的离散颗粒集合体宏观行为进行数值模拟,将数值模拟结果与所发展理论公式预测的结果对比,以验证所发展模型的有效性,并深入研究颗粒材料的宏观非线性本构行为与细观微结构参数之间的关系。
    [1]Eringen A C. Microcontinuum field theories [M]. New York:Springer,1999.
    [2]Borst R D. Simulation of strain localization:a reappraisal of the Cosserat continuum [J]. Engineering Computations,1991,8:317-332.
    [3]Tejchman J, Bauer E. Numerical simulation of shear band formation with a polar hypoplastic constitutive model [J]. Computers and Geotechnics,1996,19:221-244.
    [4]Li X K, Tang H X. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization [J]. Computers and Structures,2005,83:1-10.
    [5]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique,1979,29:47-66.
    [6]Oda M, Iwashita K. Mechanics of granular materials [M]. Rotterdam:Ballkema,1999.
    [7]Jiang M J, Yu H S, Harris D. A novel discrete model for granular material incorporating rolling resistance [J]. Computers and Geotechnics,2005,32:340-357.
    [8]Li X K, Chu X H, Feng Y T. A discrete particle model and numerical modeling of the failure modes of granular materials [J]. Engineering Computations,2005,22:894-920.
    [9]Luding S. Micro-macro transition for anisotropic, frictional granular packing [J]. International Journal of Solids and Structures,2004,41:5821-5836.
    [10]Walsh S D C, Tordesillas A. A thermomechanical approach to the development of micropolar consititutive models of granular media [J]. Acta Mechanica,2004,167:145-169.
    [11]Barthurst R J, Rothenburg L. Micromechanical aspects of isotropic granular assemblies with linear contact interactions [J]. Journal of Applied Mechanics,1988,55:17-23.
    [12]Kruyt N P. Statics and kinematics of discrete Cosserat-type granular materials [J]. International Journal of Solids and Structures,2003,40:511-534.
    [13]Bagi K. Analysis of microstructural strain tensors for granular materials [J]. International Journal of Solids and Structures,2006,43:3166-3184.
    [14]Chang C S, Kuhn M R. On virtual work and stress in granular media [J]. International Journal of Solids and Structures,2005,42:3773-3793.
    [15]Chang C S, Gao J. Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation [J]. Acta Mechanica,1996,115:213-229.
    [16]Hicher P Y, Chang C S. Evaluation of two homogenization techniques for modeling the elastic behavior of granular materials [J]. ASCE J. Eng. Meh.2005,131:1184-1194.
    [17]Cambou B, Dubujet P, Emeriault F, et al. Homogenization for granular materials [J]. European Journal of Mechanics A/Solids,1995,14:255-276.
    [18]Nicot F, Darve F, RNVO Groups Natural Hazards and Vulnerability of Structures. A micro-macro approach to granular materials [J]. Mechanics of Materials,2005,37: 980-1006.
    [19]刘其鹏,武文华.颗粒材料平均场理论的多尺度方法:理论方面[J].岩土力学,2009,30:879-884.
    [20]Alsaleh M, Alshibli K A, Voyiadjis G Z. Influence of micromechanical heterogeneity on strain localization in granular materials [J]. International J of Geomechanics,2006, 6:248-259.
    [21]Arslan H, Sture S. Evaluation of a physical length scale for granular materials [J]. Computational Material Science,2008,42:525-530.
    [22]胡更开,刘晓宁,荀飞.非均匀微极介质的有效性质分析[J].力学进展,2004,34:195-214.
    [23]Bardet J P, Huang Q. Rotational stiffness of cylindrical particle contacts [C]. In: Thornton C. Powders and Grains. Rotterdam:Balkema,1993:39-43.
    [24]Zhou Y C, Wright B D, Yang R X, et al. Rolling friction in the dynamic simulation of sand pile formation [J]. Physica A,1999,269:536-553.
    [25]楚锡华.颗粒材料的离散颗粒模型与离散-连续耦合模型及数值方法[D].大连:大连理工大学,2006. REAL*8 XC 接触点x坐标REAL*8 YC 接触点y坐标REAL*8 CFN 法向接触力REAL*8CFTS切向滑动摩擦力REAL*8CFTR切向滚动摩擦力REAL*8 CFM 接触矩REAL*8CFNV法向粘性接触力REAL*8CFTSV切向滑动粘性接触力REAL*8CFTRV切向滚动粘性接触力REAL*8CFMV粘性接触阻矩REAL*8DSEITA增量步内夹角变化度量
    以上每种类型数据的成员内容还可以根据需要进行扩展。另外,类似于积分点下的内状态变量,在每一增量步计算完毕后,微结构信息也需要存储并更新,以作为下一个载荷增量步的参考状态以及备后处理使用。设置如下四个数组完成此功能:颗粒单元信息数组:ELEM_DEM (NELEM, NINMAX, NGRAMAX)颗粒邻居信息数组:NEIB_DEM (NELEM, NINMAX, NGRAMAX)颗粒接触信息数组:ICONT_DEM (NELEM, NINMAX, NGRAMAX) CONT_DEM (NELEM, NINMAX, NGRAMAX, NCLMAX)
    其中NGRAMAX是微结构颗粒的数目上限;NCLMAX是每个颗粒的接触点个数上限;NINMAX, NELEM分别是单元的积分点个数上限和单元总数。这样就完成了多尺度信息数据的存储和传递工作。
    [1]唐洪祥.基于Cosserat连续体模型的应变局部化有限元模拟[D].大连:大连理工大学,2007.
    [2]楚锡华.颗粒材料的离散颗粒模型与离散-连续耦合模型及数值方法[D].大连:大连理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700