碳/碳复合材料微细观结构的表征及对有效性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多向编织碳/碳复合材料作为重要的高温热结构材料在航空航天等领域得到了广泛的应用。然而在多向编织碳/碳复合材料的制备、加工以及使用过程中,不可避免地会产生微裂纹、孔洞以及界面脱层,这些微观结构特征对材料的使用性能有着十分显著的影响。多向编织碳/碳复合材料内部的微观结构具有非均匀性、随机性特征,直接导致了其力学性能也具有随机性分布,然而由于长期以来难以获得材料内部原位、无损的微观结构特征,多向编织碳/碳复合材料力学性能的随机性研究还处于初始阶段。因此,本文对多向编织碳/碳复合材料内部微细观结构特征进行了观测和表征,以此为基础分析了碳/碳复合材料的组分材料以及界面层的有效性能,并对碳/碳复合材料的有效性能进行了分析,研究了微细观结构对有效性能的影响。主要研究内容如下:
     多向编织碳/碳复合材料内部的基体和界面层为多相非均质材料,将孔洞和脱层视为均匀介质内部的夹杂相,使用了多相非均质材料的等效夹杂理论,推导出有效弹性性能计算公式,并使用了多孔介质的强度理论推导出强度计算公式及其影响因素。纤维束为横观各向同性材料,使用了平均场近似和自洽近似,对其有效弹性性能进行了分析,并使用了细观强度理论分析了纤维束的强度及其分布,结果显示纤维束的强度满足正态分布。
     对多向编织碳/碳复合材料的宏-细-微观结构特征进行了研究。首先研究了多向编织碳/碳复合材料的周期性结构特征,根据其编织方式并结合体视显微镜、偏光显微镜等观测分析将材料划分为周期性单胞以及子单胞,由于在观测中发现材料的内部基体与纤维束之间存在明显的界面层,在子单胞中特别提出界面层作为材料的重要组元。然后重点研究了多向编织碳/碳复合材料内部微观结构,使用高分辨Mirco-CT观测系统对多向编织碳/碳复合材料的内部微观结构进行了系统的观测分析,获取了无损、原位的内部微观结构信息,发现在多向编织碳/碳复合材料内部,基体中存在大量的孔洞而界面层中存在大量的脱层,其直径集中分布于20微米至150微米之间。此外还使用了压汞法对多向编织碳/碳复合材料内部的孔隙进行了测试分析,结果显示材料内部的孔隙尺寸分布与Micro-CT的观测结果一致。
     研究了多向编织碳/碳复合材料的组分材料(基体和纤维束)的力学性能及其分布。使用纳米压痕技术测试获得多向编织碳/碳复合材料中无孔碳基体的弹性性能,获得其弹性模量。对基体内部的微观结构特征进行统计分析,发现基体内部孔洞的孔径分布满足对数正态分布,在此基础上计算含有孔洞的基体的有效弹性性能和强度,获得其均值以及离散度等数据。分析了多向编织碳/碳复合材料中纤维束的有效弹性性能,并对纤维束的强度及其分布规律进行了计算和分析。
     对界面层的微观结构信息进行统计分析,发现界面上脱层的直径分布同样满足对数正态分布,以此为基础对界面层的力学性能进行了计算分析。通过纤维束顶出实验对界面层力学性能进行了测试,并与计算结果进行对比,发现实验获得的剪切强度低于计算值。对纤维束顶出建立有限元模型,对顶出实验中界面层的应力分布进行分析,解释纤维束顶出实验结果低于计算结果的原因。
     建立多向编织碳/碳复合材料子单胞的有限元模型,将组分材料和界面层的力学性能导入子单胞模型,作为组元性能的输入参数,分析子单胞的力学行为,获得子单胞的有效弹性性能。将子单胞的有效弹性性能导入单胞模型,分析了多向编织碳/碳复合材料的有效性能,并分析了组元特征对有效性能及其离散程度的影响。结果显示,纤维束对材料的有效性能及其离散度的影响大于基体和界面层;材料在承受Z向荷载时受力均匀,有效性能分散性小;而承受X或Y向荷载时,在碳布交叠处纤维弯曲部分存在应力集中,对纤维束性能的分散性产生放大效应,造成材料在XY向强度分散性较大。最后测试多向编织碳/碳复合材料力学性能,获得不同方向的拉伸强度和拉伸模量,并与有限元模型计算结果进行对比分析,发现实验结果与计算结果吻合较好。
Multi directional braided Carbon/carbon (C/C) composites are considered as the most important structural materials for high temperature application in Aviation and Aerospace. However,the microstructure characteristics such as micro-crack, hole,.interface debonding inevitably formed in composite manufacturing, processing and utilizing have significant effect on service performance of materials. Due to the nonhomogeneity and randomness of Multi directional braided Carbon/carbon (C/C) composites microstructure characteristics, the mechanical properties behave random distribution; however, for long period it is difficult to acquire In Situ /Nondestructive microstructure characteristics, the research of mechanical properties discreteness and its mechanism for Multi directional braided Carbon/carbon (C/C) composites at its beginning stage. So in this paper, the micro and meso structures of Multi directional braided Carbon/carbon (C/C) are observed and characterized. Based on the results of these characterizations, the mechanical properties of the component materials and the interfaces in Multi directional braided Carbon/carbon (C/C) are investigated. The effective properties of the C/C composites are analysed in this paper, and the relationship between the micro and meso structures and the effective properties are obtained also. The main research contents are as follows:
     The matrix and the interfacial layer are supposed for the multi-phase non-homogeneous materials, The holes and delamination as a constituent phase in homogeneous medium, Derive the formula for calculating the effective elastic properties, by using Micro-structural mechanics, and micro-mechanics and the derived its strength calculating formula and its influencing factors by using the porous media strength theory. Suppose fiber bundle for the transversely isotropic material, by Means of mean-field approximation and self-consistent Approximation, analyzing the effective elastic properties, and analyzing the intensity and distribution of fiber bundle through micromechanics strength theory, results showed that the strength of fiber bundles fitted the normal distribution.
     Macro-meso-micro structure characteristics of Multi directional braided Carbon/carbon (C/C) composites were studied. First, researched the Periodical structure characteristics, based on its braiding ways combines observational analysis gained by stereomicroscope and polarizing microscope, the materials are classified into periodical unit-cell and sub unit-cell, because of obvious interface layer between matrix and fiber bundle, witch is founded in observations, particularly propose interface as composition unit in sub unit-cell. Then focuses on the internal micro-structure, using the latest high-resolution Mirco-CT observation systems, conducted systematic observation and analysis for micro-structure of 3D-Carbon/carbon (C/C) composites. Obtained non-destructive, situ micro-structural information, Founded in Multi directional braided Carbon/ carbon(C/C) composites, within the matrix exists in a large number of holes, in the interface layer exists in a large number of delamination, its diameter, concentrated on between 20 microns to 150 microns. In addition, using the mercury intrusion method, the pores of the material were tested; results showed the pore size distribution were consistent with the Micro-CT observations.
     Studied the the mechanical properties and its distribution of component materials (matrix and fiber bundles). Nanoindentation tests used to obtain the theory elastic properties of pure carbon matrix to obtain the elastic modulus. Statistical analysis of t microstructural characteristics found that within the matrix pore size distribution fitted the log-normal distribution, calculated on this basis, the matrix containing the hole analyzed the effective elastic properties of fiber bundles, the fiber bundle strength and its distribution were calculated.
     The interface layer micro-structure information for statistical analysis and found that the interfacial layer delamination exists to meet the scale of the distribution of the same log-normal distribution, The statistical analysis for interface layer micro-structure information found that the delamination interface layer size distribution fitted the log-normal distribution, as a basis,the mechanical properties of the interfacial layer was calculated and analyzed. Through the fiber bundle push-out test , the mechanical properties calculation results of the interfacial layer are verified and found that the shear strength test was lower than the calculated values. On the fiber bundle push-out to establish the finite element model of push-out test analysis of the stress distribution, explaining the fiber bundle push-out reasons for the low results. FEM analysis of fiber bundle push-out test, analyzed the stress distribution, explaining the low results of the fiber bundle push-out.
     Finite element model for Fine Weave Pierced Carbon/Carbon Composites is founded. Conducted FEM Simulation analysis of carbon / carbon composite mechanical behavior,then Comparative analysed With the experimental results. Simulate the mechanical behavior of sub-unit cell by means of seting the mechanical properties of component materials and interfacial layer as a sub-unit cell model input parameters,obtained its Effective Elastic Properties,on this basis,molding the unit-cell of 3D-Carbon/carbon (C/C) composites,simulated and analyzed the macroscopic mechanical properties of materials. The influences on effective properties by component materials are investigated also. The results showed that Z-load The materials is under a uniform load, so the strength bears little dispersibility.; that the X or Y -load within overlap in the carbon cloth the bending part of fiber produce stress concentration, generated the amplification effect to the strength of the fiber bundle dispersion, causing the material to the intensity of XY greater dispersion; and that the influences on effective properties by fiber bundles are more notable than by matrixes and interfaces. Testing Fine Weave Pierced Carbon/carbon (C/C) composites mechanical properties, the Carbon/Carbon Composites taked as specimen measured in different directions gained the tensile strength and tensile modulus, found that Z-dirction test a small discrete pieces to the XorY–directions a great dispersion of the specimen. Comparing the calculation results with the experimental results, it is found that these two results are accordant
引文
1 Soydan O, Peter F. Microstructure and wear mechanisms in C/C composites [J]. Wear. 2005,259: 642~650
    2 Zhang Baofa, Ruan Hongwu, Li Dongsheng. Observe C/C composite by polarizering microscope [J]. Journal of Materials Engineering. 2006,1: 32~34
    3 Zhang Shouyang, Li Hejun, Sun Lemin et al. Microstructure of C/C composite fabricated by CVI [J]. Mechanical Science and Technology, 2000, 19(5): 456~465
    4孟佩弦,邱惠中.先进复合材料在航天器及其运载工具上的应用.宇航材料料与工艺. 1997,4: 14~17
    5易法军.碳基防热复合材料超高温性能与烧蚀行为.哈尔滨工业大学博士学位论文. 2001: 1~12
    6林德春,张德雄等.固体火箭发动机材料现状和前景展望.宇航材料工艺. 1999, 4: 1~5
    7韩杰才,赫晓东,杜善义.碳/碳复合材料研究现状与进展.宇航材料工艺. 1994, 23(4): 1~11
    8罗瑞盈.碳/碳复合材料的制备工艺和研究现状.兵器材料科学与工程. 1998, 21(1): 64~70
    9周清,焦亚男等.三维编织预制件的工艺参数设计.天津工业大学学报. 2004, 23(1): 15~17
    10 Golecki I. Rapid vapor-phase densification of refractory composites [J]. Materials Science and Engineering, 1997, 20: 37~124
    11 Rellick G. Densification Efficiency of Carbon-Carbon Composites [J]. Carbon. 1990, 28(4): 589~594
    12夏莉红.黄伯云. C/C复合材料致密化工艺的研究进展.材料导报. 2008, 22(5): 107~110
    13孙乐民,李贺军,宋克兴,张守阳.沥青基碳/碳复合材料常压浸渍-碳化工艺及组织.机械科学与技术. 2000, 19(2): 278~280
    14孙乐民,李贺军,张教强,张守阳.沥青基碳/碳复合材料压力浸渍-碳化机理分析.西北工业大学学报. 2001, 19(1): 88~92
    15赵建国,杨国臣,王海青等.化学气相沉积炭/炭复合材料研究进展[J].现代化工. 2006, 26(S2): 59~63
    16 Zhao J G, Li K Z, Li H J, et al. The influence of thermal gradient onpyrocarbon deposition of carbon/ carbon composites during the CVI process [J ]. Carbon. 2006. 44(4): 786~791.
    17程永宏,罗瑞盈,王天民.化学气相沉积(CVD)炭/炭复合材料(C/ C)研究现状.炭素技术. 2002, 5: 26~32
    18于澍,黄启忠,黄伯云,熊翔,张传福.炭/炭复合材料化学气相沉积工艺进展.粉末冶金材料科学与工程. 2006, 11(5): 262~267
    19 Soydan O, Peter F. Microstructure and wear mechanisms in C/C composites [J]. Wear. 2005; 259: 642~650.
    20 Chollon G, Siron O, Takahashi J, et al. Microstructure and mechanical properties of coal tar pitch-based 2D-C/C composites with a filler addition [J]. CARBON. 2001; 39(13): 2065~2075.
    21 Liu H, Li K Z, Li H J, et al. Microstructure and mechanical properties of mesophase pitch-based C/C composites [J]. Rare metal materials and engineering. 2007; 36: 331~334.
    22 Parnas R S, Wevers M, Verpoest I. Using textile topography to analyze X-ray CT data of composite microstructure [J]. Polymer Composites. 2003; 24(2): 212~220.
    23 Joseph G, Dale N. Scanning Electron Microscopy and X-ray Microanalysis. 2003
    24王玉泉. C/C复合材料的显微和精细结构研究.清华大学硕士学位论文. 2004
    25张福勤,黄伯云等. C/C复合材料断口热解炭及其界面形貌SEM分析.矿冶工程. 2002, 2(2): 93~95
    26李崇俊,金志浩.碳纤维表面状态对C/ C复合材料性能影响的研究.宇航材料工艺. 2000, 3: 25~29
    27 Robonson P C, Bradbury S, Qualitative polarized-light microscopy [M]. London: Oxford Science Publications. 1992. 1~108
    28 Pawlak A. Galeski A. Measurements of characteristic parameters in polymer composites by means of a micropolariscope. Optical Engineering. 1995, 34(12): 3398~3404
    29张保法,阮宏武,李东生.偏光观察C/C复合材料.材料工程. 2006, 1: 32~34
    30徐国忠,李贺军.前驱体对C/C复合材料的致密化和性能的影响.材料工程. 2007, 6: 50~54
    31谢志勇,黄启忠等. CVI炭/炭复合材料微观结构和生长模型.中国有色金属学报. 2007, 17(7): 1096~1100
    32 Onur K Y, Cevdet K. Ultrasonic (C-scan) and Microscopic Evaluation of Resin Transfer Molded Epoxy Composite Plates. Polymer Testing. 2005, 24: 114~120
    33宁志威,孙良新.声-超声技术在碳-碳复合材料薄板损伤检测中的应用.振动、测试与诊断. 2001, 21(1): 15~20
    34皇甫劭炜,童小燕等.复合材料层合板损伤的声发射试验研究.机械科学与技术. 2009, 28(5): 669~673
    35 Bourchak M, et al. Acoustic emission energy as a fatigue damage parameter for CFEP composites [J]. Interna tiona l Journa l of Fatigue. 2007, 29: 457~470
    36 Gregory N, Morscher. Modal acoustic emission of damage accumulation in a woven SiC/ SiC composite [J]. Composites Science and Technology. 1999 , (59): 687~697
    37 Siron, O, Chollon G, et al. Microstructural and mechanical properties of filler-added coal-tar pitch-based C/C composites: The damage and fracture process in correlation with AE waveform parameters. Carbon. 2000, 38(9):1369~1389
    38 Noel M H, Pat F M, Denis C O, et al. Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties [J]. Journal of Biomechanics. 2008, 41(11): 2589~2596
    39 Tokudome Y, Ohshima H, Otsuka M. Non-invasive and rapid analysis for observation of internal structure of press-coated tablet using X-ray computed tomography [J]. Drug development and industrial pharmacy. 2009, 35(6): 678~682
    40 Yamashita T, Suzuki K, Adachi H, et al. Effect of Microscopic Internal Structure on Sound Absorption Properties of Polyurethane Foam by X-ray Computed Tomography Observations [J]. Materials transactions. 2009, 50(2): 373~380
    41 LeBret J B, Norton M G, Bahr D F. Examination of crystal defects with high-kV X-ray computed tomography [J]. Materials letters. 2005, 59(10): 1113~1116
    42 Dierick M, Cnudde V, Masschaele B, et al. Micro-CT of fossils preserved in amber [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007, 580(1): 641~643
    43 David B, Bernard H, Carole M, et al. Towards an inline reconstruction architecture for micro-CT systems [J]. Physics in Medicine and Biology. 2005,50(24): 5799~5811
    44 Karolczak M, Schaller S, Engelke K, et al. Implementation of a cone-beam reconstruction algorithm for the single-circle source orbit with embedded misalignment correction using homogeneous coordinates [J]. Medical Physics. 2001, 28(10): 2050~2069
    45王俊山,许正辉等.用CT图像分析C/C复合材料的内部缺陷.宇航材料工艺. 1998, 6: 53~56
    46 Martin H J, Germain Ch. Microstructure reconstruction of fibrous C/C composites from X-ray microtomography [J]. Carbon. 2007, 45: 1242~1253.
    47桂建保,胡战利等.高分辨显微CT技术进展. CT理论与应用研究. 2009, 18(2):106~116
    48 Abdul A A, Saury C, et al. On the material characterization of a composite using micro CT image based finite element modeling. Proceedings of SPIE. 2006, 6175(05):1~8
    49 Ishikawa T, Chou T W. One-dimensional micromechanical analysis of woven fabric composites. AIAA Journal. 1983, 21:1714~1721
    50 Ishikawa T, Chou T W. Stiffness and strength behavior of woven fabric composites. Journal of Material Science. 1982, 17: 3211-3220.
    51 Nagai K, Yokoyama A. The study of analytical mthod for 3D cmposite materials. Transactions of the Japan Society of Mechanical Engineers.1994, 60: 514~519
    52 Pandey R, Hahn H T. Designing with 4-step braided Fabric composites. Composites Science and Technology. 1996, 56: 623~634
    53 Pandy R, Hahn H T. Visualization of representative volume elements for 3D four-step braided composites. Composites Science and Technology. 1996, 56: 161~170
    54 Byun J H, Chou T W. Elastic properties of three-dimensional angle-interlock fabric performs. Journal of the textile institute. 1990, 81(4): 538~548
    55 Bigaud D, Hamelin P. Mechanical properties prediction of textile reinforced composite materials using a multiscale energetic approach. Composite Structures, 1997, 38(1-4): 361~371
    56 Beyerlein I J,Phoenix S L. Stress concentrations around multiple fiber break in an elastic
    57吴德隆,郝照平.五向编织结构复合材料的分析模型.宇航学报. 1993, (2):69~74。
    58李典森,卢子兴,陈利,李嘉禄.三维五向园型编织复合材料细观分析及弹性性能预测.航空学报. 2007, 28(1): 124~129.
    59徐焜、许希武、汪海.三维六向编织复合材料力学性能的实验研究,复合材料学报, 2005,22(6): 144~149.
    60顾震隆,刘培广.三向碳碳材料在小偏轴角拉伸下的切口强度预报.复合材料学报. 1990, 7 (1): 40-44.
    61韩杰才,赫晓东,杜善义.多向编织碳/碳复合材料的强度与断裂.宇航学报. 1995, 16(1): 69~74.
    62庞宝君.三维多向编织复合材料性能预报与优化设计研究.博士学位论文.哈尔滨工业大学. 1997.
    63梁军.一种含特定微裂纹缺陷三维编织复合材料弹性常数预报方法.复合材料学报. 1997, 14(1): 101~107
    64 Dobia S L, Stary V, et al. Analysis of carbon fibers and carbon composites by asymmetric X-ray diffraction technique. Carbon. 1999, 37 (3): 421~425
    65 Fizer E, Heine M. Carbon fiber manufacture and surface treatment composite. Materials Series. 1988, 73(2): 21~48.
    66孙金峰,陈杰等. PAN原丝性能对碳纤维强度影响的探讨.高科技纤维与应用. 2006, 31(2): 37~41
    67齐志军,林树波.影响碳纤维强度的因素分析.高科技纤维与应用. 2003, 28(4): 30~35
    68 Delhaes P, Trinquecoste, et al. Chemical vapor infiltration of C/C composites: Fast densification processes and matrix characterizations. Carbon. 2005, 43(4):681~691
    69周玲,姜稚清等.碳/碳复合摩阻材料中基体碳的微细组织与结构.材料导报. 1997, 11(4): 61~64
    70 Sun W C, Li H J. Influence of matrix microstructures on mechanical behavior of C/C composites. Journal of inorganic materials. 2005, 20(3): 671~676
    71 Bacon R.碳-碳复合材料中基体碳的性能.新型碳材料. 1990, 1: 39~41
    72 Chang J, Bell J P, Joseph R. Effects of a Controlled Modulus Interlayer on The Properties of Graphite/ Epoxy Composite. Sampe. 1987, 18(4): 39~47
    73 Rhee H W, Bell J P. Effects of Reactive and Non-reactive Fiber Coatings on Performance of Graphite/ Epoxy Composites. Polymer Composites. 1991,12(2): 213~225
    74 Termonia Y. Fiber Coating as a Means to Compensate for Poor Adhesion in Fiber-reinforced Materials. Material Science, 1990, 25(6): 103106
    75 Drzal L T. Adhesion of Graphite Fibers to Epoxy Matrices II: The Effect ofFiber Finish. Journal of Adhesion, 1983,16(1):133~152
    76 Yuko Furukawa , Hiroshi Hatta , Yasuo Kogo. Interfacial shear strength of CPC composites. Carbon, 2003(41): 1819~1826.
    77 Hiroshi Hatta, Ken Goto, et al. Strength and fiber/matrix interfacial properties of 2D- and 3D-carbon/carbon composites. Journal of the European Ceramic Society. 2005 25: 535~542
    78黄玉东.复合材料界面强度原位测试技术及其应用的研究.哈尔滨工业大学博士学位论文. 1993
    79陈腾飞,龚伟平等:基体炭结构对炭/炭复合材料的界面结合强度的影响.矿冶工程. 2004, 24(1): 77~79
    80 Hill. A self-consistent mechanics of composite material [J]. Journal of the Mechanics and Physics of Solids. 1965,13: 213~222
    81 Hill R. On constitutive micro-variables of heterogeneous solids at finite strain. Proceedings of the Royal Society of London. 1972, A326:131~147
    82 Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology. 1985, 107:83~89
    83 Chaboche J L. Continuum damage mechanics. Journal of Applied Mechanics. 1988, 55: 59~64
    84 Paley M, Aboudi J. Micromechanical analysis of composite by the generalized cell model [J]. Mechanics of Materials. 1992; 14(2):127~139
    85 Aboudi J, Pindera M J, Arnold S M. Higher-order theory for functionally graded materials. C omposites Part B. 1999; 33(8):777~832
    86 Aboudi. Thermomechanically coupled micromechanical analysis of multiphase composites [J]. Journal of Engineering Mathematics. 2008, 61: 111~132
    87 Aboudi J, Brett A, Bednarcyk, Arnold S M. High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials. NASA-tm-2002-211469
    88 Orozco C E. Computational aspects of modeling complex microstructure composites using GMC [J].Composites, Part B. 1997; 28(1~2)
    89 Pindera M-J, Bednarcyk BA. An efficient implementation of the generalized method of cells for unidirectional, multi-phased composites with complex microstructures. Composites: Part B. 1999; 30(1): 87-105
    90孙志刚,宋迎东,高德平.改进的二维高精度通用单胞模型.固体力学学报. 2005, 2:235~240
    91孙志刚,宋迎东,高希光,高德平.改进算法的三维通用单胞模型及其应用.机械科学与技术. 2005,9:1029~1032
    92孙志刚,高希光等.改进的三维高精度通用单胞模型.航空动力学报. 2008, 23(7): 1318~1322
    93高希光,孙志刚等.弱界面黏结通用单胞模型理论及应用.航空动力学报. 2009, 24(8): 1684~1690
    94许震宇,张若京.纤维排列方式对单向纤维增强复合材料弹性常数的影响.力学季刊. 2002,1:59~63
    95 Voyiadjis G Z, Guelzim Z. A coupled incremental damage and plasticity theory for metal matrix composite. Mech Behavior Mater. 1996, 6:193~219
    96 Voyiadjis G Z, Deliktas B. Damage in MMCs using the GMC: theoretical formulation. Composites Part B. 1997,28B:597~611
    97 Matzenmiller A, Koster B. Consistently linearized constitutive equations of micromechanical models for fibre composites with evolving damage. International Journal of Solids and Structures. 2007, 4:2244~2268
    98 Haj-Ali, RM., Kilic, M. Nonlinear constitutive models for pultruded FRP composites. Mechanics of Materials. 2003 35: 791–801.
    99 Haj-Ali RM, Aboudi J. Nonlinear micromechanical formulation of the high fidelity generalized method of cells. International Journal of Solids and Structures. 2009, 46: 2577~2592
    100 Ghosh S, Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method [J]. Computer Methods in Applied Mechanics and Engineering. 1995,121:373~409
    101 Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method [J]. International Journal of Solids and Structures.1995, 32(1): 27~62
    102 Moorthy S, Ghosh S. Voronoi cell finite element model for particle cracking in elastic-plastic composite materials. Computer Methods in Applied Mechanics and Engineering. 1998, 1:377~400
    103 Li S, Ghosh S. Modeling interfacial debonding and matrix cracking in fiber reinforced composites by the extended Voronoi cell FEM. Finite Elements in Analysis and Design. 2007,3: 397~410
    104 Gastaldi D. Modelling of micromechanical fracture for ceramic composites through the Voronoi Cell Finite Element approach. International Journal of Materials and Product Technology. 2009, 35(2-4): 346~360
    105 Vena P, Gastaldi D. A Voronoi cell finite element model for the indentation of graded ceramic composites. Composite Part B. 2005, 36(2): 115~126
    106张洪武,王辉.基于参数变分原理的含夹杂Voronoi单元法及非均质材料弹塑性计算.复合材料学报. 2007, 8: 145~152
    107 Zhang H W, Wang H, Wang J B. Parametric variational principle based elastic-plastic analysis of materials with polygonal and Voronoi cell finite element methods. Finite Elements in Analysis and Design. 2007, 43(2): 206~217
    108 Masaru Zako, Yasutomo Uetsuji, Tetsusei Kurashiki. Finite element analysis of damaged woven fabiric composite materials. Composite science and technology. 2003, 63:507~516
    109 Takano N, Zako M, Okuno Y. Multi-scale finite element analysis of porous materials and components by asymptotic homogenization theory and enhanced mesh superposition method Modelling and Simulation in Materials Science and Engineering. 2003, 11(2): 137~156
    110 Takano N, Zako M, et al Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling: International Journal of Solids and Strucures.2003, 40(5): 1225~1242
    111 Jean-Marc Goyheneche, Gerard Vignoles, Olivia Coindreau. Modélisation thermique des composites thermostructuraux. Congrès fran?ais de Thermique. 2004
    112 Alzina Arnaud, Toussaint E, Beakou A, Skoczen B. Multiscale modelling of thermal conductivity in composite materials for cryogenic structures. Composite Structures. 2006, 7: 175~185
    113 Blassiau S, Thionnet A, Bunsell A R. Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures: Part 3. Multiscale reconstruction of composite behaviour. Composite Structures. 2008, 5:312~323
    114 Laurin,F, Carrere N, Maire J F. A multiscale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models. Composites Part A: Applied Science and Manufacturing. 2007, 1:198~209
    115连尉平,崔俊芝.三维编织复合材料模量的双尺度有限元计算.计算力学学报. 2005,6: 268~273
    116 Torquato S. Random heterogeneous materials. 2002
    117 Torquato S. Statistical description of microstructures. Annual Review of Materials Research. 2002, 32:77~111
    118 Jiao Y, Stillinger F H, Torquato S. Modeling heterogeneous materials via two-point correlation functions: Basic principles. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 2007,9: 031110-1~15
    119 Jiao Y, Stillinger F H, Torquato S. Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 2008,3: 031135-1~15
    120 Torquato S. Necessary conditions on realizable two-point correlation functions of random media. Industrial & Engineering Chemistry Research: 2006, 45(21): 6923~6928
    121 Torquato. Modeling of physical properties of composite material. International Journal of Solids and Structures. 2000, 9:411~422
    122 Saheli G, Garmestani H, Adams B L. Microstructure design of a two phase composite using two-point correlation functions. Journal of Computer-Aided Materials Design. 2005,6:103~115
    123 Ostaz, Diwakar A. Statistical model for characterizing random microstructure of inclusion–matrix composites [J]. Journal of Materials Science. 2007, 42: 7016~7030
    124 Quintanilla. Microstructure and properties of random heterogeneous materials: a review of theoretical results. Polymer Engineering and Science. 1999, 39(2): 559~585
    125 Quintanilla J. Microstructure functions for random media with impenetrable particles. Physical Review E. 1999, 60(5): 5788~5794
    126常华健.用基于微观结构的概率断裂模型预测核级石墨强度.核动力工程. 2000, 21(6): 556~559
    127杜善义,王彪.复合材料细观力学.科学出版社, 1998: 8~14
    128南策文.非均质材料物理.科学出版社, 2005: 158~162
    129张巨松.多孔材料强度模型的探讨.沈阳建筑工程学院学报. 1988, 4(3): 9~17
    130张福勤,黄启忠等. C/C复合材料结构显微激光喇曼光谱研究.复合材料学报, 2003, 20(2): 113~117
    131修英姝,陈利等.三维编织复合材料的细观结构分析.宇航材料工艺. 2001, 3: 19~22
    132石民.三维编织复合材料细观结构参数对有效弹性模量影响.航天返回与遥感. 2004, 25(2): 50~56
    133 Bhavani V S, Ramech V S. Analytical method for micromechanics of textile composites. Composite Science and Technology. 1997, 57: 703~713
    134 Lee K J, Chen Z Y. Microstructure study of PAN–pitch-based carbon–carbon composite. Materials Chemistry and Physics. 2003, 82: 428~434
    135 Paris O, Peterlik H et al. Microcracks in Carbon/Carbon Composites: A Microtomography Investigation using Synchrotron Radiation. Materials Research Society Symposium-Proceedings. 2001, 678: EE3.8.1~6
    136郭慧,黄玉东. T300和国产碳纤维本体的力学性能对比及其分析.宇航学报. 2009(20), 5: 2068~207
    137马李.碳基复合材料的力学性能试验与表征方法研究.哈尔滨工业大学硕士学位论文. 2003
    138彭细荣,杨庆生.纤维拔出实验的样本尺寸效应.复合材料学报. 2002, 19(5): 84~89
    139 Jone E M, Marc A P. Standard test methods for textile composites. NASA contractors reports. Lockheed Martin engineering & sciences company, Hampton, Virginia, Contract NAS1-19000, September 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700