模板法制备长程有序层状羟基磷灰石及其海藻酸盐基复合微球的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模板法制备具有长程有序介观结构材料,是建立在分子自组织基础上的,是过程中氢键、范德华键或其他非共价键整体的、复杂的协同作用,将一个或多个物质单元自我放大以形成结构稳定的聚集体,再由一个或若干个物质单元的聚集体作为结构单元多重拷贝,使体系朝着组织层次上升和组织水平提高的方向演化,最终形成纳米结构的空间体系。该方法是有效、廉价的构筑纳米结构的方式。
    本文将模板法引入到具有生物相容性的羟基磷灰石的制备体系中,以十二烷基磺酸钠(SDS)为模板剂,在乙醇/水体系中制备出具有长程有序层状纳米结构的高结晶度Lα-羟基磷灰石。通过X-射线衍射(XRD)表征了长程有序纳米层状结构(2θ = 1~15o)和羟基磷灰石(2θ = 9~60o)的存在,并通过高分辩透射电镜(HRTEM)直接观测到这种纳米层状结构和单层晶片的生长方向,最终给出了该多层次结构的模型,进而采用热重分析(TGA)、红外吸收光谱(FTIR)、吸-脱附等温曲线对所制备的羟基磷灰石进行了表征。研究表明:该长程有序结构的重复周期约为3 nm,羟基磷灰石晶体在模板剂的Lα相中是沿(100)晶面和(002)晶面二维生长,而限制了与之垂直晶面的生长。模板剂用量的增加、氢氧化钠用量、原料浓度、磷源、熟化时间、陈化时间对长程有序层状介观结构的形成均有影响,乙醇/水的体积比应控制在1:1到1:2之间。
    采用反相悬浮分散法(W/O),以三氯甲烷、正己烷为分散介质,乙基纤维素为分散剂,Lα-羟基磷灰石/海藻酸钠水浆为分散相,后经氯化钙交联制备了海藻酸钙/羟基磷灰石复合微球。并对微球的制备条件进行了优化,对所制得的微球物性进行了测量。研究表明:对实验所用比例,乙基纤维素的用量应不少于0.2 g,适宜的分散相加入速度为25 mL/min,适宜搅拌速度为120 r/min。阿基米德法计算的50%和70%HAP复合微球比重分别为1.06和1.15 g/cm3。
Materials with longrange ordered meso-structures were fabricated via templates technology based on molecular self-organization. In this process, hydrogen bond, Van der Waals bond and other noncovalent bonds cooperated as a whole, by which one or more units magnified themselves to form aggregates having steady structure, then these aggregates as structural units were multi-duplicated, which made the system’s organization evolve to higher levels, finally the system with nanostructure was formed. Templates method is an effective and cheap way to build the nanostructure.
    Templates method were introduced into the synthesis of hydroxyapatite (HAP, Ca10(PO4)6(OH)2), which exhibits strong affinity to host tissue, to form hierarchy structure. Calcium hydroxyapatite with longrange ordered lamellar nanostructure and well-crystallized lattice, noted with Lα-HAP, was fabricated via sodium dodecyl sulfonate (SDS, C12H25SO3Na) as templates in ethanol-water solvent. The longrange ordered lamellar nanostructure was characterized by X-ray diffraction (XRD) in the small angles (2θ = 1~15°) and HAP phase in 9~60°. The longrange ordered lamellar nanostructure and the orientation of the growth of crystal were observed by High Resolution Transmission Electron Microscopy (HRTEM). Based on these, the model of this hierarchy structure was given. Followed, the hydroxyapatite was characterized by thermogravimetry (TGA), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption and desorption isotherms. The result showed that the periodicity of the lamellar structure was about 3 nm. The crystal grew along the crystal faces (100) and (002) in the Lα phases, but the growth of perpendicular face was restricted by the templates. Template content, NaOH content, concentration of materials, phosphates resource, riping time and aging time have influence on the formation of longrange ordered lamellar nanostructure. The volume ratio of ethanol and water is 1:1 to 1:2.
    Calcium alginate/Lα-Hydroxyapatite composite microspheres were fabricated via inverse suspension (W/O) with chloroform and hexane as dispersed phase, ethyl cellulose as disperser, mixture of Lα-hydroxyapatite and sodium alginate solution as
    
    
    dispersing phase, finally, the microspheres were crosslinked with calcium chloride solution. The preparation conditions were optimized. The physical appearances of the microspheres were characterized. It was shown that content of ethyl cellulose should not less than 0.2 g in this experiment; the suitable adding speed of dispersed phase and the speed of stirring are about 25 mL/min and 120 r/min, respectively. The specific gravity of the microspheres containing 50% and 70% HAP is 1.06 and 1.15 g/cm3, respectively, evaluated by Archimedean method.
引文
[1] 孙钢, 武杰, 张敏刚, 关于纳米结构自组织合成的分析, 系统辩证学学报, 2003, 11(2): 79-82.
    [2] Tanev P T, Pinnavaia T J, Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies, Science, 1996, 271: 1267-1269.
    [3] Firouzi A, Kumar D, Bull L M et al., Cooperative organization of inorganic-surfactant and biomimetic assemblies, Science, 1995, 267: 1138.
    [4] Bagshaw S A, Prouzet E, Pinnavaia T J, Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants, Science, 1995, 269: 1242.
    [5] Kresge C T, Leonowicz M E, Roth W J et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710-712.
    [6] Attard G S, Glyde J C, Goltner C G, Liquid-crystalline phases as templates for the synthesis of mesoporous silica, Nature, 1995, 378: 366-368.
    [7] Imhof A, Pine D J, Ordered macroporous materials by emulsion templating, Nature, 1997, 389: 948-951.
    [8] Davis S A, Burkett S L, Mendelson N H et al., Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases, Nature, 1997, 385: 420.
    [9] Huo Q S, Margolese D I, Ciesla U et al., Generalized synthesis of periodic surfactant/inorganic composite materials, Natrue, 1994, 368: 317.
    [10] Tanev P T, Pinnavaia T J, A neutral templating route to mesoporous molecular sieves, Science, 1995, 267: 865.
    [11] Blin J L, Otjacques C, Herrier G et al., Pore size engineering of mesoporous silicas using decane as expander, Langmuir, 2000, 16: 4229.
    [12] O'Regan B, Graetzel M, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film, Nature, 1991, 353: 737.
    [13] Snigirev A, Kohn V, Snigireva I et al., A compound refractive lens for focusing high-energy X-rays, Nature, 1996, 384: 49.
    [14] Yanagisawa T, Shimizu T, Kiroda K et al., The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials, Bull Chem Soc Jpn, 1990, 63: 988.
    
    [15] Inagaki S, Fukushima Y, Kiroda K, Synthesis of highly ordered mesoporous materials from a layered polysilicate, J Chem Soc, Chem Commun, 1993: 680.
    [16] Li W J, Yao Y W, Wang Z C et al., Preparation of stable mesoporous silica FSM-16 from water glass in the presence of cetylpyridium bromide, Materials Chemistry and Physics, 2001, 70, 144.
    [17] Beck J S, Vartuli J C, Roth W J et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J Am Chem Soc, 1992, 114: 10834.
    [18] Zhao D Y, Feng J L, Huo Q S et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279: 548.
    [19] Yang H, Kuperman A, Coombs N et al., Synthesis of oriented films of mesoporous silica on mica, Nature, 1996, 379: 703.
    [20] Huo Q S, Margolese D I, Ciesla U et al., Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays, Chem Mater, 1994, 6: 1176.
    [21] Huo Q S, Leon R, Petroff P M et al., Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array, Science, 1995, 268: 1324.
    [22] Schacht S, Huo Q, Voigt-Martin I G et al., Oil-water interface templating of mesoporous macroscale structures, Science, 1996, 273: 768.
    [23] McGrath K M, Dabbs D M, Yao N et al., Formation of a silicate L3 phase with continuously adjustable pore sizes, Science, 1997, 277: 552.
    [24] Tanev P T, Chibwe M, Pinnavaia T J, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature, 1994, 368: 321.
    [25] Huo Q S, Margolese D I, Stucky G D, Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem Mater, 1996, 8: 1147.
    [26] Kim S S, Zhang W Z, Pinnavaia T J, Ultrastable mesostructured silica vesicles, Science, 1998, 282: 1302.
    [27] Cheng G X, Liu C, Preparation of lamellar mesoporous silica microspheres via SDS templates, Materials Chemistry and Physics, 2002, 77: 359.
    [28] IUPAC Manual of Symbols and Terminology, Pure Appl. Chem., 1972, 31: 578.
    [29] Casci J L, Whittam T V, Zeolite Nu-3: its synthesis, characterisation and use in methanol conversion, Stud. Surf. Sci. Catal., 1985: 623-630.
    [30] Sayari A, Moudrakovski I, Jale S R et al., Synthesis of Mesostructured Lamellar Aluminophosphates Using Supramolecular Templates, Chem. Mater., 1996, 8: 1840.
    
    [31] Feng X, Fryxell G E, Wang L-Q et al., Functionalized monolayers on ordered mesoporous supports, Science, 1997, 276: 923-926.
    [32] Monnier A, Schueth F, Huo Q et al., Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science, 1993, 261: 1299-1303.
    [33] 吴伟农, 中国科学报, 1997, 3, 24.
    [34] 严东生, 基础研究, 1997, 5(2): 9-12.
    [35] 林铭章, 朱清时, 中国科学报, 1997, 1, 27.
    [36] 甘礼华, 沈军, 氧化铁气凝胶的制备及其表征, 高等学校化学学报, 1999, 20(1): 132-134.
    [37] Yoldas B E, Introduction and effect of structural variations in inorganic polymers and glass networks, J. Non-Cryst. Solids, 1982, 51 (1): 105-121.
    [38] Wang Y Y, Gao Y B, Sun Y H et al., Effect of preparation parameters on the texture of SiO2 aerogels, Catal. Today, 1996, 30: 171-175.
    [39] 林健, 程继健, 醇盐水解法制备单分散球形SiO2微粒, 华东理工大学学报, 1995, 21(2): 172-176.
    [40] Pope E J A, Mackenzie J D, Sol-gel processing of silica. II. The role of the catalyst, J. Non-Cryst. Solids, 1986, 87: 185-196.
    [41] Sakka S, in Ultrastructure Processing of Advanced Creamics, Wiley, NY, 1988: 159.
    [42] 高祀建, 顾真安, 氟在二氧化硅凝胶中结构行为的研究, 硅酸盐通报, 1993, 12(1): 9-13.
    [43] 杨男如, 余桂郁, 溶胶—凝胶法的基本原理与过程, 硅酸盐通报, 1993, 12(2): 56-63.
    [44] Brinker C J, Schever G W, “Sol-Gel Science: The Physics and Chemistry of S-G Processing”, Academic Press, Inc., 1990: 272.
    [45] Sun Y, Sermon P A, Vong M S W, Design of reflective tantala optical coatings using sol-gel chemistry with ethanoic acid catalyst and chelator, Thin Solid Films, 1996, 278: 135-139.
    [46] Sun Y, Vong M S W, Sermon P A, Sol-gel chemistry of tantala HR coatings: Structure and laser-damage resistance, J. Sol-Gel. Sci & Tech., 1997, 8: 493-497.
    [47] Orcel G, Hench L L, Artaki I et al., Effect of formamide additive on the chemistry of silica sol-gels. II. Gel structure, J. Non-Cryst. Solids, 1988, 105(3): 223-231.
    [48] Viart N, Niznansky D, Rehspringer J L, Structural evolution of a formamide modified sol - spectroscopic study, J. Sol-Gel Sci. & Tech., 1997, 8: 183-187.
    
    [49] Niznansky D, Rehspringer J L, Infrared study of SiO2 sol to gel evolution and gel aging, J. Non-Cryst. Solids, 1995, 180: 191-196.
    [50] Adachi T, Sakka S, Sintering of silica gel derived from the alkoxysilane solution containing N,N-dimethylformamide, J. Non-Cryst. Solids, 1987, 100: 250-253.
    [51] Sharma P K, Ramanan A, Role of N,N-dimethylaniline in the formation of titania gel monolith by sol-gel method, J. Mater. Sci., 1996, 31(3): 773-777.
    [52] Uchida N, Ishiyama N, Kato Z et al., Chemical effects of DCCA to the sol-gel reaction process, J. Mater. Sci., 1994, 29(19): 5188-5192.
    [53] Katagiri T, Murakami Y, J. Non-Cryst. Solids, 1991, 134: 183-190.
    [54] Sun J H, Fan W H, Wu D, Sun Y H, Stud. Surf. Sci. Catal., 1988, 118: 617-625.
    [55] Nakane K, Suauki F, J. App. Polym. Sci., 1997, 64: 763-768.
    [56] Prakash S S, Brinker C J, Hurd A J et al., Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage (erratum), Nature, 1995, 375: 431.
    [57] Fahrenholtz W G, Smith D M, J. Non-Cryst. Solids, 1992, 144: 45-52.
    [58] Hasegawa I, J. Sol-Gel. Sci & Tech., 1993, 1: 57-63.
    [59] 孙予罕, 张晔, 吴东, 范方浩, 徐耀, 中国发明专利, 申请号981235298.
    [60] Zhmud B V, Sonnefeld J, Aminopolysiloxane gels: production and properties, J. Non-Cryst. Solids, 1996, 195: 16-27.
    [61] Wojcik A B, Klein L C, J. Sol-Gel. Sci & Tech., 1995, 4: 57-66.
    [62] Kook S, In M, Chung J, J. Non-cryst. Solids, 1995, 183: 252-259.
    [63] Hoshino Y, Mackenzie J D, J. Sol-Gel. Sci & Tech, 1995, 5: 83-92.
    [64] Julbe A, Balzer C, Barthez J M et al., Effect of non-ionic surface active agents on TEOS-derived sols, gels and materials, J. Sol-Gel. Sci & Tech., 1995, 4(2): 89-97.
    [65] Smith J M, Katsoulis D E, J.Mater. Sci., 1995, 5(11): 1899-1903.
    [66] Zehl G, J. Mater. Sci., 1995, 5(11): 1893-1897.
    [67] Lantelme B,Dumon M, Mai C et al., In situ polymerization of titanium alkoxides in polyvinylacetate, J. Non-Cryst. Solids, 1996, 194: 63-71.
    [68] Ravaine D, Seminel A, Charbouillot Y et al., New family of organically modified silicates prepared from gels, J. Non-Cryst. Solids, 1985, 82: 210-219.
    [69] Aksay I A, Trau M, Manne S et al., Biomimetic pathways for assembling inorganic thin films, Science, 1996, 273: 892-898.
    
    [70] Cheng C F, Luan Z, Klinowski J, Role of surfactant micelles in the synthesis of the mesoporous molecular sieve MCM-11, langmuir, 1995, 11(7): 2815.
    [71] Pevzner S, Regev O, In situ phase transitions occurring during bicontinuous cubic phase formation, Microporous and Mesoporous Materials, 2000, 38: 413.
    [72] Cheng C F, Luan Z, Klinowski J, Role of surfactant micelles in the synthesis of the mesoporous molecular sieve MCM-11, langmuir, 1995, 11(7): 2815.
    [73] Frasch J, Lebeau B, Soulard M et al., In situ investigations on cetyltrimethylammonium surfactant/silicate systems, precursors of organized mesoporous MCM-41-type siliceous materials, Langmuir, 2000, 16: 9049.
    [74] Lettow J S, Han Y J, Schmidt-Winkel P et al., Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas, Langmuir, 2000, 16: 8291
    [75] Chen C Y, Burkett S L, Li H X et al., Microporous Mater., 1993, 2: 27.
    [76] Sayari A, Moudrakovski I L, Jale S R et al., Synthesis of Mesostructured Lamellar Aluminophosphates Using Supramolecular Templates, Chem. Mater., 1996, 8(8): 2080.
    [77] Fyfe C A, Wong-Moon K C, Huang Y, 27Al/31P solid-state n.m.r. structural investigations of AlPO4-5 molecular sieve, Zeolites, 1996, 16(1): 50-55.
    [78] Luan Z, Cheng C F, Zhou W et al., Mesopore molecular sieve MCM-41 containing framework aluminum, J. Phy. Chem., 1995, 99(3): 1018-1024.
    [79] Gontier S, Tuel A, Characterization of vanadium-containing mesoporous silicas, Microporous Materials, 1995, 5(3): 161.
    [80] Moudrakovski I L, Sayari A, Ratcliffe C I et al., Vanadium-modified zeolite with the structure of ZSM-12. EPR and NMR studies, J. Phy. Chem., 1994, 98(42): 10895-10900.
    [81] Koyano K A, Tatsumi T, Synthesis of titanium-containing MCM-41, Microporous Mater., 1997, 10: 259-271.
    [82] Pinnavaia T J, Tanev P T, Wang J L et al., Ti-substituted mesoporous molecular sieves for catalytic oxidation of large aromatic compounds prepared by neutral templating route, Materials Research Society Symposium - Proceedings, 1995, 371: 53-62.
    [83] Gontier S, Tuel A, Synthesis and characterization of Ti-containing mesoporous silicas, Zeolites, 1995, 15(7): 601.
    [84] Gontier S, Tuel A, Novel zirconium containing mesoporous silicas for oxidation reactions in the liquid phase, Applied Catalysis A: General, 1996, 143(1): 125.
    [85] Zhao D, Goldfarb D, Synthesis of Mesoporous Manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L, Fett - Wissenschaft Technologie, 1995, 97: 875.
    
    [86] Zhao D, Goldfarb D, Synthesis of Mesoporous Manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L, Chem. Commun. , 1995, 8: 875.
    [87] Maschmeyer T, Rey F, Sanker G et al., Nature, 1995, 378: 159.
    [88] Kozhevonikov I V, Sinnema A, Jansen R J J et al., Catal. Lett. , 1995, 30: 241.
    [89] Feng X, Fryxell G E, Wang L-Q et al., Functionalized monolayers on ordered mesoporous supports, Science, 1997, 276: 923-926.
    [90] Ulgappan N, Rao C N R, Mesoporous phases based on SnO2 and TiO2, Chem Commun, 1996: 1685.
    [91] Liu P, Liu J, Sayari A, Preparation of porous hafnium oxide in the presence of cationic surfactant, Chem Commun, 1997: 577.
    [92] Rouquerol F, Rouquerol J, Sing K, Adsorption by Powders and Porous Solids, Principles Methodology and Applications, Academic Press, Harcourt Brace & Company, 1999, 205.
    [93] Ciesla U, Schüth F, Ordered mesoporous materials, Micro and Meso Mater, 1999, 27: 131.
    [94] 姚连增, 叶长辉, 牟季美, 等, 纳米Pb/SiO2气凝胶介孔组装体的制备及光学特性, 无机材料学报, 2001, 16(1): 93.
    [95] 孙锦玉, 赵东元, “面包圈”状高有序度大孔径介孔分子筛SBA-15的合成, 高等学校化学学报, 2000, 21: 21.
    [96] Boissiere C, Kummel M, Persin M et al., Spherical MSU-1 mesoporous silica particles tuned for HPLC, Advanced Funtional Materials, 2001, 11: 129.
    [97] Jung K T, Chu Y-H, Haam S et al., Synthesis of mesoporous silica fiber using spinning method, Journal of Non-Crystalline Solids, 2002, 298: 193.
    [98] 张波, 慎炼, 周春晖, 等, 全硅MCM-41中孔分子筛的合成, 高等化学工程学报, 2001, 15(1): 29.
    [99] 李文红, 赵纯, 宋利珠, 等, 水玻璃为原料在开放体系中快速合成介孔材料MCM-41, 高等学校化学学报, 2001, 22: 1013.
    [100] 王树国, 吴东, 孙予罕, 等, MCM-48分子筛的高效合成途径, 化学学报, 2001, 59(7): 1150.
    [101] Wang S, Wu D, Sun Y et al., The synthesis of MCM-48 with high yields, Materials Research Bulletin, 2001, 36(9): 1717.
    [102] Chen F X, Huang L M, Li Q Z, Synthesis of MCM-48 using mixed cationic-anionic surfactants as templates, Chem Mater, 1997, 9: 2685.
    [103] 颜学武, 陈海鹰, 李全芝, 以混合中性-阳离子表面活性剂为模板合成
    
    
    MCM-48, 化学学报, 1998, 56(12): 1214.
    [104] 卜林涛, 邵青, 戴乐蓉, 阳离子与非离子混合表面活性剂模板合成介孔SiO2, 高等学校化学学报, 2000, 12(6): 852.
    [105] 赵伟, 姚建东, 黄茜丹, 等, 以混合非离子-阳离子表面活性剂为模板合成中孔MCM-48, 科学通报, 2001, 46(13): 1089.
    [106] 闫玉化, 张宏泉, 李世普, 生物陶瓷及制品的研究现状和发展前景, 中国陶瓷, 1998, 34(2): 36-37.
    [107] Kay M I, Young R A, Posner A S, Cyrstal structure of hydroxyapatite, Nature, 1964, 204: 1050-1052.
    [108] Kawasaki T, Fundamental study of hydroxyapatite high-performance liquid chromatography, J. Chromatography, 1990, 515: 125-128.
    [109] 沈卫, 顾燕芳, 刘昌胜, 等, 羟基磷灰石的表面特性, 硅酸盐通报, 1996, 1: 45-51.
    [110] ?Shirkhanzadeh M, Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes, J. Mater. Sci.: Mater. In Medicine, 1998, 9: 727-729.
    [111] Yubao L, Wijn J D, Klein C P A T, et al., Preparation and characterization of nanograde osteoapatite-like rod crystals, J. Mater. Sci.: Mater. In Medicine, 1994, 5: 252-255.
    [112] Monma H, Kamiya T, Preparation of hydroxyapatite by the hydrolysis of brushite, J. Mater. Sci., 1987, 22: 4247-4250.
    [113] Monma H, Ueno S, Kanazawa T, Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate, J. Chem. Tech. Biotechnol., 1981, 31: 15-24.
    [114] Moreno E C, Vanghese K, Crystal growth of calcium apatite from dilute solutions, J. Crystal Growth, 1981, 53: 20-30.
    [115] Fujishiro Y, Yabaki H, Kawamura K, et al., Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions, J. Chem. Tech. Biotechnol., 1993, 57: 349-353.
    [116] Deptula A, Lada W, Olczak T, et al., Preparation of spherical powders of hydroxyapatite by sol-gel process, J. Non-Crystalline Solids, 1992, 147/148: 537-541.
    [117] Vallet-Regi M, Cutierrez-Rios M T, Alonso M P, et al., Hydroxyapatite particles synthesized by pyrolysis of an aerosol, J. Solid State Chem., 1994, 112: 58-64.
    
    [118] Lim C K, Wang J, Ng S C, et al., Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant, J. Mater. Chem., 1999, 9: 1635-1639.
    [119] Lim C K, Wang J, Ng S C, et al., Processing of fine hydroxyapatite powders via an inverse microemulsion route, Mater. Lett., 1996, 28: 431-436.
    [120] Lim C K, Wang J, Ng S C, et al., Processing of hydroxyapatite via microemulsion and emulsion routes, Biomaterials, 1997, 18(21): 1433-1439.
    [121] Stranick M A, Influence of strontium on monofluorophosphate uptake by hydroxyapatite: XPS characterization of the hydroxyapatite surface, Colloids and Surfaces, 1991, 55: 137.
    [122] Koutsonkos P G, Influence of strontium ion on the crystallization of hydroxyapatite from aqueous solution, J. Phys. Chem., 1981, 85: 2403.
    [123] Chander S, Adsorpt. Surf. Chem. Hydroxyapatite. New York and London: Plenum Press, 1982, 29-49.
    [124] James W L, Wilson, Inhibitors of crystal growth of hydroxyapatite: A constant composition approach, J. Urology, 1985, 134: 1255.
    [125] Somasumdaran P, Adsorpt. Surf. Chem. Hydroxyapatite. New York and London: Plenum Press, 1982, 129-149.
    [126] Daskalakis K D, Fuierer T A, Tan J, et al., The influence of lactoglobulin on the growth and dissolution kinetics of hydroxyapatite, Colloids and Surfaces, 1995, 96: 135-141.
    [127] Tanaka H, Nuno Y, Irie S, Adsorption mechanism of polylysine on hydroxyapatite and its effect on dissolution properties of hydroxyapatite, Talanta, 1992, 39(8): 893-898.
    [128] Maniatis C, Effects of virious bis(sulfonamides) on the crystal growth of hydroxyapatite, Langmuir, 1991, 7: 1542-1545.
    [129] 张立德主编, 超微粉体制备与应用技术, 北京: 中国, 石油出版社, 2001.
    [130] Haug A, Larsen B and Smidsrod O, Uronic Acid Sequence in Alginate from Different Sources, Carbohydrate Res., 1974, 32: 217-225.
    [131] Draget KI, Skjak-Brak G, Christensen BE, et al., Swelling and partial solubilization of alginic acid gel beads in acidic buffer, Carbohydr Polym, 1996, 29: 209.
    [132] Kurt I D, Gudmund S-B and Olav S, Alginate based new materials, International journal of Biological Macromolecules, 1997, 21: 47-55.
    
    [133] 赵佼, 谭文松, 俞俊棠, 动物细胞培养工程的现状与展望, 华东理工大学学报, 1997, 23(2): 131-137.
    [134] 邹寿长, 李干祥, 杨葆生等, 大规模动物细胞培养技术研究进展, 生命科学研究, 2001, 5(2): 102-108.
    [135] Keese C R, Giaever I, Cell growth on liquid microcarriers, Science, 1983, 219: 1448-1449.
    [136] 张孝兵, 张元兴, 李雨田, 大孔明胶微载体的制备, 华东理工大学学报,1997, 23(4): 412-416.
    [137] Tatsuya O, Masamichi K, Shyji T, et al., Anchorage-dependent cells using a novel macroporous cellulosic support, J Ferment Bioeng., 1992,74(1): 27-31.
    [138] Menemze K, Ismet G, Erhan P, Cell-culturing characteristics of newly develped PHEMA microcarriers, Biotechnol Appl Biochem, 1991, 14(2): 170-182.
    [139] 张津辉, 蒋中华, 磁性微载体的研制及其在生物医学中的应用(综述), 标记免疫分析与临床, 1995, 2(4): 228-231.
    [140] 张孝兵, 张元兴, 大孔微载体在动物细胞培养中的应用, 生物技术, 1997, 7(5): 41-44.
    [141] 王常勇, 采用微载体技术大规模培养组织工程种子细胞, 生物医学工程与临床, 2002, 6(1): 51-54.
    [142] 郑忠, 胶体科学导论, 北京: 高等教育出版社, 1989, 305-381.
    [143] 全大萍, 李世普, 袁阔章, 等, 聚DL—丙交酯/羟基磷灰石(PDLLA/HA)复台材料—II: 硅烷偶联剂处理羟基磷灰石表面的作用研究, 复合材料学报, 2000, 17(4): 114-118.
    [144] 周建略, 陈树滋, 左长明, 等, 羟基磷灰石中氢键的XPS考察, 物理化学学报, 1990, 6(5): 629-632.
    [145] 刘世平, 李冬茗, 张腾燕, 湍流系统中的液滴聚并, 化工学报, 1998, 49(4): 409-417.
    [146] 何虹, 杨俊, 王亭杰, 悬浮聚合法制备磁性微球的粒度分布特征, 高校化学工业学报, 2001, 15(3): 277-281.
    [147] W. G. Perdok, J. Christofferson, J. Arends, J. Cryst. Growth, 1987, 80:149.
    [148] Liyong Zhang, Guoxiang Cheng, Cong Fu, Xiaohang Liu, Xingshou Pang, Adsorbing and Regenerating Properties of Tyrosine Imprinted Polymeric Beads, Adsorption Science and Technology, 2003, 21(8): 775-785.
    [149] Shulai Lu, Guoxiang Cheng, Xingshou Pang, Preparation of molecularly imprinted Fe3O4/P(St-DVB) composite beads with magnetic susceptibility and their characteristics of molecular recognition for amion acid, Journal of Applied Polymer
    
    
    Science, 2003, 89: 3790-3796.
    [150] Liyong Zhang, Guoxiang Cheng, Cong Fu, Xiaohang Liu, Tyrosine Imprinted Polymer Beads with Different Functional Monomers via Seeds Swelling and Suspension Polymerization, Polymer Engineering and Science, 2003, 43(4): 965-974.
    [151] Liyong Zhang, Guoxiang Cheng, Cong Fu, Molecular selectivity of tyrosine-imprinted polymers prepared by seed swelling and suspension polymerization, Polymer International, 2002, 51(8): 687-692.
    [152] Liyong Zhang, Guoxiang Cheng and Cong Fu, Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization, Reactive and Functional Polymers, 2003, 56(3): 167-173.
    [153] 张立永, 成国祥, 分子印迹聚合物微球的制备及应用研究进展, 功能高分子学报, 2002, 15(2): 214-218.
    [154] 张立永, 曾令刚, 裴广玲, 成国祥, 分子印迹聚合物微球制备研究进展, 材料导报, 2001, 15(1): 60-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700