聚合物基复合材料多尺度方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在研究聚合物基复合材料的力学行为。根据材料内部结构的尺度特征,分别从纳观、细观和宏观不同层次展开了分析研究。假设材料内部结构呈周期性或近似周期性分布,以逐次渐近均匀化方法与有限元方法相结合,建立了细观和纳观单胞分析模型,利用FORTRAN语言编写了多尺度渐近均匀化应用程序,研究了聚合物基复合材料宏观力学性能与微结构间的关系以及细观局部应力分布规律。
     本文利用多尺度渐近均匀化理论与有限元分析技术,建立了预测聚合物基复合材料有效性能的计算模型,研究了颗粒和聚合物基体的模量比以及颗粒的泊松比、形状、体积份数等对聚合物基复合材料的宏观有效弹性常数的影响规律;然后利用有限元分析技术模拟了材料的单向拉伸实验,对均匀化方法所得到的聚合物基复合材料的宏观有效弹性常数进行了实验验证,得到的结果显示两者是吻合的。
     本文建立了基于多尺度渐近均匀化理论的宏观应力场与细观单胞局部应力场的分析模型,研究了聚合物基复合材料的细观局部应力与模量比、颗粒形状、泊松比和体积组份的关系,定性分析了聚合物基复合材料的细观破坏形式;研究了模量比和体积份数对宏观应力集中处细观局部应力集中影响;针对局部应力集中问题,利用网格自适应分析技术与有限元法相结合,构建了网格层叠技术,并与多尺度渐近均匀化理论相结合研究夹杂对聚合物基复合材料的宏观应力场与细观单胞局部应力场的影响,得到了一些有用的结果。
     利用三相球模型与界面位移跳跃假设,建立含非完美界面聚合物基复合材料有效弹性常数的预测模型,推导出其有效体积模量和有效剪切模量的理论预测公式。分析讨论了界面参数对聚合物基复合材料有效弹性常数的影响。本文得到的预测模型具有一般性,在界面参数C=1时,模型简化成完美界面情形;在界面参数C=0时,模型简化成脱粘界面情形。
     结晶聚合物—无机纳米复合材料内部结构是一个多尺度复杂结构体系。本文利用多尺度逐次渐近均匀化理论的分析计算模型,在实验分析的基础上,从材料的微观结构特点出发,建立了结晶聚合物—无机纳米复合材料的多尺度分析计算模型。将结晶聚合物—无机纳米复合材料内部结构分别用宏观、细观和纳观三个层次来描述。利用建立的多尺度逐次渐近均匀化理论和有限元法,经两次纳观层次均匀化和一次细观层次均匀化,通过数值计算结果讨论了聚合物结晶度、聚合物结晶相弹性模量、无机纳米颗粒弹性模量和无机纳米颗粒体积份数等参数对聚合物—无机纳米复合材料有效弹性模量的影响,并获得了一些有价值的结果。
     本文工作力图为聚合物基复合材料的改性设计提供理论依据。
According to the scale characteristic of material internal structure, the mechanical properties of polymer matrix composites are studied from multilevels (macroscopic, microscopic and nanoscopic levels) in this work. Microscopic structure of polymer matrix composites is assumed to be periodic or approximately periodic. The finite element method is combined with multiscale successive homogenization theory based on asymptotic expansion. Microscopic and nanoscopic base cells analysis models are established. A computational program based on multiscale homogenization method is written by FORTRAN language. The relation between macroscopic mechanical properties of polymer matrix composites and microscopic structure is studied. Local variation rule of microscopic stress is researched.
     The computed model for predicting the effective properties of polymer matrix composites is established based on multiscale asymptotic homogenization theory and finite element analysis technology. The influence of ratio of modulus of particle and polymer matrix, particle Poisson's ratio, shape, volume fraction on effective elastic constants of polymer matrix composites is studied. Uniaxial tension experiment is simulated by finite element analysis technology to validate macroscopic effective elastic constants of polymer matrix composites computed by homogenization method. Experiment results show the accordance with computed results.
     Based on homogenization theory, the analyzed models of macroscopic stress field and the microscopic unit cell local field are established in this work. The relation between microscopic local stress of polymer matrix composites and ratio of modulus, particle shape, Poisson's ratio and volume fraction is investigated. The microscopic failure modes of polymer matrix composites are qualitatively analyzed. The effect of ratio of modulus and volume fraction on microscopic local stress concentration at macroscopic stress concentration location is analyzed. Mesh adaptive analysis technique is combined with the finite element method to study local stress problem. Mesh superposition technique is constructed and combined with homogenization method to research the effect of heterogeneity on macroscopic stress field and unit cell microscopic local stress field of polymer matrix composites. Some available results are obtained.
     The effective elastic constant prediction model of polymer matrix composites with imperfect interface is established by integrating three phase model with interface displacement jump assumption. The theoretical predicting formulae of effective bulk modulus and effective shear modulus have been derived. The effect of interface parameters on the effective elastic constants of polymer matrix composites is discussed. The predicted results in this paper have the generality and universality. The model is simplified as perfect interface case when interface parameter C is equal to 1 and as debonding interface case when interface parameter C is equal to O.
     Crystalline polymer-inorganic nanocomposites present a multiscale complex structure system. The model of multiscale successive asymptotic homogenization theory is applied. Based on the experiment analysis of crystalline polymer-inorganic nanocomposites, from a microscopic structure characteristic of material point of view, a multiscale analysis computing model of crystalline polymer-inorganic nanocomposites is established. Internal structure of crystalline polymer-inorganic nanocomposites is described by multilevels(macroscopic, microscopic and nanoscopic levels). The finite element method is combined with multiscale successive homogenization theory based on asymptotic expansion for predicting effective modulus of crystalline polymer-inorganic nanocomposites. Two nanoscopic level homogenizations and one microscopic homogenization are used. The effect of crystal degree of polymer, elastic modulus of crystal inclusion, elastic modulus of nanoparticle and volume fraction of nanoparticle on the effective elastic modulus of polymer-inorganic nanocomposite is discussed respectively. Some valuable results are obtained.
     This work may be used to supply guidelines for the modifying design of polymer matrix composites.
引文
[1] 林启昭.高分子复合材料及其应用[M].北京:中国铁道出版社,1988.
    [2] Nielsen L E. Mechanical Properties of Polymers and Composites [M]. New York: Marcel Dekker, Inc. 1993.
    [3] 王震鸣.复合材料及其结构的力学进展,第三册[M].武汉:武汉工业大学出版社,1992.
    [4] 董建华.高分子材料科学的发展动向与若干热点[M].材料导报,1999,13(5):2-4.
    [5] 李琼芬.高分子材料学概论[M].北京:中国人民大学出版社,1985.
    [6] 朱锡雄,朱国瑞.高聚物材料的强度学[M].杭州:浙江大学出版社,1992.
    [7] 吕锡慈.高分子材料的强度与破坏[M].成都:四川教育出版社,1988.
    [8] Nielsen L E. The mechanical properties of polymers [M]. Wiley- interscience, 1962.
    [9] Williams J G. Stress analysis of polymers [M]. Longman London, 1973.
    [10] Mertz E H, Claver G C, Baer M. Studies on heterogeneous polymeric systems [J]. Journal of Applied Polymer Science, 1956, 22: 325.
    [11] Liang J Z, Li R K Y. Rubber toughening in polypropylene: A review [J]. Journal of Applied Polymer Science, 2000, 77(2): 409-417.
    [12] 宋国君,殷兰兰,李培耀.尼龙6共混增韧改性的研究[J].塑料,2004,33(6):66-70.
    [13] Margolina A, Wu S. Percolation model for brittle-tough transition in nylon rubber blends [J]. 1988, 29(12): 2170-2173.
    [14] 于中振,欧玉春,冯宇鹏.超韧尼龙6体系的流变与力学行为[J].高分子材料与工程,2000,16(6):102-104.
    [15] Bagheri R, Williams M A, Pearson R A. Use of surface modified recycled rubber particles for toughening of epoxy polymers [J]. Polymer Engineering and Science, 1997, 37(2): 245-251.
    [16] 张彦中,沈超.液体端羟基丁腈(CTBN)增韧环氧树脂的研究[J].材料工程,1995,(5):17-19.
    [17] 李绍英,韩孝族,张庆余.丁腈羟增韧环氧树脂形态与力学性能[J].高等学校化学学报,1997,18(9):1541-1545.
    [18] Verchere D, Sautereau H, Pascault J P, et al. Rubber-modified epoxies. Ⅰ. influence of carboxyl-terminate.d butadiene-acrylonitrile random copolymers (CTBN) on the polymerization and phase separation processes [J]. Journal of Applied Polymer Science, 1990, 41(3-4): 467-485.
    [19] Moschiar S M, Riccard C C, Williams R J, et al. Rubber-modified epoxies. Ⅲ. Analysis of experimental trends through a phase separation model [J]. Journal of Applied Polymer Science, 1991, 42(3): 717-735.
    [20] 熊艳丽,王汝敏,郑刚等.环氧树脂增韧改性研究进展[J].中国胶粘剂,2005,14(7):27-32.
    [21] 韩孝族,王莲芝.端羟基丁腈橡胶增韧环氧树脂研究[J].高分子学报,1989,(2):225-229.
    [22] Kurauchi T, Ohta T. Energy absorption in blends of polycarbonate with ABS and SAN [J]. Journal of Material Science, 1984, 19(5): 1699-1709.
    [23] Fu Qiang, Wang Guiheng, Shen Jiusi. Polyethylene toughened by CaCO3 particle: brittle-ductile transition of CaCO_3-toughened HDPE [J]. Journal of Applied Polymer Science, 1993, 49(4): 673-677
    [24] 梁瑞凤,吴人洁.填充聚丙烯的界面对流变和力学性能的影响[J].复合材料学报,1993,10(4):77-84.
    [25] Masao S, Yasutoshi T, Keizo M, et al. Tensile yield stress of polypropylene composites filled with ultrafine particles [J]. Journal of Material Science, 1983, 18(6): 1758-1764.
    [26] 吴春蕾,章明秋,容敏智.低填充SiO_2/聚丙烯纳米复合材料的拉伸特性[J].材料工程,2001,(5):30-33.
    [27] 刘晓辉,范家起.聚丙烯/蒙脱土纳米复合材料Ⅰ.制备、表征及动态力学性能[J].高分子学报,2000,(5):563-567.
    [28] 吴永刚,马懿.无机刚性粒子增韧PP的研究[J].中国塑料,1999,13(4):29-33.
    [29] 鲍洪杰,何继敏.聚丙烯改性技术发展[J].塑料科技,2000,(6):40-42,49.
    [30] 方海林.稀土矿物改性尼龙6的研究[J].工程塑料应用,1996,24(2):15-17.
    [31] 杨景海.硅灰石改性尼龙6研究[J].松辽学刊(自然科学版),1996,(1):17-20.
    [32] Tiong S C, Meng Y Z. Performance of Potasium titanate whisker reinforced polyrorced polyamide-6 composes [J]. Polymer, 1998, 39(22): 5461-5466.
    [33] 崔周平.玻璃纤维增强尼龙复合材料的力学性能[J].北京机械工业学院学报,1999,14(1):11-15.
    [34] Sirivedin S, Fenner D N, Nath R B, et al. Viscoplastic finite element analysis of matrix crack propagation in model continuous-carbon fibre/epoxy composites [J]. Composites Part A: Applied Science and Manufacturing, Available online 13 March 2006.
    [35] Nath R B, Fenner D N, Galiotis C. Finite element modelling of interfacial failure in model carbon fibre-epoxy composites [J]. Journal of Material Science, 1996, 31(11): 2879-2883.
    [36] Goertzen W K, Kessler M R. Creep behavior of carbon fiber/epoxy matrix composites. Materials Science and Engineering: A [J]. Available online 9 March 2006.
    [37] Ochola R O, Marcus K, Nufick G N, Franz T. Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates [J]. Composite Structures, 2004, 63(3-4): 455-467.
    [38] 赵世琦,云会明.刚性粒子增韧环氧树脂的研究[J].中国塑料,1999,13(9):35-39.
    [39] 陈卫星,刘志斌,杜玉军.环氧树脂的增韧改性[J].西安工业学院学报,2000,20(2):149-154.
    [40] 朱晓光,李兰,王德禧.壳/核结构复合分散相对PP/硅灰石/EPDM体系力学性能的影响[J].高分子材料科学与工程,1998,14(1):115-118.
    [41] 方治齐,唐龙祥,严满清,刘春华.聚丙烯改性新进展[J].现代塑料加工应用,2002,14(6):36-39.
    [42] 张增民,吕荣侠.PP/HDPE/弹性体三元共混体系的力学性能、形态及应用[J].塑料工业,1989,(1):31-38.
    [43] 黄锐,张玲,、王旭等.聚合物/弹性体/无机粒子三元复合体系的逾渗规律[J].塑料,2003,32(4):1-5,68.
    [44] 张玲.弹性体及无机刚性粒子增韧增强聚丙烯复合材料的研究[D].成都:四川大学博士论文,2002.
    [45] 吴唯,徐种德.纳米刚性微粒与橡胶弹性微粒同时增强增韧聚丙烯的研究[J].高分子学报,2000(1):9-104.
    [46] 王旭,黄锐.PP/弹性体/纳米CaCO_3复合材料的研究[J].中国塑料,2000,14(6):34-38.
    [47] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [48] Chan ChiMing, Wu Jingshen, Li Jian-Xiong, et al. Polypropylene/calcium carbonate nanocomposites[J]. Polymer, 2002, 43(10): 2981-2992.
    [49] 任显诚,白兰英,王贵恒.纳米CaCO_3增强增韧聚丙烯的研究[J].化学世界,2000,41(2):83-87.
    [50] 高俊刚,王东,魏鑫丽.聚丙烯/纳米TiO_2复合材料的性能研究[J].塑料工业,2003,31(8):42-45.
    [51] 石璞,吴宏武,何和智等.PP/纳米SiO_2复合材料凝聚态结构的研究[J].塑料工业,2002,30(3):34-36.
    [52] 魏珊珊,张平,王霞瑜.尼龙6/纳米SiO_2复合材料力学性能研究[J].湘潭大学自然科学学报,2002,24(4):42-44
    [53] 张平,王霞瑜,魏珊珊等.尼龙6/无机粒子纳米复合材料直接制备方法[P].中国专利:ZL02139836.4.
    [54] Ou Yuchun, Yang Feng, Yu Zhong-Zhen. A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization [J]. Journal of Polymer Science Part B: Polymer Physics, 1998, 36(5): 789-795
    [55] Yang Feng, Ou Yuchun, Yu Zhongzhen. Polyamide 6/silica nanocomposites prepared by in situ polymerization [J]. Journal of Applied Polymer Science, 1998, 69(2): 355-361.
    [56] Usuki A, Kojoma Y, Kawasumi M, et al. Synthesis and characterization of a nylon 6-clay hybrid [J]. ACS Polymer Preprints, 1987, 28: 447-448.
    [57] 乔放,李强,漆宗能等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,(3):135-143.
    [58] Usuki A, Kojoma Y, Kawasumi M,et al. Synthesis of a nylon 6-clay hybrid [J]. Journal of Materials Research, 1993, 8(5): 1179-1184.
    [59] Kejoma Y, Usuki A, Kawasumi M, et al. One-pot synthesis of nylon 6-clay hybrid [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31(7): 1755-1758.
    [60] 赵竹第,李强,欧玉春等.尼龙6/蒙脱土纳米复合材料的制备、结构与力学性能的研究[J].高分子学报,1997,(5):519-523.
    [61] Okada A, Kawasumi M, Kurauchi T, et al. Synthesis and characterization of a nylon 6-clay hybrid [J]. Polymer Preprint, 1987, 28(2): 447-453.
    [62] Giannells E R. Polymer Layered Silicate nanocomposites [J]. Advanced Materials, 1996, 8(1): 29-35.
    [63] 刘竞超,李小兵,张华林.纳米二氧化硅增强增韧环氧树脂的研究[J].胶体与聚合物,2000,18(4):15-17.
    [64] 李小兵,刘竞超.超声波在制备钠米SiO_2/环氧树脂复合材料中的应用[J].热固性树脂,1999,14(2):19-22.
    [65] 郑亚萍,宁荣昌.纳米SiO_2环氧树脂复合材料性能研究[J].玻璃钢/复合材料,2001,(2):34-36.
    [66] Zheng Yaping, Zheng Ying, Ning Rongchang. Effects of nanoparticles SiO_2 on the performance of nanocomposites [J]. Materials Letters, 2003, 57(19): 2940-2944.
    [67] Shoichiro Yano, Tatsuro Ito, Kenichi Shinoda, et al. Properties and microstructures of epoxy resin/TiO_2 and SiO_2 hybrids [J]. Polymer International, 2005, 54(2): 354-361.
    [68] 董元彩,孟卫,魏欣.环氧树脂/二氧化钛纳米复合材料的制备及性能[J].塑料工业,1999,27(6):37-38.
    [69] 郑亚萍,王波.ZiO_2/环氧树脂纳米复合材料的研究[J].复合材料学报,2002,19(4):11-13.
    [70] Huang K S, Nien Y H, Chen J S, et al. Synthesis and properties of epoxy/TiO_2 composite materials [J]. Polymer Composites, 2006, 27(2): 195-200.
    [71] Zee R H, Huang Y H, Chen J J, et al. Properties and processing characteristics of dielectric-filled epoxy resins [J]. Polymer Composites, 1989, 10(4): 205-214.
    [72] 张楷亮,王立新.改性蒙脱石增强增韧环氧树脂纳米复合材料性能研究[J].中国塑料,2001,15(3):37-39.
    [73] 吕建坤,柯毓才,漆宗能.环氧/粘土纳米复合材料的形成机理与性能[J].高分子学 报,2000,(2):18-26.
    [74] 欧玉春,刚性粒子填充聚合物的增强增韧与界面相结构[J].高分子材料科学与工程,1998,14(2):12-15.
    [75] Zhou Yuanxin, Pervin F, Biswas M A, et al. Fabrication and characterization of montmorillonite clay-filled SC-15 epoxy [J]. Materials Letters, 2006, 60(7): 869-873.
    [76] Wang Lei, Wang Ke, Chen Ling, et al. Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite [J]. Composites Part A: Applied Science and Manufacturing, Available online 15 February 2006.
    [77] Luo Jyi-Jiin, Daniel I M. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites [J]. Composites Science and Technology, 2003, 63(11): 1607-1616.
    [78] LeBaron P C, Wang Zhen, Pinnavaia T J. Polymer-layered silicate nanocomposites: an overview [J]. Applied Clay Science, 1999, 15(1-2): 11-29.
    [79] Budiansky B. On the elastic moduli of heterogeneous materials [J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 223-227.
    [80] Hill R. Theory of mechanical properties of fibre-strengthened materials—Ⅲ, self-consistent model [J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 189-198.
    [81] Hill R. A self-consistent mechanics of composite materials [J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 213-222.
    [82] Christensen R M, Lo K H. Solutions for effective shear properties in the phase sphere and cylinder models [J]. Journal of the Mechanics and Physics of Solids, 1979, 27: 315-330.
    [83] Mori T, Tanaka K. Average stress in matrix and average elastic energy materials with misfitting inclusions [J]. Acta Metall, 1973, 21: 571-574.
    [84] Taya M, Chou T W. On two kinds of ellipaoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite [J]. International Journal Solids and Structures, 1981, 17: 553-563.
    [85] Benveniste Y. A new approach to the application of Mori-Tanaka's theory in composite materials [J]. Mechanical Material, 1987, 6: 147-157.
    [86] Boucher S. Modules effectifs de materiaux quasihomogenes et quasi isotropes constitutes d'une matrice elastique et d'inclusions elastiques Ⅱ Cas des concentrations finies en enclusions [J]. Revue M., 1976, 22(1): 1-8.
    [87] Roscoe R. The viscosity of suspensions of rigid spheres [J]. British Journal of Applied Physics, 1952, 3(8): 267-269.
    [88] Paul B. Prediction of elastic constants of multiphase materials [J]. Transactions of the Metallurgical Society of AIME, 1960, 218(1): 36-41.
    [89] Hashin Z, Strikman S. A variational approach to the theory of the elastic behavior of multiphase material [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2): 127-140.
    [90] Bensoussan A, Lions J L, Papanicolaou G. Asymptotic analysis for periodic structures, Studies in.Mathematics and Its Applications [M]. Amsterdam: North-Holland, 1978
    [91] Sanchez-Paleneia E. Non-homogeneous media and vibration theory, lecture notes in physics 127 [M]. Berlin: Springer, 1980
    [92] Bakhvalov N, Panasenko G. Homogenization: Averaging Processes in Periodic Media [M]. Kluwer, Dordrecht, The Netherlands, 1989.
    [93] Oleinik O A, Shamaev A S, Yosifan G A. Mathematical Problems Elasticity and Homogenization [M]. Amsterdam: North-Holland, 1992.
    [94] 陈作荣.三维编织复合材料弹性性能及周期性[D].北京航空航天大学博士论文,2000.
    [95] Hershey A V. The elasticity of an isotropic aggregate of anisotmpic cubic crystals [J]. Journal of Applied Mechanics, 1954, 21(3): 236-240.
    [96] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problem [J]. Proceedings of the Royal Society, Series A: Mathematical and Physical Science, 1957, 241: 376-396.
    [97] Budiansky B. On the elastic moduli of some heterogeneous materials [J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 223-227.
    [98] Wu T T. The effect of inclusion shape on the elastic moduli of a two-phase material [J]. International Journal of Solids and Structure, 1966, 2(1): 1-8.
    [99] Boucher S. On the effective moduli of isotropic two-phase elastic composites [J]. Journal of Composite Materials, 1974, 8(1): 82-89.
    [100] Christensen R M. Mechanical properties of composite materials [C]. In "Mechanics of Composite Materials-Recent Advances", Eds. Hashin Z & Herakovich T, Pergamon Press, 1982: 1-16.
    [101] Christensen R M. A critical evaluation for a class of micro-mechanics models [J]. Journal of the Mechanics and Physics of Solids, 1990, 38(3): 379-404.
    [102] Luo H A, Weng G J. On Eshelby's inclusion problem in a three-phase spherically concentric solid and a modification of Mori-Tanaka's method [J]. Mechanics of Composites, 1987, 6(4): 347-361.
    [103] Mclaughlin R. A study of the differential scheme for composite materials [J]. International Journal of Engineering Science, 1977,15(4): 237-244.
    [104] Norris A N. The mechanical properties ofplatelet reinforced composite [J]. Internaltional Journal of Solid and Structures, 1990, 26(5-6): 663-674.
    [105] Zimmerman R W. Elastic moduli of a solid containing spherical inclusions [J]. Mechanics of Materials, 1991, 12(1): 17-24.
    [106] Hashin Z. The differential scheme and its application to cracked materials [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(6): 719-734.
    [107] 杜善义,王彪.复合材料细观力学[M].北京:科学出版社,1998.
    [108] Hashin Z. The elastic moduli of heterogeneous materials [J]. Journal of Applied Mechanics, 1962, 29(1): 143-150.
    [109] Hill R. Elastic properties of reinforced solids: Some theoretical principle [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(5): 357-372.
    [110] Walpole L J. On bounds for the overall elastic moduli of inhomogeneous system—Ⅰ[J]. Journal of the Mechanics and Physics of Solids, 1966, 14(3): 151-162.
    [111] Kroner E. Bounds for effective elastic moduli of disordered materials [J]. Journal of the Mechanics and Physics of Solids, 1977, 25(2): 137-155.
    [112] Wills J R. Bounds and self-consistent estimates for the overall moduli of anisotropic composite [J]. Journal of the Mechanics and Physics of Solids, 1977, 25(3): 185-202.
    [113] Cioranescu D, Paulin J S J. Homogenization in open sets with holes [J]. Journal of Mathematical Analysis and Applications, 1979, 71: 590-607.
    [114] Meguid S A, Kalmkarov A L. Asymptotic homogenization of elastic composite materials with a regular structure [J]. International Journal Solids and Structures, 1994, 31: 303-316.
    [115] Devries F, Dumontet H, Duvant G, et al. Homogenization and damage composite structures [J]. International Journal for Numerical Methods in Engineering, 1989, 27: 285-298.
    [116] Jacob Fish, Qing Yu. Two-scale damage modeling of brittle composites. Composites Science and Technology, 2001,61: 2215-2222
    [117] M.M.Neves, H.Rodrigues, J.M.Guedes. Optimal design of periodic linear elastic microstructures. Computers and Structures, 2000,76: 421-429.
    [118] Guedes J M, Kikuchi N. Preprocessing and postprocossing for materials based on homogenization method with adaptive finite element methods [J]. Computer Method in Applied Mechanics and Engineering, 1990, 83(2): 143-198.
    [119] 刘书田,程耿东.球形空心材料导热性能预测研究[J].大连理工大学学报,1994,34(2):137-144.
    [120] 刘书田,程耿东.空心材料导热性能预测研究[J].计算结构力学及其应用,1994,11(2):147-153.
    [121] 刘书田,程耿东.基于均匀化理论的复合材料热膨胀系数预测方法[J].大连理工大 学学报.1995,35(5):451-457.
    [122] Murakami H, Macwal A, Hegemicr G A. A mixture theory with a director for linear elastodynamics of periodically laminated media [J]. International Journal of Solids and Structures, 1981, 17: 155-173.
    [123] Francfort G A. Homogenization and linear thermo-elasticity [J]. SIAM Journal on Mathematical Analysis, 1983, 14: 696-708.
    [124] Lene F, Leguillon D. Homogenized constitutive law for a partially cohesive composite material [J]. International Journal of Solids and Structures, 1982, 18: 443-458.
    [125] Takano K, Yuge K, Kikuchi N. Elasto-plastic analysis of composite materials using the homogenization method(1st report, formulation) [J]. Transactions of the Japan Society of Mechanical Engineers, 1995, 61: 2199-2205.
    [126] Yeong Moo Yi, Sang-Hoon Park, Sung-Kie Youn. Asymptotic homogenization of viscoelastic composites with periodic microstmctures [J]. International Journal of Solids and Structures, 1998, 35(17): 2039-2055.
    [127] Chung P W, Tamma K K, Namburu R R. Asymptotic expansion homogenization for heterogeneous media: Computational issue and applications [J]. Composites A: Applied Science and manufacturing, 2001, 32: 1291-1301.
    [128] 戴福洪,张博明,杜善义.基于均匀化方法的单向纤维增强体渗透率预报[J].力学学报,2004,36(6):709-713.
    [129] Hollister S J, Kiluchi N. A comparison of homogenization and standard mechanics analyses for periodic porous composites [J]. Computational Mechanics, 1992, 10: 73-95.
    [130] 冯森林.三维编织复合材料均匀化方法宏细观数值研究[D].中国科学技术大学博士论文,2000.
    [131] 李友云.颗粒随机分布复合材料物理与力学性能预测的多尺度分析方法[D].中国科学院数学与系统科学研究院博士论文,2004.
    [132] Hassani B, Hinton E. A review of homogenization and topology optimization Ⅰ— homogenization theory for media with periodic structure [J]. Computers & Structures, 1998, 69: 707-717.
    [133] 冯淼林,吴长春.基于三维均匀化方法的复合材料本构数值模拟[J].中国科学技术大学学报,2000,30(6):693-699.
    [134] Terada K, Ito T, Kikuchi N. Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method [J]. Computer Method in Applied Mechanics and Engineering, 1998, 153: 233-257.
    [135] Takano N, Y Ohnishi, M. Nishiyabu Z K. The formulation of homogenization method applied to large deformation problem for composite materials [J]. International Journal of Solids and Structures, 2000, 37: 6517-6535.
    [136] Hollister S J, Kiluchi N. A comparison of homogenization and standard mechanics analyses for periodic porous composites [J]. Computational Mechanics, 1992, 10: 73-95.
    [137] 王飞,庄守兵,虞吉林.用均匀化理论分析蜂窝结构的等效弹性参数[J].力学学报,2002,34(6):914-923.
    [138] Fish J, Nayak P, Holmes M H. Microscale reduction error indicators and estimators for a periodic heterogeneous medium [J]. Computational Mechanics, 1994, 14: 323-338.
    [139] 曹礼群,崔俊芝.复合材料拟周期结构的均匀化方法[J].计算数学,1999,21(3):331-334.
    [140] 刘书田,马宁.复合材料粘弹性本构关系与热应力松弛规律研究Ⅰ:理论分析[J].复合材料学报,2005,22(1):152-157.
    [141] 潘燕环,陈汝训.层合复合材料的损伤刚度分析[J].宇航学报,2000,21(3):88-93.
    [142] 潘燕环,嵇醒.单向复合材料损伤刚度的双重均匀化方法[J].同济大学学报:自然科学版,1997,25(6):623-628.
    [143] 董纪伟,孙良新,洪平.基于均匀化方法的三维编织复合材料等效弹性性能预测[J].宇航学报,2005,26(4):482-486.
    [144] 王晓军,蒋持平.混杂纤维复合材料横向剪切模量和体积模量的预测[J].常州工学院学报,2005,18(3):1-8.
    [145] 张宏涛,刘应华,徐秉业.周期性韧性复合材料的安定下限分析[J].清华大学学报:自然科学版,2005,45(2):267-270.
    [146] 袁红,钱江,王秀喜等.金属基纳米复合材料等效弹性模量的均匀化方法数值模拟[J].力学季刊,2003,24(4):567-571.
    [147] 陈文革,武松涛.超导磁体等效材料参数的有限元预测[J].应用力学学报,2003,20(2):83-87.
    [148] 张劲,张士诚.复合材料本构模拟的三维均匀化方法[J].岩石力学与工程学报,2002,21(B06):2149-2153.
    [149] 李华祥,刘应华,冯西桥.基于均匀化理论韧性复合材料塑性极限分析[J].力学学报,2002,34(4):550-558.
    [150] 张若京.纤维增强塑料的粘弹性参数[J].同济大学学报自科版,2002,30(4):446-451.
    [151] 张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法(Ⅰ)—局部RVE分析[J].复合材料学报,2001,18(4):93-97.
    [152] 张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法(Ⅱ)—宏观均匀化分析[J].复合材料学报,2001,18(4):98-102.
    [153] Oden J T, Zohdi T I. Analysis and adaptive modeling of highly heterogeneous elastic structures [J]. Computer Method in Applied Mechanics and Engineering, 1997, 148(3-4): 367-391.
    [154] Nguyen H V, Pastor J, Muller D. A method for predicting linear viscoelastic mechanical behavior of composites: A comparison with other methods and experimental validation [J]. European Journal of Mechanics A/Solids, 1995, 14, 939-960.
    [155] Yeong-Moo Yi, Sang-Hoon Park, Sung-Kie Youn. Design of microstmcture of viscoelastic composites for optimal damping characteristics [J]. International Journal of Solids and Structures, 2000, 37: 4791-4810.
    [156] Chung P W, Tamma K K, Namburu R R. A finite element thermo-viscoelastic creep approach for heterogeneous structures with dissipative correctors [J]. Finite Elements in Analysis and Design, 2000, 36: 279-313.
    [157] Chung P W, Tamma K K, Namburu R R. A micro/macro homogenization approach for viscoelastic creep analysis with dissipative correctors for heterogeneous woven-fabric layered media [J]. Composites Science and Technology, 2000, 60: 2233-2253.
    [158] Castaneda P P, Tiberio E. A second-order homogenization method in finite elasticity and applications to black-filled elastomers [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6-7): 1389-1411.
    [159] Jansson,S. Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure. International Journal of Solids and Structures, 1992, 29: 2181-2200.
    [160] Duvaut G, Nuc M. 1983. A new method of analysis of composite structure [C]. In: Ninth European Rotor Craft and Powered Lift Aircraft Forum, Stresa, Italy, Paper No. 88, 1983.
    [161] Bigourdan B, Chauchot P, Hassim A, et al. Homogenization for the design of cylindrical containers made of composite materials [C]. In: Baptiste, D. (Ed.), Mechanics and Mechanisms of Damage in Composites and Multi-Materials. Mechanical Engineering Publications, London, 1991: 203-212.
    [162] Takano N, Zako M. Three-dimensional microstmctural design of woven fabric composite material by homogenization method [C]. In: Proceeding ASME/JSME Pressure Vessels and Piping Conference, ASME-PVP, 302, 1995: 141-146.
    [163] Francfort G. A. Homogenization and mechanical dissipation in thermoelasticity [J]. Archives for Rational Mechanics and Analysis, 1986, 96: 265-293.
    [164] Aravas N, Cheng C, Ponte Castened P. Steady-state creep of fiber-reinforced composites: constitutive equations and computational issues [J]. International Journal of Solids and Structures, 1995, 32: 2219-2244.
    [165] X. Wu, N. Ohno. A homogenization theory for time-dependent nonlinear of composites with periodic internal structures [J]. International Journal of Solids and Structures, 1999,36:4991-5012
    [166] Ghosh S, Lee K, Moorthly S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model [J]. Computer Method in Applied Mechanics and Engineering, 1996, 132: 63-116.
    [167] Guinovart-Díaz R, Bravo-Castillero J, Rodriguez-Ramos R, et al. Modeling of elastic transversely isotropic composite using the asymptotic homogenization method [J]. Some comparisons with other models. Materials Letters, 2002,56(6): 8.89-894.
    [168] Chen Xiao-Hong, Mai Yiu-Wing. Micromechanics of rubber-toughened polymers. Journal Of Materials Science, 1998, 33: 3529- 3539.
    [169] 陈建康.粒子填充高聚物材料中微损伤演化和宏观本构关系[D].北京大学博士论文,1999.11
    [170] 黄筑平,陈建康,白树林等.动载荷下颗粒增强高聚物中的损伤演化[J].宁波大学学报:理工版,2003,16(4):403-409.
    [171] 唐春安,傅宇方,林鹏.颗粒增强复合材料基体破坏过程的数值模拟分析[J].复合材料学报,1999,16(3):110-117.
    [172] 张芮,卢锡年.球形粒子填充复合材料微观应力场的有限元分析[J].复合材料学报,1995,12(4):91-93
    [173] Tirosh J, Nachlis W, Hunston D. Strength behavior of toughened polymers by fibrous(or particulate) elastomers [J]. Mechanics of Materials, 1995, 19:329-342
    [174] LuSinien, Yan Lin, ZhuXiaoguang, QiZongneng. Microdamage and interfacial adhesion in glass bead-filled high-density polyethylene [J]. Journal of Materials Science, 1992, 27(17): 4633-4638.
    [175] 卢锡年,张芮.颗粒填充复合材料强韧化效应的力学分析[J].力学学报,1995,27(5):619-623.
    [176] 方岱宁,齐航.颗粒增强复合材料有效性能三维数值分析[J].力学学报,1996,28(4):475-482.
    [177] 方岱宁,刘铁旗.纤维增强高分子聚合物基复合材料有有效性能的三维数值分析[J].复合材料学报,1997,14(3):81-86.
    [178] 李银平,李长春,揭敏.橡胶颗粒填充高聚物增韧现象及机理研究[J].高分子材料科学与工程,1999,15(3):136-138.
    [179] Tsui C P, Tang C Y, Lee TC. Finite element analysis of polymer composites filled by interphase coated particles [J]. Journal of Materials Processing Technology, 2001, 117: 105-110.
    [180] 蔡为仑著,刘方龙等译.复合材料设计[M].北京:科学出版社,1989.
    [181] Lukkassen D, Persson L E. Some engineering and mathematical aspects on the homogenization method [J]. Composites Engineering, 1995, 5(5): 519-531.
    [182] Vollenberg P H T, Heikens D. Particle size dependence of the Young's modulus of filled polymers: Ⅰ. Preliminary experiments [J]. Polymer, 1989, 30(9): 1656-1662.
    [183] Hashin Z. Analysis of composite materials - a survey [J]. Journal of Applied Mechanics, 1983, (50): 481-505.
    [184] 胡更开,侯敬春.复合材料力学性能细观预测[J].北京理工大学学报,1995,15(3):265-270.
    [185] Li G, Ponte Castaneda P, Douglas A S. Constitutive models for ductile solids reinforced by rigid spheroidal inclusion [J]. Mechanics of Material, 1993, (15): 279-300.
    [186] Hassani B, Hinton E. A review of homogenization and topology optimization Ⅱ— analytical and numerical solution of homogenization equations [J]. Computers & Structures, 1998, 69:719-738
    [187] 曾攀.碳纳米管弯曲和拉伸等效弹性模量的计算分析[J].纳米技术与精密工程,2005,3(1):8-12
    [188] 贾有权主编.材料力学实验[M].北京:高等教育出版社,1984
    [189] 徐芝纶.弹性力学(上册)(第三版)[M].北京:高等教育出版社,1990
    [190] Ravichandran G. Crack tip shielding in elastic particulate composites undergoing damage [J]. Engineering Fracture Mechanics, 1998, 59(6): 713-723.
    [191] 余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [192] 潘燕环.渐近均匀化理论及其在复合材料力学中的应用研究[D].同济大学博士论文,1995.
    [193] 刘书田.复合材料性能预测与梯度功能材料优化设计[D].大连理工大学博士论文,1994.
    [194] Ghassemieh E. Micro-mechanical analysis of bonding failure in a particle-filled composite [J]. Composite Science and Technology, 2002, 62: 67-82.
    [195] 褚武扬.断裂力学[M].北京:科学出版社,1979.
    [196] Ghassemieh E. Micro-mechanical analysis of bonding failure in a particle-filled composite [J]. Composite Science and Technology, 2002, 62: 67-82.
    [197] A.S.Argon and R.E.Cohen. Mechanisms of toughening brittle polymers [J]. Materials science and engineering A, 1994, 176(1-2): 79-90.
    [198] 朱晓光,漆宗能.聚合物增韧研究进展[J].材料研究学报.1997,11(6):623-638.
    [199] Kikuchi N. Adaptive grid-design methods for finite element analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(1): 129-160.
    [200] Belytschko T, Fish J, Bayliss A. The spectral overlay on finite element for problems with high gradients [J]. Computer Methods in Applied Mechanics and Engineering, 1990, 81(1): 71-89.
    [201] Fish J, Guttal R. The s-version of finite element method for laminated composites [J]. International Journal for Numerical Methods in Engineering, 1996, 39(21): 3641-3662.
    [202] Takano Naoki, Zako Masaru, Ishizono Manabu. Multi-scale computational method for elastic bodies with global and local heterogeneity [J]. Journal of computer-Aided Materical Desigm, 2000, 7(1): 111-132.
    [203] Hashin Z. Thin interphase/imperfect interface in elasticity with application to coated fiber composites [J]. Journal of the Mechanics and Physics of Solids, 2002, 50(12): 2509-2537.
    [204] Mal A K, Bose S K. Dynamic elastic moduli of a suspension of imperfectly bonded spheres [C]. Proc. Cambridge Philos. Soc., 1975, 76: 587-600.
    [205] Benvensite Y. The effective mechanical behaviour of composite materials with imperfect contact between the constituents [J]. Mechanics of materials, 1985, 4(2): 197-208.
    [206] Hashin Z. Therrnoelastic properties of fiber composites with imperfect interface [J]. Mechanics of materials, 1990, 8(4): 333-348.
    [207] Hashin Z. The spherical inclusion with imperfect interface [J]. Journal of Applied Mechanics, 1991, 58(3): 444-449.
    [208] Hashin Z. Extremum principles for elastic heterogenous media with imperfect interface and their application to bounding of effective elastic moduli [J]. Journal of the Mechanics and Physics of Solids, 1992, 40(4): 767-781.
    [209] Lipton R, Vemescu B. Variational methods, siza effects and ectremal microgeometries for elastic composites with imperfect interface [J]. Mathematical Models and methods in Applied Science, 1995, 5(8): 1139-1173.
    [210] Benabou L, Abdelaziz Nait M, Benseddiq N. Effective properties of a composite with imperfectly bonded interface [J]. Theoretical and Applied Fracture mechanics, 2004, 41(1): 15-20.
    [211] 童金章,张清杰,符晶华.非完美界面复合材料的损伤界面能的研究[J].武汉工业大学学报,1998,20(3):104-107.
    [212] 童金章,关凌云,张清杰.非完美界面弹性复合材料中的微分几何方法[J].应用力学与数学,1998,19(9):805-814.
    [213] 童金章,张清杰,符晶华.非完美界面复合材料刚度下限相关式[J].武汉工业大学学报,1998,20(9):115-118.
    [214] 童金章,关凌云,南策文等.有限变形下含非完美界面复合材料有效模量的界限[J].复合材料学报,1999,16(2):140-146.
    [215] 童金章,南策文,武从贵等.有限变形下非完善界面复合材料有效模量的近似公式[J].武汉工业大学学报,1997,19(1):104-108.
    [216] 黄小华,童金章.非完美界面多边形夹杂复合材料弹性场的研究[J].武汉理工大学学报,2004,26(10):18-20.
    [217] 余湘彬,仲政.弱界面颗粒增强复合材料的有效弹性模量[J].同济大学学报,2000,28(3):257-261.
    [218] Christensen R M. Mechanics of Composite Materials [M]. New York: John Wiley, 1979
    [219] Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models [J]. Journal of the Mechanics and Physics of Solids, 1979, 27(4): 315-330.
    [220] 卢子兴.球形涂层粒子增强复合材料的有效模量[J].应用数学与力学,1998,19(10):921-929.
    [221] 卢子兴,黄筑平,王仁.基于三相球模型确定泡沫塑料有效模量[J].固体力学学报,1996,17(2):95-102.
    [222] 张淳源.粘弹性断裂力学[M].武汉:华中理工大学出版社,1994
    [223] 何曼君,陈维孝,董西侠.高分子物理[M].复旦大学出版社:1991.
    [224] 张平,尹久仁.聚合物基纳米复合材料跨层次本构理论模型[J].湘潭大学自然科学学报,2003,25(4):22-27.
    [225] 张平,邓旭辉等,高聚物多尺度结构模型[J].湘潭大学自然科学学报,2005,27(1):1-5.
    [226] 彭治汉,施祖培.塑料工业手册——聚酰胺[M].北京:化学工业出版社,2001.
    [227] Fish J.Multiscale Multiphysics Computadtional Solid Mechanics[C].大连计算力学会议,2004.
    [228] Nikolov S, Doghri I, Pierard O, et al. Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers [J]. Journal of the Mechanics and Physics of Solids, 2002, 50:. 2275-2302.
    [229] Sheng N, Boyce M C, Parks D M, et al. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle [J]. Polymer, 2004, 45: 487-506.
    [230] Fish J, Shek K. Multiscale analysis of composite materials and structures [J]. Composites Science and Technology, 2000, 60: 2547-2556.
    [231] Jikov V V, Kozlov S M, Oleinik O A. Homogenization of Differential Operators and Integral Functionals [M]. Springer Verlag, Berlin, 1994.
    [232] 曹礼群.材料物性的多尺度关联与数值模拟[J].世界科技研究与发展,2002,24(6):23-29.
    [233] 曹礼群,罗剑兰.多孔复合介质周期结构热传导和质扩散问题的多尺度数值方法[J].工程热物理学报,2000,21(5):610-614.
    [234] 施祖培,杨维榕,唐立春译.[日] 福本·修编.聚酰胺树脂手册[M].北京:中国石化出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700