金刚石衬底上ZnO薄膜的MOCVD生长及SAW器件的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO 材料是一种宽禁带的多功能半导体光电材料,在许多领域都具有广
    泛的用途。例如,可用于制作紫外发光管和激光器、紫外探测器、高频表面
    声波器件、透明导电电极和声光换能器等,所以一直倍受研究人员的关注。
    特别是 1996 年, ZnO 薄膜室温光泵浦紫外激射的获得,又掀起了研究 ZnO
    材料尤其是 ZnO 薄膜的热潮。随后 ZnO 薄膜材料的研究工作不断取得进展。
    许多研究小组先后报道了 P 型材料的制备,氧化锌 PN 结和发光管的实现,
    以及 ZnO 的多元合金材料研究,低损、高频 ZnO 基表面声波滤波器的应用
    等。本论文以 MOCVD 制备方法为基础,系统的研究了 ZnO 多层薄膜结构的生
    长特性,分析了这些结构的突出特点,并有针对性的制备了高频声表面波滤
    波器件,获得了较好的结果。
     本文系统地阐述了ZnO在结构、压电方面的特性;研究了以ZnO为基础
    的声表面波器件的基本特性,指出了高阻和平整的表面结构是制备声表面波
    器件的基本条件;分析了适合制备高频、低损声表面波器件所需的衬底材料;
    针对多层结构分析了器件的频率和温度特性;介绍了适合制备高质量ZnO 薄
    膜的新型等离子增强MOCVD 系统。该系统有许多创新之处,如利用DEZn
    和O2为源,采用分开通气方法,通过面向衬底座的喷枪通源;采用均匀结构
    电阻式加热器;采用无极变速高速旋转的衬底座;利用辅气路均匀下压气流
    抑制热上升气流等。该系能有效抑制预反应问题;解决了薄膜的生长均匀性
    问题;可利用等离子体发生装置对薄膜进行有效掺杂;适合制备高阻或P型
    ZnO 薄膜。
     首次使用MOCVD法在金刚石单晶衬底上生长了ZnO薄膜结构,使用气流
    两步法对生长进行了优化,X光衍射谱图表明薄膜具有单一的趋向性。表面
    分析表明慢速生长有利于籽晶的长大,PL谱分析和光吸收分析证实了样品具
    有较强的紫外发射峰,通过生长的优化后内部的缺陷浓度得到了相应的减少。
    通过拉曼散射测试进一步证明生长的ZnO/Diamond薄膜具有一定的组群对称
    性。
     在 MOCVD 法 生 长 中 , 通 过 生 长 温 度 和 气 流 的 调 整 , 改 善 了
     1
    
    
    吉 林 大 学 硕 士 学 位 论 文
    ZnO/Diamond/Si结构的薄膜质量,使晶粒取向性得到了改善。通过表面扫描
    电镜的分析对样品的表面形貌进行了分析。PL光谱比较分析表明,低温生长
    的薄膜紫外发光质量很差,而高温生长的样品中存在不同强度的深能级发光
    峰。不同样品的光电子能谱对比表明通过优化,样品中与氧缺陷有关的峰逐
    渐减弱,对于最终的样品获得了较好的化学计量比。电学测试显示高温下的
    样品具有高阻和弱P型导电特性。
     使用ZnO/Diamond/Si结构制备了声表面波滤波器件,获得了高阶模滤波
    频率0.8GHz的高频SAW滤波器。分析了不同波长和膜厚的器件对频率特性的
    影响,通过理论和实验分析表明,使用金刚石衬底后,表面波传播波速得到
    提高,滤波器的中心频率从600M上升到870M左右,分析表明在使用精细的
    光刻技术后,使用金刚石衬底有利于制备频率超过GHz的高频表面声波器件。
     2
ZnO is a direct wide-band gap semiconductor optical-electronic material with many
    applications, such as in ultraviolet laser, low-loss high-frequency surface acoustic wave (SAW)
    devices, buffer layers for III-nitride growth, and transparent electrode et al, which make it
    more attractive to many research groups for a long time. Especially in 1996, the upsurge in
    ZnO research is coming due to the realization of the light pumped exciton emitting and
    discovery of self-formed cavity. Subsequently, some groups make more progress in formation
    of the p type ZnO and p-n devices, the work in multi-element alloy materials were also
    expanded. In this paper, high quality ZnO thin films on different substrates have been
    obtained by MOCVD system designed for SAW application. At the same time, the properties
    and devices of SAW for ZnO films have been investigated in details, and good results have
    been achieved.
     First, the characteristics of the structure and piezoelectric are studied systematically by
    the author, especially for the SAW filter of ZnO. It concluded that the smoother surface and
    high resistivity were the first requisite of high performance SAW filter. The different substrate
    materials for SAW were discussed in this chapter, in which the diamond substrate is preferred
    for high frequency SAW device. The frequency and temperature characteristic were studied
    for multi-layer ZnO structure also.
     According to the principle of MOCVD and in order to solve the problem in ZnO growth
    process, new-type plasma enhanced MOCVD system has been designed and fabricated. The
    precursors ( DEZn and O2 ) have been introduced into the reactor by two gas lines,
    respectively. And the precursors arrive to the surface of sapphire substrate by two separated
    special injectors. The substrate holder can be rotated at high speed and is uniformly heated by
    a special resistive heater. In order to balance the thermal flow, N2 is introduced into the
    reactor uniformly from the upside. All above designs can reduce the pre-reaction of DEZn and
    O2 during the ZnO growth and uniform ZnO films may be grown by this MOCVD system.
    Furthermore, the plasma generator has been added to the MOCVD system in order to improve
    doping efficiency during ZnO growth process and obtain high resistivity or p-type ZnO films.
     3
    
    
    吉 林 大 学 硕 士 学 位 论 文
     First, high-quality ZnO thin films have been grown on single-crystal Diamond substrates
    with (111) orientation, by low-pressure metal–organic chemical vapour deposition. X-ray
    diffraction spectra and photoluminescence (PL) spectra clearly showed that the quality of
    ZnO films was improved by two-step growth method. Strong ultraviolet emissions and weak
    deep-level emissions with different intensity were both observed in room-temperature PL
    spectrum. The change of surface morphology were also studied by atomic force microscopy
    (AFM). Raman scattering was performed at room temperature. The E2, A1(TO) and E1(TO)
    mode peaks were seen at 437.46, 383 and 414.87cm-1, which indicated a high crystalline
    integrality of our samples.
     Piezoelectric ZnO layers with high resistivity for surface acoustic wave applications
    have been prepared on polycrystalline Diamond/Si substrates with (111) orientation by
    Metal-Organic Chemical Vapour Deposition. The characteristics of the films are optimized
    through different growth methods. The comparative study of X-ray diffraction spectra and
    scanning electron microscopy shows that the final-prepared ZnO films had better c-axis
    consistency. Zn and O elements in the final prepared ZnO films are investigated through x-ray
    photoelectron spectroscopy, according to the statistical results, the Zn/O ratio is near 1.
    Raman scattering is also performed in back scattering configuration, E2 mode is observed in
    final films, which is coincident with the group symmetry for the ZnO crystal structure.. The
    resistivity of the films is also enhanced via the mo
引文
1. Pearton, SJ, Abernathy, CR, Thaler, GT, et al., “Wide bandgap GaN-based
     semiconductors for spintronics”, J PHYS-CONDENS MAT 16 (7): R209-R245 FEB 25
     2004
    2. Hiramatsu, K., and Akasaki, I. "P-Type conduction in Mg-Doped GaN Treated with
     Low-Energy Electron Beam Irradiation(LEEBI)" Jpn. J. Appl. Phys. 28,L2112(1989).
    3. W. E. Carlos, E. R. Glaser, T. A. Kennedy, S. Nakamura."Paramagnetic resonance in
     GaN-based light emitting diodes" Applied Physics Letters, 67, pp. 2376-2378, (1995).
    4. Poon, David. "Cooperative Research Centre for the Development of III-V Nitride
     Optoelectronic Components." The Hong Kong Polytechnic University. 1999.
    5. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa:
     “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films
     at room temperature”, Solid State Communications, 103, 459-464 (1997).
    6. Jin-Bock Lee, Hye-Jung Lee, Soo-Hyung Seo, Jin-Seok Park, Characterization of
     undoped and Cu-doped ZnO films for surface acoustic wave applications, Thin Solid
     Films, 398–399(2001) 641–646.
    7. Michio Kadota, Toshinori Miura, Makoto Minakata, Piezoelectric and optical properties
     of ZnO films deposited by an electron–cyclotron-resonance sputtering system, Journal of
     Crystal Growth, 237–239(2002) 523–527.
    8. G. Heilnd, E. Mollwo, and F. Stockmann, in Solid State Physics, F. Seitz and D. Turnbull,
     editors, Vol. 8, 254 (1959)
    9. Xinqiang Wang. Shuren Yang, Jinzhong Wang, Jingzhi Yin, Zongyou Yin, Mingtao Li,
     Guotong Du. Characteristics of ZnO films by MOCVD. Proceeding of SPIE, APOC,
     2001, 11 V. 4580 p.445.
    10. Y. Liu, C. R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxial ZnO films
     grown by MOCVD. J. of Electronic Materials. 29(1), (2000) 60
    11. K Iwata, P Fons, A Yamada, K Matsubara, S Niki, Nitrogen-induced defects in ZnO : N
     grown on sapphire substrate by gas source MBE. Journal of Crystal Growth 209: 2-3
     (2000) 526-531
     50
    
    
    吉 林 大 学 硕 士 学 位 论 文
    12. Kazunori Minegishi, Yasushi Koiwai, Yukinobu Kikuchi, et al, Growth of p-type Znic
     Oxide Films by Chemical Vapor Deposition. Jpn. J. Appl. Phys. Vol.36 (1997)L1453
    13. Yamamoto, T.; Katayama-Yoshida, H.,Physics and control of valence states in ZnO by
     codoping method. Physica B: Condensed Matter v 302-303 (2001) 24-27
    14. Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, H.W. White, Synthesis of p-type
     ZnO films. J. of Crystal Growth 216 (2000) 330-334
    15. M. Joseph, H. Tabata, H. Saeki, K. Ueda and T. Kawai, Fabrication of the low-resistive p-
     type ZnO by codoping method, Physica B: Condensed Matter 302-303 (1-4) (2001) p.
     140
    16. Xin-Li Guo, Hitoshi Tabatga, Tomoji Kawai, J. Cryst. Growth. 223 (2001) 135-139
    17. A. V. Singh and R. M. Mehra, p-type conduction in codoped ZnO thin films, Journal of
     Applied Physics, Vol. 93, No.1, (2003)396
    18. Y. R. Ryu and T. S. Lee, Fabrication of homostructural ZnO p-n junctions and ohmic
     contacts to arsenic-doped p-type ZnO, Applied Physics Letters, Vol.83, No.19, (2003)
     4032
    19. Hideaki Nakahata, Kenjiro Higaki, Akihiro Hachigo, et al. High Frequency
     Surface Acoustic Wave Filter Using ZnO/Diamond/Si Structure. Jpn. J. Appl.
     Phys. 33 (1994) 324-328
    20. Hideaki Nakahata, Akihiro Hachigo, Satoshi Fujii and Shinichi Shikata,
     Equivalent Circuit Parameters of Surface-Acoustic-Wave Interdigital
     Transducers for ZnO/Diamond/ and SiO2/ZnO/Diamond Structures, Jpn. J.
     Phys. Vol. 41 (2002) 3489
    21. Z.K. Tang, G. K. L.Wong, P. Yu, et al. Room-temperature ultraviolet laser
     emission fromself-assembled ZnO microcrystalline thin films. Appl. Phys.
     Lett., 72(1998), No.25, p3270
    22. Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu,
     Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang,
     Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292, (2001)
     1897
    23. H. Fabricius, T. Skettrup and P. Bisgaard, Ultraviolet detectors in thin
     51
    
    
    吉 林 大 学 硕 士 学 位 论 文
     sputtered ZnO films. Appl. Optics 25, (1986) 2764
    24. Y. Liu, C. R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxial
     ZnO films grown by MOCVD. Joural of Electronic Materials. 29(1), (2000)
     60
    25. S. Liang, H. Sheng, Y. Liu, Z. Hou, Y. Lu and H. Shen, ZnO Schottky
     ultraviolet photodetectors, J. Cryst. Growth. 225(2-4), (2001) 110-113
    26. M. Chen, Z.L. Pei, X. Wang et al. Structural, electrical, and optical properties of
     transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering.
     J. Vac. Sci. Technol. A 19(3), (2001) 963-97
    27. IIInternational Tables for X-ray crystallography, Volume 1, The International Union of
     Crystallography, Kynoch Press, England, 1965
    28. Lord Rayleigh, Proc. London Math, Soc, 17 (1885) 4
    29. 日本电子材料工业会,声表面波器件及其应用,科学出版社 P14
    30. W. P. Mason, Physical Acoustics and the properties of solids (Van Nostrnad, New York,
     1958)
    31. J. J. Campbell and W. R. Jones, IEEE Trans. Sonics Ultrasonics, SU-15 (1968) 209
    32. K. A. Ingebrigtsen: Surface Waves in Piezoelectrics, J. Appl. Phys., 40 (1969) 2681
    33. Ken-ya Hashimoto 著,王景山等译,声表面波器件模拟与仿真,国防工业出版社
    34. T. Mitsuyu, S. Ono, and K. Wasa, J. Appl. Phys. 51 (1980) 2464
    35. 日本电子材料工业会,声表面波器件及其应用,科学出版社 P112
    36. W. I. Park, Gyu-Chui Yi, and H. M. Jang, Metalorganic vapor-phase epitaxial growth and
     photoluminescent properties of Zn1-xMgxO(0≤x≤0.49) thin films. Appl. Phys. Lett.
     79(13), (2001), p.2022
    37. Field J E 1979 The Properties of Diamond (Oxford: Academic)
    38. Ken-ya Hashimoto 著,王景山等译,声表面波器件模拟与仿真,国防工业出版社
    39. Changzhi Gu, Z. Jin, C. Wang, G. Zou, Y. Sakamoto, M. Takaya, Diamond and Related
     Materials 7 (1998) 765
    40. 翁寿松,毛立平,声表面波滤波器初析,微电子技术,Vol. 27,No.3,1999
    41. 任天令,杨磊,刘理天,1.1GHz声表面波滤波器的设计和制作,压电与声光,Vol.24,
     No.2,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700