中心支撑钢框架的结构影响系数和位移放大系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强震作用下结构要进入弹塑性,具有一定的耗能能力,其底部剪力要明显低于弹性反应的底部剪力。现代抗震设计利用结构的耗能和延性,引入结构影响系数对设防烈度下的弹性反应进行折减,以此作为结构设计时的地震作用。
     本文研究中心支撑钢框架的结构影响系数R和位移放大系数C_d。首先对一榀三层单跨的试验模型进行了静力推覆试验研究,然后在分析局部屈曲的影响及有限元模型得到验证的基础上进行了24个中心支撑钢框架算例的静力推覆分析和增量动力分析,最后对阻尼比,支撑长细比,横梁不平衡力调整和数据的处理方式等四个影响因素进行了研究。
     通过试验模型的静力推覆试验,研究中心支撑钢框架的抗侧刚度、延性、极限承载力及破坏模式,观察支撑的屈服及屈曲现象。试验结果表明,受压支撑屈曲会导致整体结构抗侧刚度显著降低,但其水平承载力并没有显著降低,仍可以维持屈曲前的水平。中心支撑钢框架中受压支撑屈曲后,结构还具有较好的延性。另外,试验结果也验证了用于本文中心支撑钢框架分析的有限元模型的正确性。
     基于静力推覆分析和改进的能力谱方法,对层数不超过12层的人字形、V形、SX形和单斜杆形中心支撑钢框架进行了系统研究,详细考察了水平力加载模式、支撑形式、层数和跨数对中心支撑钢框架结构影响系数R、延性系数R_μ、超强系数R_Ω和位移放大系数C_d的影响。分析结果表明,随着结构层数的增加,高阶振型的影响逐渐增加,可以通过计算前三阶振型的等效振型来适当地考虑高阶振型的影响。跨数和层数对各系数的影响都很小。对于所研究的这四类支撑形式不同的中心支撑钢框架,结构影响系数R由大到小的排序为:单斜杆形中心支撑钢框架>V形中心支撑钢框架>SX形中心支撑钢框架>人字形中心支撑钢框架。
     基于增量动力分析,对所得到的对应多条地震波的结构基底剪力和顶点位移曲线进行多项式拟合,得到结构的IDA能力曲线;以此为基础,系统研究了支撑形式、层数和跨数对中心支撑钢框架结构影响系数R、延性系数R_μ、超强系数R_Ω和位移放大系数C_d的影响。分析结果表明,层数和跨数的影响很小,可以忽略不计。结构影响系数R中结构超强系数R_Ω所占的比重明显大于结构延性系数R_μ。
     通过对结构阻尼比、支撑长细比、横梁不平衡力调整和数据的处理方式等四个影响因素进行研究,结果表明结构阻尼比增加,结构影响系数R和位移放大系数C_d都逐渐增加。中心支撑钢框架中支撑长细比增加,结构影响系数R逐渐减小,位移放大系数C_d缓慢增加。支撑受压屈曲之后的剩余承载力可取为其屈曲承载力的70%,横梁所受到的不平衡集中力的大小可取为受拉支撑抗拉承载力的竖向分量减去受压支撑屈曲压力竖向分量的70%。采用基于人工神经网络的曲线拟合,能够得到更合理的IDA能力曲线,从拟合曲线可以看出,结构在中震下达到屈服,屈服后将主要依靠延性来抵抗地震的作用。
     本文在试验和有限元分析的基础上,对中心支撑钢框架结构的抗震设计给出以下建议:参考国外规范,增加特殊中心支撑钢框架这一延性较好的中心支撑钢框架结构类型。如采用《建筑抗震设计规法》(GB50011-2001)中的小震弹性地震力的计算方法,可以引入一个考虑不同结构延性差别的地震力延性调整系数μ;如采用《建筑工程抗震形态设计通则》(试用)(CECS160:2004)中利用结构影响系数C(这里的C与本文中的R互为倒数关系)的方法,可以取中心支撑钢框架的结构影响系数为0.25,位移放大系数为5.0。
The structures will behave elastoplastic under strong earthquake and have the ability to dissipate energy,so the base shear will be much smaller than that of the elastic response.The ability of energy dissipation and ductility are made use of in modern seismic design,and the Response Modification Factor(R) is introduced to reduce the elastic response under seismic fortification intensity.The reduced values are used as the seismic action for structural design.
     The Response Modification Factor(R) and Displacement Amplification Factor (C_d) of Concentrically Braced Steel Frames(CBSF) were researched in this paper. Firstly,the Pushover test of the experimental model was done.And then the Pushover Analysis and Incremental Dynamic Analysis(IDA) of 24 CBSFs were carried out after analyzing the influence of local buckling and verifying the finite element method(FEM) models.Lastly,four influence factors,such as damping ratio,slenderness ratio of braces, modification of unbalanced forces on beams and data handling methods,were investigated.
     The lateral rigid,ductility,limit beating capacity and failure mode were researched and the yielding and buckling phenomenon were observed through the pushover test. The test results indicated that the lateral rigid of the structure would decrease markedly after the compressive braces buckled,but the horizontal bearing capacity would not decrease markedly and maintained the level before buckling,and the ductility of CBSFs was good.Furthermore,the test results also verified the valid of the FEM models used in this paper.
     Based on Pushover analysis and modified Capacity Spectrum Method(CSM), researches were carded out on inverted V-CBSFs,V-CBSFs,SX-CBSFs and diagonal lined-CBSFs that were no more than 12 stories.The influences of model of applying lateral force,brace shape,number of stories,and number of spans on the values of R, Ductility Factor(R_μ),Overstrength Factor(R_Ω) and C_d of CBSFs were investigated detailedly.The analysis results indicated that the influence of higher mode was increased with the stories,and the influences can be accounted for by calculating the equivalent mode of the first three modes.The influences of the number of stories and spans on the values of R,R_μ,R_Ωand C_d was little.For these four types of CBSFs, the arrangement according to the descending order of the values of R was diagonal lined-CBSFs,V-CBSFs,SX-CBSFs and inverted V-CBSFs.
     Based on IDA,the IDA capacity curves were drawn using the results of polynomial fitting.Then the influences of brace shape,number of stories,and number of spans on the values of R,R_μ,R_Ωand C_d of CBSFs were investigated systematically.The analysis results indicated that the influences of the number of stories and spans on the values of R,R_μ,R_Ωand C_d was so little that the difference could be ignored.In the composition of the values of R,the values of R_Ωoccupied a much bigger proportion than the values of R_μ.
     Four influence factors were studied,which were damping ratio,slenderness ratio of braces,modification of unbalanced forces on beams and data handling methods.The analysis results indicated that the values of R and C_d increased with the increasing of damping ratio.With the increasing of slenderness ratio of braces in CBSFs,the values of R decreased gradually,but the values of C_d increased gradually.The residually compressive bearing capacity was 70%of the buckled bearing capacity after the compressive braces buckled,so the magnitude of the unbalanced forces on beams was the vertical composition of tensile bearing capacity in tensile braces minus 70%of the vertical composition of the buckled bearing capacity in the compressive braces. Using the curve fitting based on Artificial Neural Networks(ANN),the more reasonable IDA capacity curves could be obtained.From the fitting curves,it was obvious to conclude that the structures would yield under the seismic fortification intensity,and the structures would depend primarily on the ductility to resist earthquake action after buckled.
     On the basis of the tests and FEM analysis,some suggestions on seismic design of CBSFs were given.Referring to many foreign specifications,a new type of special CBSF with good ductility should be added in our codes.If the method for calculating the seismic action prescribed in the Code for Seismic Design of Buildings (GB50011-2001) was adopted,a ductility modified factor,μ,was introduced to account for the difference of ductility for different structures.If the C(here the values of C was the inverse of the values of R discussed in this paper.) in the General Rule for Performance-Based Seismic Design of Buildings(CECS 160:2004) was adopted,the C=0.25 and Cd=5.0 for CBSFs.
引文
[1.1]中华人民共和国国家标准.《中国地震动参数区划图》(GB 18306-2001)[S].北京:中国标准出版社,2001
    [1.2]国家地震局.中国地震烈度区划图(比例尺1,4000000)及说明书[M].北京:地震出版社,1992.
    [1.3]杨俊芬,张凡,顾强.人字形中心支撑钢框架的结构影响系数研究[J].建筑结构,2007,37(10):46-49
    [1.4]杨俊芬,顾强.抗震设计中的结构影响系数及其研究进展[J].地震工程与工程振动,2008,28(4):58-63
    [1.5]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [1.6]李国强,孙飞飞.关于钢结构抗震存在的问题及建议[J].地震工程与工程振动,2006,26(3):108-114
    [1.7]中国工程建设标准化协会标准.《建筑工程抗震性态设计通则》(试用)(CECS160:2004)[S],北京:中国计划出版社,2004
    [1.8]翟长海,谢礼立.抗震规范应用强度折减系数的现状及分析[J].地震工程与工程振动,2006,26(2):1-7
    [1.9]Whittier.International Conference of Building Officials.Uniform Building Code(1997edition),vol.2:structural engineering design provisions[S].California.1997
    [1.10]European Committee for Standardization.Eurocode 8:Design of Structures for Earthquake Resistance[S].Brussels:CEN,2003.
    [1.11]Chia-Ming Uang.Establishing R(or Rw) and Cd factors for building seismic provisions[J],Journal of Structural Engineering,1991,117(1):19-28
    [1.12]中华人民共和国国家标准.工业与民用建筑抗震设计规范(TJ11-78)[S].中国建筑工业出版社,北京,1979
    [1.13]中华人民共和国国家标准.建筑抗震设计规范(GBJ11-89)[S].北京:中国建筑工业出版社,1989
    [1.14]李成.多层抗弯钢框架的结构影响系数和位移放大系数[D],西安:西安建筑科技大学博士学位论文,2008
    [1.15]丰定国,王清敏,钱国芳等.工程结构抗震[M],北京:地震出版社,1994.12
    [1.16]童根树.钢结构设计方法[M].北京:建筑工业出版社,2007
    [1.17]周云,宗兰,张文芳等.土木工程抗震设计[M].北京:科学出版社,2005
    [1.18]NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures[S],1997.
    [1.19]NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures[S],2000.
    [1.20]Seismology Committee,Structural Engineers Association of California.Recommended Lateral Force Requirements and Commentary[S].
    [1.21]Anil K.Chopra & Emesto F.Cruz.Evaluation of building code formulas for earthquake forces[J],Journal of Structural Engineering,1986,112(8):1881-1899
    [1.22]Samar A.Barakat,Abdallah I.Husein Malkawi & Anis S.Al-Shatnawi.A Step Towards Evaluation of the Seismic Response Reduction Factor in Multistorey Reinforced Concrete Frames[J],Natural Hazards,1997,16(1):65 -80
    [1.23]M.A.Rahgozar & J.L.Humar.Accounting for overstrength in seismic design of steel structures[J],Canadian Journal of Civil Engineering,1998,25(1):1-15
    [1.24]Mahmoud R.Maheri & R.Akbari.Seismic behaviour factor,R,for steel X-braced and knee-braced RC buildings[J],Engineering Structures,2003,25(12):1505-1513
    [1.25]A.J.Kappos.Evaluation of behaviour factors on the basis of ductility and overstrength studies[J],Engineering Structures,1999,21(9):823-835
    [1.26]Jinkoo Kim & Hyunhoon Choi,Response modification factors of chevron-braced frames[J],Engineering Structures,2005,27(2):285-300
    [1.27]E.S.Mistakidis.Evaluation of the total ductility in steel structures through a nonconvex energy optimization approach[J],Engineering Structures,1999,21(9):810-822
    [1.28]A.Reyes-Salazar,A.Haldar,& M.R.Romero-L(?)pez.Force reduction factors for SDOF and MDOF systems[A],8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability[C],Berkeley:California,2000,58-65
    [1.29]Y.H.Chai,P.Fajfar & K.M.Romstad.Formulation of duration-dependent inelastic seismic design spectrum[J],Journal of Structural Engineering,1998,124(8):913-921
    [1.30]Andrew Whittaker,Gary Hart & Christopher Rojahn.Seismic Response Modification Factors[J],Journal of Structural Engineering,1999,125(4):438-444
    [1.31]S.H.Song & Y.K.Wen.Redundancy of dual systems under earthquake loads[A],8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability[C],Berkeley:California,2000,1-6
    [1.32]Y.K.Wen & S.H.Song.Structural reliability/redundancy under earthquakes[J],Journal of Structural Engineering,2003,129(1):56-67
    [1.33]何若全,顾强,孙国华.关于钢结构抗震设计中结构影响系数的讨论[J],苏州科技学院学报(工程技术版),2004,17(4):29-32
    [1.34]中华人民共和国国家标准.工业与民用建筑抗震设计规范(试行)(TJ11-74)[S].中国建 筑工业出版社,北京,1974
    [1.35]顾强,何若全,苏明周.钢结构的地震作用[J].苏州科技学院学报(工程技术版),2005,18(2):1-5
    [1.36]卓卫东,范立础.结构抗震设计中的强度折减系数研究[J],地震工程与工程振动,2001,21(1):84-88
    [1.37]翟长海.最不利设计地震动及强度折减系数研究[D].哈尔滨:哈尔滨工业大学,2005
    [1.38]翟长海,谢礼立.近场脉冲效应对强度折减系数的影响分析[J].土木工程学报,2006,39(7):15-18
    [1.39]翟长海,谢礼立.考虑设计地震分组的强度折减系数的研究[J].地震学报,2006,28(3):284-294
    [1.40]翟长海,谢礼立.多自由度体系效应对强度折减系数的影响[J].工程力学,2006,23(11):33-37
    [1.41]周靖,蔡健,方小舟.钢筋混凝土结构抗震强度折减系数的谱分析[J].华南理工大学学报(自然科学版),2006,34(2):100-106
    [1.42]周靖,蔡健,方小舟.剪切型结构的抗震强度折减系数研究[J].地震工程与工程振动,2008,28(2):64-71
    [1.43]黄金桥.钢结构弹塑性动力学及抗震设计理论研究.杭州:浙江大学博士学位论文,2005
    [1.44]赵永峰,童根树.修正Clough滞回模型下的地震力调整系数[J].土木工程学报,2006,39(10):34-41
    [1.45]童根树,赵永峰.动力P-Δ效应对地震力调整系数的影响[J].浙江大学学报(工学版),2007,41(1):120-125
    [1.46]徐春兰,顾强.多层抗弯钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2007,20(1):10-14
    [1.47]余翔,顾强.X型中心支撑钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2007,20(1):15-20
    [1.48]王栉枫,何若全.V型中心支撑钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2007,20(2):1-5
    [1.49]沙广璟,何若全.K型中心支撑钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2007,20(4):1-5
    [1.50]王二标,顾强.K型偏心支撑钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2007,20(3):10-14
    [1.51]李蕾,何若全,王栉枫.不同场地下多层钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2008,21(2):6-9
    [1.52]任云峰,顾强.K型偏心支撑钢框架结构影响系数[J].苏州科技学院学报(工程技术 版),2008,21(2):1-5
    [1.53]邵志恒.X型框架—中心支撑钢框架的结构影响系数[D].苏州:苏州科技学院硕士学位论文,2008
    [1.54]李成,徐柏荣,顾强.抗弯钢框架结构影响系数研究[J].建筑结构,2007,37(10):43-45
    [1.55]邵建华.抗弯钢框架-钢板剪力墙的结构影响系数与位移放大系数研究[D].南京:河海大学博士学位论文,2008
    [1.56]彭观寿,高轩能.基于性能的钢结构抗震设计理论与方法[J].钢结构,2007,22(1):49-54
    [1.57]刘文渊,何若全.阻尼比对强度折减系数的影响[J].苏州科技学院学报(工程技术版),2007,20(4):6-11
    [1.58]童根树.与抗震设计有关的结构和构件的分类及结构影响系数[J].建筑科学与工程学报,2007,24(3):65-75
    [1.59]童根树、赵永峰.中日欧美抗震规范结构影响系数的构成及其对塑性变形需求的影响[J].建筑钢结构进展,2008,10(5):53-62
    [1.60]陈炯,路志浩.论地震作用和钢框架板件宽厚比限值的对应关系(上)—我国规范与国际主流规范的地震作用比较[J].钢结构,2008,23(5):38-44
    [1.61]陈炯,路志浩.论地震作用和钢框架板件宽厚比限值的对应关系(下)—截面等级及宽厚比限值的界定[J].钢结构,2008,23(6):51-58
    [1.62]Chia-Ming Uang & Ahmed Maarouf,Deflection Amplification factor for seismic design provisons[J],Journal of Structural Engineering,1994,120(8):2423-2436
    [1.63]Paola Bazzurro,etal,"Three Proposals for characterizing MDOF nonlinear Seismic response"[J],Journal of Structural Engineering,1998,124(11):1281-1289
    [1.64]Miranda E.Inelastic displacement ratios for structures on firm sites[J].Journal of Structural Engineering,2000,126(10):1150-1159
    [1.65]Miranda E.Estimation of inelastic deformation demands of SDOF systems[J].Journal of Structural Engineering,2001,127(9):1005-1012
    [1.66]Miranda E,Ruiz-Garcia J.Evaluation of approximate methods to estimate maximum inelastic displacement demands[J].Earthquake Engineering and Structural Dynamics,2002,31(3):539-560
    [1.67]Akkar S D,Miranda E.Statistical evaluation of approximate methods for estimating maximum deformation demands on existing structures[J].Journal of Structural Engineering,2005,131(1):160-172
    [1.68]夏洪流,李英明,杨溥等.罕遇地震作用下SDOF结构位移响应的统计特性分析[J].重庆建筑大学学报(增刊),2000,22:139-143
    [1.69]肖明葵,王耀伟,严涛等.抗震结构的弹塑性位移谱[J].重庆建筑大学学报(增刊),2000,22:34-40
    [1.70]肖明葵,白绍良,刘纲等.求弹塑性位移谱的一种简化方法[J].重庆大学学报,2002,25(7):99-103
    [1.71]孙亚民.抗震结构非弹性位移估计研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006.
    [1.72]连尉安.焊接工字形钢支撑低周疲劳性能及其应用研究[D],哈尔滨:哈尔滨工业大学博士学位论文,2006.3
    [1.73]中华人民共和国行业标准.高层民用建筑钢结构技术规程(JGJ99-98)[S].北京:中国建设工业出版社,1998
    [1.74]American National Standard.ANSIIAISC 341-02 Seismic Provisions for Structural Steel Buildings.American Institute of Steel Construction,Inc.2002
    [1.75]A.M.Remennikov,W.R.Walpole.A note on compression strength reduction factor for a buckled strut in seismic-resisting braced system[J].Engineering Structures.1998,20(8):779-782
    [1.76]X.Tang,S.C.Goel.Brace fractures and analysis of phase Ⅰ structure.Journal of Structural Engineering[J].1989,115(8):1960-1976
    [1.77]AISC.Load and Resistance Factor Design Specification for Structural Steel Buildings[S].Chicago:1999
    [1.78]AIJ.Recommendation for Limit State Design of Steel Structures[S].Tokyo:1998
    [1.79]中华人民共和国国家标准.钢结构设计规范(GB50017-2003)[S].北京:中国计划出版社,2003
    [1.80]吴香香.多层薄柔钢框架的抗震设计[D],上海:同济大学,200
    [1.81]S.C.Goel,A.A.El-Tayem.Cyclic load behavior of angle X-bracing[J].Journal of Structural Engineering.1986,112(11):2539-2555
    [1.82]K.Ikeda,S.A.Mahin and S.N.Dermitzkis.Phenomenological modeling of steel braces under cyclic loading[R].Earthquake Engineering Research Center,1984
    [1.83]P.Singh.Seismic behavior of braces and braced steel frames[D].Michigan:University of Michigan.1977
    [1.84]K.Ikeda,S.A.Mahin.Cyclic response of steel braces[J].Journal of Structural Engineering.1986,112(2):361-377
    [1.85]P.Soroushian,M.S.Alawa.Hysteretic modeling of steel struts:Refined physical theory approach[J].Journal of Structural Engineering.1990,116(11):2916-2932
    [1.86]A.M.Remennikov,W.R.Walpole.Modeling the inelastic cyclic behaviour of a bracing member for work-hardening material[J].International Journal of Solids And Structures. 1997,34(27):3491-3515
    [1.87]M.K.Boutros.Cyclic behaviour of partly plastic pinned circular tubes:Ⅰ.Analytical model [J].Thin-Walled Structures.1999,33(1):67-83
    [1.88]M.K.Boutros.Cyclic behaviour of partly plastic pinned circular tubes:Ⅱ.Testing and verification of the model[J].Thin-Walled Structures.1999,33(1):82-98
    [1.89]M.K.Boutros.Nonlinear SDOF element for hysteretic analysis of pinned braces[J].Journal of Engineering Mechanics.1991,117:941-953
    [1.90]E.Mizuno,Q.Y.Liu.A two-surface model in force space for steel members[J].Journal of Constructional Steel Research.1998,48:107-122
    [1.91]申林,顾强,苏明周.高层结构钢支撑循环性能的研究和现状[J].西安建筑科技大学学报.2000,32(3):213-219
    [1.92]申林.高层结构钢支撑滞回性能分析及抗震设计对策[D],西安:西安建筑科技大学博士学位论文,2000
    [1.93]董永涛.单向荷载和循环荷载作用下钢板件及板组的屈曲性能研究.哈尔滨:哈尔滨建筑大学博士学位论文.1995
    [1.94]J.Jin,S.El-Tawil.Inelastic cyclic model for steel braces[J].Journal of Engineering Mechanics.2003,129(5):548-557
    [1.95]K.Kayvani,F.Barzegar.Hysteretic modeling of tubular members and offshore platforms [J].Engineering Structures.1996,18(2):101-117
    [1.96]W.Gan,J.F.Hall.Static and dynamic behavior of steel braces under cyclic displacement[J].Journal of Engineering Mechanics.1998,124(1):87-93
    [1.97]D.A.Foutch,S.C.Goel and C.W.Roeder.Seismic testing of full-scale steel building-Part Ⅰ[J].Journal of Structural Engineering.1987,113(11):2111-2129
    [1.98]C.W.Roeder.Seismic behavior of concentrically braced frame[J].Journal of Structural Engineering.1989,115(8):1837-1856
    [1.99]Hiroyukl Yamanouchi,Mitsumass Midorikawa.Isao Nishiyama,etal.Seismic behavior of full-scale concentrically braced steel building structure[J].Journal of Structural Engineering.1989,115(8):1917-1929
    [1.100]田亚军.中心支撑钢框架结构的地震模拟试验研究[D],哈尔滨:哈尔滨建筑大学硕士学位论文.1991
    [1.101]孙跃洲.框架—人字形中心支撑双重抗侧力体系的静力和动力分析[D],哈尔滨:哈尔滨工业大学硕士学位论文.2006
    [1.102]李莹.带支撑轻型钢框架强震分析[D],上海:同济大学硕士学位论文.2001
    [1.103]李国强,沈祖炎.钢框架弹塑性静动力反应的非线性分析模型[J].建筑结构学报,1990,(2):51-59.
    [1.104]Liew J Y R.Implication of using refined plastic hinge analysis for load and resistance factor design[J].Thin-Walled Structures,1994,20(1):17-47.
    [1.105]Liew J Y R.Notional load plastic hinge method for frame design[J].Journal of Structural Engineering(ASCE).1994,120(5):1434-1454.
    [1.106]Attalla M R,Deierlein G,MeGuire W.Spread of plasticity:Quasi-plastic-hinge approach [J].Journal of Structural Engineering(ASCE),1994,120(8):2451-2473.
    [1.107]Toma S,Chen W F.European calibration frames for second-order inelastic analysis[J].Engineering Structures,1992,14(1):7-14.
    [1.108]Lip H T,Murray J C.Plastic-zone analysis of 3D steel frames using beam elements[J].Journal of Structural Engineering(ASCE),1999,125(11):1328-1337.
    [1.109]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析与计算理论[M].上海:上海科学技术出版社,1998.
    [1.110]King W S,Chen W F.Practical second-order inelastic analysis of semirigid frames[J].Journal of Structural Engineering(ASCE),1994,120(7):2156-2175.
    [1.111]徐伟良,吴惠弼.半刚性连接钢框架非线性分析的修正塑性区法[J].重庆建筑大学学报,1995,17(3):35-42.
    [1.112]Chen W F,Chan S L.Second-order inelastic analysis of steel frames using element with midspan and end spring[J].Journal of Structural Engineering(ASCE),1995,121(3):530-541
    [1.113]Chan S L,Zhou Z H.Second-order elastic analysis of frames using single imperfect element per member[J].Journal of Structural Engineering(ASCE),1995,121(6):939-945
    [1.114]Li G Q,Shen Z Y.Aunified matrix approach for nonlinear analysis of steel frames subjected to wind or earthquakes[J].Computers and Structures,1995,54(2):315-325
    [1.115]Zhou Z H,Chan S L.Refined second-order analysis of frames with members under lateral and axial loads[J].Journal of Structural Engineering(ASCE),1996,122(5):548-554
    [1.116]Zhou Z H,Chart S L.Second-order analysis of slender steel frames under distributed axial and member loads[J].Journal of Structural Engineering(ASCE),1997,123(9):1187-1193
    [1.117]Poon Hwei Chuang and Xuyang Li.Noniterative flexibility method for nonlinear analysis of frames[J].Journal of Structural Engineering(ASCE),1999,125(11):1338-1346
    [1.118]Kim S E,Kim M K,Chert W E Improved refined plastic hinge analysis accounting for strain reversal[J].Engineering Structures,2000,22(1):15-25
    [1.119]Avery P,Mahendran M.Distributed plasticity analysis of steel frame structures comprising non-compact sections[J].Engineering Structures,2000,22(8):901-919
    [1.120]李国强,刘玉姝.钢结构框架体系整体非线性分析研究综述[J].同济大学学报,2003,31(2):138-144
    [1.121]M.S.Medhekar,D.J.L.Kennedy.Seismic response of two-storey buildings with concentrically braced steel frames[J],Canadian Journal of Civil Engineering,1999,26(4):497-509
    [2.1]中华人民共和国国家标准.建筑结构荷载规范(GB50009-2001)[S].北京:中国建筑工业出版社.2001
    [2.2]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [2.3]中华人民共和国国家标准.钢结构设计规范(GB50017-2003)[S].北京:中国计划出版社,2003
    [2.4]中华人民共和国国家标准.钢及钢产品力学性能试验取样位置及试样制备(GB/T2975-1998)[S].北京:中国建筑工业出版社,1999
    [2.5]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社,2001
    [3.1]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,北京,2001
    [3.2]中华人民共和国行业标准.高层民用建筑钢结构技术规程(JGJ99-98)[S].北京:中国建 设工业出版社,1998
    [3.3]中国工程建设标准化协会标准.《建筑工程抗震性态设计通则》(试用)(CECS160:2004)[S],北京:中国计划出版社,2004
    [3.4]中华人民共和国国家标准.钢结构工程施工质量验收规范(GB50205-2001)[S].北京:中国计划出版社,2001
    [3.5]中华人民共和国国家标准.钢结构设计规范(GB50017-2003)[S].北京:中国计划出版社,2003
    [3.6]连尉安.焊接工字形钢支撑低周疲劳性能及其应用研究[D],哈尔滨:哈尔滨工业大学,2006.3
    [3.7]申林.高层结构钢支撑滞回性能分析及抗震设计对策[D],西安:西安建筑科技大学博士学位论文.2000
    [3.8]连尉安,张耀春.钢支撑及双重抗侧力体系研究现状、不足及改进[J].地震工程与工程振动.2005,25(3):67-75
    [3.9]K.Kayvani and F.Barzegar.Hysteretic modelling of tubular members and offshore platforms [J].Engineering Structures,1996,18(2):93-101
    [3.10]Jun Jin and Sherif El-Tawil.Inelastic cyclic model for steel braces[J].Journal of Engineering Mechanics,2003,129(5):548-557
    [3.11]邵志恒.X型中心支撑钢框架结构影响系数的弹塑性时程分析[D],苏州:苏州科技学院2008
    [3.12]北京金土木软件技术有限公司.SAP2000中文版使用指南[M].北京:人民交通出版社,2006
    [3.13]舒赣平,孟宪德,陈绍礼.钢框架的高等分析与设计[J],建筑结构学报,2005,26(1):51-59
    [3.14]FEMA 273.NEHRP Guidelines for the Seismic Rehabilitation of Buildings[S].Federal Emergency Management Agency,1997
    [3.15]FEMA 274.NEHRP Commentary of the Guidelines for the Seismic Rehabilitation of Buildings[S].Federal Emergency Management Agency,1997
    [3.16]沙广璟,何若全.SAP2000在静力弹塑性分析时塑性铰的修改[J].苏州科技学院学报(工程技术版),2007,20(3):1-4
    [3.17]孙跃洲.框架-人字形中心支撑双重抗侧力体系的静力和动力分析[D],哈尔滨:哈尔滨工业大学,2006
    [4.1]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [4.2]中华人民共和国国家标准.钢结构设计规范(GB50017-2003)[S].北京:中国计划出版社,2003
    [4.3]中华人民共和国国家标准.建筑结构荷载规范(GB50009-2001)[S].北京:中国建筑工业出版社,2001
    [4.4]李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用[M].北京:科学出版社,2004
    [4.5]Helmut Krawinkler,G.D.P.K.Senerviratna.Pros and cons of a pushover analysis of seismic performance evaluation[J].Engineering Structures,1998,20(4):452-464
    [4.6]Building Seismic Safety Council(BSSC).NEHRP Guidelines for the Seismic Rehabilitation of Buildings(FEMA273/274)[S].Developed for the Federal Emergency Management Agency,Washington DC,1997
    [4.7]Applied Technology Council(ATC).Seismic Evaluation and Petrofit of Concrete Buildings[R].Redwood City,California,1996
    [4.8]Peter Fajfar,Peter Gaspersic.The N2 method for the seismic damage analysis of RC buildings [J].Earthquake Engineering and Structural Dynamics,1996,25(1):31-46
    [4.9]叶燎原,潘文.结构静力弹塑性分析(Push-over)的原理和计算实例[J].建筑结构学报,2000,21(1):37-43
    [4.10]Freeman S.A.,J.P.Nicoletti,J.V.Tyrell.Evaluation of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard Bremerton[R],Washington,Proceedings of the US National Conference on Earthquake Engineering,EERI,Berkeley,1975
    [4.11]Freeman S.A.Development and Use of Capacity Spectrum Method[C].Process Of 6th US Conference on Earthquake Engineering.Seattle,Washington,1998
    [4.12]叶献国.多层建筑结构抗震性能的近似评估—改进的能力谱方法[J].工程抗震.1998(4):10-14
    [4.13]Building Seismic Safety Council(BSSC).NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures(FEMA368/369)[S].developed for the Federal Emergency Management Agency,Washington DC,2000
    [4.14]胡聿贤.地震工程学[M].北京:地震出版社.1988
    [4.15]丰定国,王清敏,钱国芳等.工程结构抗震[M].北京:地震出版社.1989
    [4.16]Andrew Whittaker,Michael Constantinou & Panos Tsopelas.Displacement Estimates for Performance-Based Seismic Design[J].Journal of Structural Engineering,ASCE,1998,124(8):905-912
    [4.17]李应斌.钢筋混凝土结构基于性能的抗震设计理论与应用研究[D].西安:西安建筑科技大学博士学位论文,2004
    [4.18]白绍良,李刚强,李英民,韦锋.从R-μ-T关系研究成果看我国钢筋混凝土结构的抗震措施[J].地震工程与工程振动,2006,26(5):144-151
    [4.19]王东升,李宏男,王国新.统计意义一致的弹塑性设计位移谱[J].大连理工大学学报,2006,46(1):87-92
    [4.20]T.Vidic P.Fajfar & M.Fischinger.Consistent inelastic design spectra:strength and displacement[J].Earthquake Engineering and Structural Dynamics,1994,23(3):507-521.
    [4.21]汪大绥,贺军利,芮明倬.静力弹塑性分析中若干问题的研究与探讨[J].建筑结构,2007, 37(5):96-99
    [4.22]邵建华.抗弯钢框架-钢板剪力墙的结构影响系数与位移放大系数研究[D].南京:河海大学博士学位论文,2008
    [4.23]李成.多层抗弯钢框架的结构影响系数和位移放大系数[D].西安:西安建筑科技大学博士学位论文,2008
    [4.24]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001
    [4.25]徐绩青.延性系数确定方法的探讨[J].水运工程,2004,368(9):14-17
    [5.1]Vamvatsikos D.Seismic performance,capacity and reliability of structures as seen through incremental dynamics analysis[J].Ph D Dissertation,Department of Civil and Environmental Eng.,Stanford University,2002.
    [5.2]张守斌,聂昊.增量动力分析方法及其在性能评估中的应用[J].工程建设与设计.2007(6):33-35
    [5.3]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [5.4]张金海.钢结构地震作用取值的建议与分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2005
    [5.5]邵志恒.X型框架—中心支撑钢框架的结构影响系数[D].苏州:苏州科技学院硕士学位论文.2008
    [5.6]Yangjunfen,Guqiang,Licheng,etc.Research on the response modification factors of CBSF[C].Proceedings of the 9th international conference on Steel Space & Composite Structures,Beijing & Yantai,2007
    [5.7]连尉安,张耀春.钢支撑及双重抗侧力体系研究现状、不足及改进[J].地震工程与工程振动.2005,25(3):67-75
    [5.8]连尉安.焊接工字形钢支撑低周疲劳性能及其应用研究[D],哈尔滨:哈尔滨工业大学博士学位论文,2006
    [5.9]王亚勇,刘小弟,程民宪.建筑结构时程分析法输入地震波的研究[J].建筑结构学报,1991,12(2):51-60
    [5.10]邓军,唐家祥.时程分析法输入地震记录的选择与实例[J].工业建筑,2000,30(8):9-12
    [5.11]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37
    [5.12]裴星洙,张立,周晓松,廖述清.日本抗震规范中有关地震力和输入地震波的处理方法[J].建筑结构,2007,37(8):78-81
    [5.13]Eurocode 8.Design Provisions for Earthquake Resistance of Structure[S].ENV 1998-1,CEN,Brussel,1994:854-876
    [5.14]UBC97.Uniform Building Code[S].International Council of Building Official,Whittier,CA,1997.
    [5.15]Pacific Earthquake Engineering Research(PEER) Strong Motion Database.Http://peer.berkeley.edu/smcat/index.html
    [5.16]邵建华.抗弯钢框架-钢板剪力墙的结构影响系数与位移放大系数研究[D].南京:河海大学,2008.10
    [5.17]Vamvatsikos D,Comell C A.Incremental dynamic analysis[J].Earthquake Engineering and Structural Dynamics,2002,31(3):491-514
    [5.18]Chamey F A.Applications in incremental dynamic analysis[C].Proceedings of the 2005Structures Congress and the 2005 Forensic Engineering Symposium,New York,2005
    [5.19]孙文林.IDA在钢框架结构弹塑性分析中的应用研究[J].山西建筑,2005,31(17):37-38
    [5.20]韩建平,吕西林,李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动,2007,27(4):15-23
    [5.21]Mwafy A M,Elnashai A S.Static pushover versus dynamic collapse analysis of RC buildings [J].Engineering Structures,2001,23(5):407-424
    [5.22]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨[J].地震工程与工程振动,2005,25(1):43-48
    [5.23]Vamvatsikos D,Cornell C A.Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA[J].Earthquake Engineering and Structural Dynamics,2006,35(9):1097-1117
    [5.24]Vamvatsikos D,Cornell C A.Direct estimation of seismic demand and capacity of multi-degree-of-freedom systems through incremental dynamic analysis of single-degree-of-freedom approximation[J].Journal of Structural Engineering,2005,131(4):589-599
    [5.25]Vamvatsikos D,Comell C A.Applied Incremental Dynamic Analysis[J].Earthquake Spectra,2004,20(2):523-553
    [5.26]Vamvatsikos D,Cornell C A.The Incremental Dynamic Analysis and its application to performance-based earthquake engineering[C].Proceedings of 12th European Conference on Earthquake Engineering,London,2002
    [5.27]Vamvatsikos D.Seismic Performance.Capacity and Reliability of Structures as Seen Through Incremental Dynamic Analysis[D].CA:Stanford University,2002
    [5.28]沈以淡.简明数学词典[M].北京:北京理工大学出版社.2003.255.
    [5.29]叶卫平,方安平,于本方等.Origin7.0科技绘图及数据分析[M].北京:机械工业出版社,2003
    [5.30]谢礼立,翟长海.最不利设计地震动研究[J].地震学报,2003,16(3):250-261
    [5.31]翟长海,谢礼立.抗震结构最不利设计地震动研究[J].土木工程学报,2005,38(12):51-58
    [6.1]连尉安.焊接工字形钢支撑低周疲劳性能及其应用研究[D],哈尔滨:哈尔滨工业大学博士学位论文,2006
    [6.2]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [6.3]贾雪娟,何若全,张毅刚等.不同阻尼比对钢结构影响的分析[J].中国矿山工程,2006,35(3):41-44
    [6.4]刘文渊.强度折减系数及单层钢框架结构影响系数[D].苏州:苏州科技学院硕士学位论文,2008
    [6.5]Tong Gen-shu,Huang Jin-qiao.Seismic force modification factor for ductile structures[J].Journal of Zhejiang University,2005,6A(8):813-825.
    [6.6]中国工程建设标准化协会标准.《建筑工程抗震性态设计通则》(试用)(CECS160:2004)[S].北京:中国计划出版社,2004
    [6.7]American National Standard.ANSIIAISC 341-02 Seismic Provisions for Structural Steel Buildings[S].American Institute of Steel Construction,Inc.2002
    [6.8]International Conference of Building Officials.Uniform Building Code(1997 edition),vol.2:structural engineering design provisions[S].California:Whittier,1997
    [6.9]European Committee for Standardization.Eurocode 8:Design of Structures for Earthquake Resistance[S].Brussels:CEN,2003.
    [6.10]童根树.钢结构设计方法[M].北京:建筑工业出版社,2007
    [6.11]蔡益燕.建筑钢结构设计对焊接的基本要求[C].北京:2006中国机械工程学会焊接分会钢结构焊接国际论坛论文集,24-30
    [6.12]李志明.美国ANSI/AISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(4)[J].钢结构,2003,18(5):58-61
    [6.13]中华人民共和国行业标准.高层民用建筑钢结构技术规程JGJ99-98[S].北京:中国建设工业出版社,1998:1-100
    [6.14]靳蕃等.神经网络理论与应用研究[M].成都:西南交通大学出版社.1996,13-31
    [6.15]王宏杰,魏先峰,陈静等.浅析人工神经网络[J],中国科技信息,2007,(18):319-320
    [6.16]王旭,王宏,等.人工神经网原理与应用[M].沈阳:东北大学出版社.2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700