制造单元构建的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国目前存在着大量的中小企业,采用小批量、多品种的生产模式。如何用有限成本提供个性化、高质量的产品是这些制造企业存活的关键。受成组技术思想启发的单元制造系统(Cellular Manufacturing System,CMS)是解决该问题的有效途径之一,而单元构建(Cell Formation,CF)是决定单元制造系统成败的第一步,也是最重要的一步。
     针对单元构建中单元分组数的确定、单元构建方案的生成、CF候选方案评价与选择等关键技术问题,本文对其展开研究,具体内容如下:
     针对现有方法单元分组数不确定的问题,提出了一种单元构建过程中单元分组数的确定方法。首先分析了权重指数、聚类中心和度量方式等不同对聚类效果、聚类中心和隶属度的影响,根据问题的规模合理选择权重指数和聚类中心及度量方式的确定方法;其次采用了模糊c均值(FCM)算法计算在指定单元分组数范围内零件间的隶属度和聚类中心,在此基础上计算评价聚类性能的四个指标值;以综合性能指标最优确定最佳的单元分组数,从而获得最佳的单元分组解。
     针对单元构建问题具有组合优化、NP完全问题的特点,提出了一种基于偏好的单元构建多目标优化方法。首先研究了现有单元构建问题的表示模型,探讨了制造资源的利用与经济效益间的关系,以单元的相似度最大化、加工费用最小化、加工时间最小化和设备投资最小化为目标,建立了适合零件族和设备组并行生成的单元构建优化数学模型;其次针对单元构建问题的组合特征及其多目标和多约束的特点,研究了多目标优化问题对目标和约束的处理方法,采用层次分析法科学地确定各分目标的权重,将所需满足的约束看作一个新目标,采用进化算法进行求解,以每代不满足约束个体所占比例作为该目标的权重,提出了面向制造单元构建的偏好进化算法,同时处理目标和约束,提高了解的质量和计算效率。
     针对现有单元构建评价方法仅以静态指标作为评价依据,未综合考虑动态指标和制造企业实际情况的问题,提出了一种基于情境的单元构建方案的评价选择方法。首先分析了在不同企业情境下影响单元构建方案选择的主要因素,确定适当的评价性能指标,以利于符合企业生产资源合理利用的要求;其次利用模糊层次分析法对不同领域专家和评价性能指标进行相应权重的分配,领域专家按各自负责的指标进行评判,以形成模糊性能矩阵;针对领域专家评判时的可信度和潜在风险问题,采用模糊数α截集和β因子的形式表示可信度和潜在风险,采用候选方案与正负理想解相对距离的测度方式进行候选单元构建方案排序的方法,进而得到了符合企业资源合理利用的最佳单元分组方案。
     基于上述单元构建基本理论和关键技术,开发了制造单元构建原型系统,验证了文中提出的单元分组数的确定方法、基于偏好单元构建的优化设计方法和支持单元构建候选方案的评价与选择方法在实际工程应用中的适用性。
There are large numbers of small-medium enterprises, which adopt multiple products and small batch production mode, in our country at present. How to provide the individuation and high quality products using limit cost is the key of survive for manufacturing enterprise. Inspired by principles and advantages of the group technology (GT) philosophy, cellular manufacturing system (CMS) designed for lot size production has recently became popular, and with the modest ancillary support can approach the economical benefits of mass production systems. Cell formation (CF) is the first and important stage in designing a CMS in order to form a set of manufacturing cells.
     The method of determining the cell number of cell formation, the optimal approach of cell formation for CMS, evaluation and selection of cell formation individuals and development of software platform are deeply discussed in this dissertation. The main work is described as follows:
     The approach to determining the optimal cell number of manufacturing cell formation is presented. The difference of weighting exponent, cluster center and metrics how to have an impact upon the clustering results and membership function are studied in the beginning. Afterwards, a method to determine the optimal m value is given. Two-order partial derivative of the objective function for FCM is calculated, and the variational weighting exponent m is obtained that can prevent the parameter from being the unique value and play an important role in the process of fuzzy clustering. Moreover, in order to avoid a single validity index can not assess correctly, partition coefficient (PC), classification entropy (CE), Fukuyama and Sugeno (FS) and Xie and Beni (XB) are considered as multi-performance indexes to evaluate the cluster validity, and then an optimal number c is chosen based on these validity measures.
     A multi-objective optimization method based on preference of cell formation is proposed. Firstly, the representation models of cell formation problem in existence are investigated; further, the relation between the utilization of manufacturing resource and benefit is discussed. In this study, the established mathematic optimized model considers the total similarity, total processing cost, total processing time and total investment. Secondly, due to the combinatorial nature of cell formation problem and the characteristics of multi-objective and multi-constrain, a novel method of evolutionary algorithm with preference is proposed. The analytic hierarchy process (AHP) is adopted to determine scientifically the weights of the sub-objective functions. The satisfaction of constraints is considered as a new objective, the ratio of the population which doesn't satisfy all constraints is assigned as the weight of new objective. In addition, the self-adaptation of weights is applied in order to converge more easily towards the feasible domain. Therefore, both features multi-criteria and constrains are dealt with simultaneously. Finally, an example is selected from the literature to evaluate the performance of the proposed approach. The results validate the effectiveness of the proposed method in designing the manufacturing cells.
     A decision support system based on scenario for multi-attribute selection of cell formation schemes is developed. The system combines fuzzy set theory and group decision with the AHP to decrease the influence of decision makers' subjective preferences and control the uncertain and imprecise variations during evaluation process. The importance weights of different criteria and the ratings of various alternatives under different criteria are evaluated in linguistic terms represented by fuzzy numbers. The intangible criteria and criteria weights are determined by group decision which can integrate all decision makers' subjective opinions based on different scenarios. Besides, fuzzy value of each of the alternatives is computed by making use of standard fuzzy arithmetic. The degree of confidence and risk index are also joined, so that decision makers can adjust them to match real context. Finally, a case of individual selection about cell formation is given, and the simulation results demonstrate the proposed approach is both effective and robust. The system helps user select preferred individual from candidates.
     On the basis of theoretic research above, the prototype system of manufacturing cell formation is developed. The successful implementation in enterprise testifies the feasibility of several theories and methods presented in this dissertation.
引文
[1]杨叔子,吴波,李斌.再论先进制造技术及其发展趋势[J].机械工程学报,2006,42(1):1-5.
    [2]朱剑英.现代制造系统模式、建模方法及关键技术新发展[J].机械工程学报,2000,36(8):1-5.
    [3]大卫·杰克逊.单元生产系统--一种有效的组织结构[M].北京:机械工业出版社,1985.
    [4]Tompkins J A,White J A,Bozer Y A,Tanchoco J M A.Facilities Planning.New York:Wiley,2003.
    [5]顾新建,祁国宁,谭建荣.现代制造系统工程导论[M].杭州:浙江大学出版社,2007.
    [6]Benjaafar S,Heragu S S,Irani S A.Next generation factory layouts:Research challenges and recent progress[J].Interfaces,2002,32(6):58-77.
    [7]Jaydeep Balakrishnan,Chun Hung Cheng.Multi-period planning and uncertainty issues in cellular manufacturing:A review and future directions[J].European Journal of Operational Research,2007,177:281-309
    [8]谢楠.基于Petri网的可重组制造系统建模、调度及控制方法研究[D].上海:同济大学,2006.
    [9]马玉敏.单元化制造系统的构建及评价[D].上海:同济大学,2002.
    [10]Buzacott J A.A perspective on new paradigm in manufacturing system[J].Journal of manufacturing system,1995,4(2):118-125.
    [11]Mansfield E.New evidence on the economic effects and diffusion of FMS[J].IEEE Transactions on Engineering Management,1993,40(1):76-79.
    [12]Mehrabi M G,Ulsoy A G,et al.Trends and perspective in flexible and reconfigurable systems[J].Journal of Intelligent Manufacturing,2002,13:135-146.
    [13]Bjorkman T.The rationalization movement in perspective and some ergonomic implicationa[J].Applied Ergonomic,1996,27(2):111-117.
    [14]Noaker P M.The search for agile manufacturing[J].Manufacturing Engineering,2000,13:34-40.
    [15]Nagal R,Dove R.21st century manufacturing enterprise strategy:an industry-lead view[M].Iacocca Institute,Lehigh University,1991.
    [16]Goldman S L,Nagel R N,Preiss K.Agile competitors and virtual organizations:strategies for enriching and customer[M].New York:Van Nostrand Reinold,1995.
    [17]Miin-Shen Yang,Wen-Liang Hung,Fu-Chou Cheng.Mixed-variable fuzzy approach to part family and machine cell formation for GT applications[J].International Jounarl of Productuin Economics,2006,103:185-198.
    [18]Miin-Shen Yang,,Kuo-Lung Wu.Unsupervised possibilistic clustering[J].Pattern Recognition,2006,39:5-21.
    [19] Zahir Albadawi, Hamdi A. Bashir, Mingyuan Chen. A mathematical approach for the formation of manufacturing cells[J]. Computers & Industrial Engineering, 2005,48:3-21.
    [20] Chu C H. Cluster analysis in manufacturing cellular formation[J]. International Journal of Management Science, 1989, 17(3): 289-295.
    [21] Joines J A, Culbreth C T, King R E. A comprehensive review of production oriented manufacturing cell formation techniques[R]. Technical Report, Raleigh: North Carolina State University, 1996.
    [22] Chandrasekharan M P, Rajagopalan R. Groupability: Analysis of the properties of binary data matrices for group technology [J]. International Journal of Production Research, 1989, 27(6):1035-1052.
    
    [23] Venugopal V, Narendran T T. Design of cellular manufacturing systems based on asymptotic forms of a Boolean matrix [J]. International Journal of Production Research, 1992, 30(6):405-417.
    [24] Zahir Albadawi. A mathematical approach for designing cell formation in cellular manufacturing systems[D].Montreal: Concordia University,2003.
    [25] King J R. Machine-component grouping in production flow analysis: An approach using a rank order clustering algorithm[J]. International Journal of Production Research, 1980,18(2):213-232.
    [26] Chan H M, Milner D A. Direct clustering algorithm for group formation in cellular manufacture[J]. Journal of Manufacturing Systems, 1982,1(1):65-74.
    [27] McCormick W T, Schweitzer Jr P J, White T W. Problem decomposition and data reorganization by a cluster technique[J]. Operations Research, 1972,20(5):993-1009.
    [28] King J R, Nakornchai V. Machine-component group formation in-group technology: Review and extension[J]. International Journal of Production Research, 1982, 20(2):17-133.
    [29] Wemmerlov U, Hyer N L Procedures for the part family/machine group identification problem in cellular manufacturing[J]. Journal of Operations Management, 1986, 6(2): 125-147.
    [30] Chu C H, Tsai M. A comparison of three array-based clustering techniques for manufacturing cell formation[J]. International Journal of Production Research, 1990, 28(8):1417-1433.
    
    [31] Gupta T, Seifoddini H. Production databased similarity coefficient for machine component grouping decisions in the design of a cellular manufacturing system[J]. International Journal of Production Research, 1990, 28(7):1247-1269.
    
    [32] Seifoddini H, Wolfe P M. Selection of a threshold value based on material handling cost in machine-component grouping[J]. IIE Transcations, 1987,19(3):266-270.
    [33]McAuley J.Machine grouping for efficient production[J].Production Engineer,1972,51(2):53-57.
    [34]Carrie h S.Numerical taxonomy applied to group technology and plant layout[J].International Journal of Production Research,1973,11(4):399-416.
    [35]Seifoddini H,Djassemi M.Merits of the production volume based similarity coefficient in machine cell formation[J].JMS,1995,14(1):35-44.
    [36]Yong Yin,Kazuhiko Yasuda.Similarity coefficient methods applied to the cell formation problem:a comparative investigation[J].Computers & Industrial Engineering,2005,48:471-489.
    [37]Seifoddini H,Wolfe P M.Application of the similarity coefficient method in grouping technology[J].IIE Transctions,1986,18(3):271-277.
    [38]Liao T W,Zhang Z,Mount C R.Similarity measures for retrieval in case-based reasoning systems[J].Applied Artificial Intelligence,1998,12(4):267-288.
    [39]Yasuda K,Yin Y.A dissimilarity measure for solving the cell formation problem in cellular manufacturing[J].Computers and Industrial Engineering,2001,39(1-2):1-17.
    [40]王爱民,肖田元,范莉娅,范文慧.面向产品族的制造单元聚类规划研究[J].计算机集成制造系统,2004,10(10):1257-1262+1268.
    [41]刘世平,饶运清.面向单元重构的一种设备选择与聚类方法[J].机械与电子,2006,1:6-8.
    [42]Saidi-Mehrabad M,Safaei N.A new model of dynamic cell formation by a neural approach[J].International Journal Advanced Manufacturing Technology 2007,33:1001-1009.
    [43]Miin-Shen Yang,Jenn-Hwai Yang.Machine-part cell formation in group technology using a modified ART1 method[J].European Journal of Operational Research,2008,188:140-152.
    [44]Venkumar P,Noorul Haq A.Fractional cell formation in group technology using modified ART1 neural networks[J].Int.J.Adv.Manuf.Technol.2006,28:761-765.
    [45]王东成,何卫平.神经网络在制造单元构建中的研究与应用[J].中国机械工程,2006,17(10):1040-1043.
    [46]Chu C H,Hayya J C.A fuzzy clustering approach to manufacturing cell formation[J].International Journal of Production Research,1991,29(7):1475-1487.
    [47]Li J,Ding Z.Fuzzy cluster analysis and fuzzy pattern recognition methods for formation of part families[C].Proceeding of 16th North American Manufacturing Research Conference(NAMRC),1988:588-563.
    [48]Alper(U|¨)nler,Z(u|¨)lal G(u|¨)ng(o|¨)r.Applying K-harmonic means clustering to the part-machine classification problem[J].Expert Systems with Applications,2008,doi:10.1016/j.eswa.2007.11.048.
    [49]Gindy,N N G,Ratchev T M,Case K.Component grouping for GT applications-a fuzzy clustering approach with validity measure[J].International Journal of Production Research,1995,33(9):2493-2509.
    [50]Gungor K C,Arikan F.Application of fuzzy decision making in part-machine grouping[J].International Journal of Production Economics,2000,63:181-193.
    [51]Yang M S,Hwang P Y,Chen D H.Fuzzy clustering algorithms for mixed feature variables[J].Fuzzy sets and Systems,2004,141:301-317.
    [52]Li J,Chu C H,Wang Y,et al.An improved fuzzy c - means algorithm for manufacturing cell formation[C].Proceedings of 2002 IEEE International Conference on Fuzzy Systems,Honolulu,USA,2002:1505-1509.
    [53]Lozanos,Dobadod,Larranetaj,et al.Modified fuzzy c-means algorithm for cellular manufacturing[J].Fuzzy Sets and Systems,2002,126:23-32.
    [54]Tao C W.Unsupervised fuzzy clustering with multi - center clusters[J].Fuzzy Sets and Systems,2002,128:305-322.
    [55]Li J,Chu C-H,Wang Y,Yan W.An improved fuzzy clustering method for cellular manufacturing[J].International Journal of Production Research,2007,45(5):1049-1062.
    [56]Josienk,Liao T W.Integrated use of fuzzy c - means and fuzzy KNN for GT part family and machine cell formation[J].International Journal of Production Research,2000,38(15):3513-3536.
    [57]Susanto S,Kennedy R D,Pricej W H.A new fuzzy-c-means and assignment technique-based cell formation algorithm to perform part - type clusters and machine - type clusters separately[J].Production Planning & Control,1999,10(4):375-388.
    [58]王志亮,汪惠芬,张友良.敏捷制造单元重构算法[J].中国制造业信息化,2003,32(6):96-99.
    [59]李杰,王云峰,朱昭贤,徐勇.基于模糊技术的制造单元构建方法研究[J].计算机集成制造系统,2004,10(12):1561-1566.
    [60]Pillai V Madhusudanan,Subbarao Kankata.A robust cellular manufacturing system design for dynamic part population using a genetic algorithm[J].International Journal of Production Research,2008,46(18):5191-5210.
    [61]DEFERSHA F M,CHEN M.A parallel genetic algorithm for dynamic cell formation in cellular manufacturing systems[J].International Journal of Production Research,2007,45(8):1-25.
    [62]Tai-Hsi Wu,Chin-Chih Chang,Shu-Hsing Chung.A simulated annealing algorithm for manufacturing cell formation problems[J].Expert Systems with Applications,2008,34:1609-1617.
    [63]Xiaodan Wu,Chao-Hsien Chu,Yunfeng Wang,Weili Yah.A genetic algorithm for cellular manufacturing design and layout[J].European Journal of Operational Research,2007,181:156-167.
    [64]Eduardo Vila Gonc-alves Filho,Alexandre Jose' Tiberti.A group genetic algorithm for the machine cell formation problem[J].Int.J.Production Economics,2006,102:1-21.
    [65]Jamal Arkat,Mohammad Saidi,BabakAbbasi.Applying simulated annealing to cellular manufacturing system design[J].Int J Adv Manuf Technol,2007,32:531-536.
    [66]Wu T H,et al.A simulated annealing algorithm for manufacturing cell formation problems[J].Expert Systems with Applications,2008,34(3):1609-1617.
    [67]Safaei N,et al.A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system[J].European Journal of Operational Research,2008,185(2):563-592.
    [68]刘世平,魏迎军,饶运清,李培根.基于模拟退火算法的敏捷化制造单元重构方法[J].华中科技大学学报(自然科学版),2003,31(11):58-60.
    [69]Menouar Boulif,Karim Atif.A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation problem[J].Computers & Operations Research,2006,33:2219-2245.
    [70]Mak K L,Wong Y S,Wang X X.An Adaptive Genetic Algorithm for Manufacturing Cell Formation[J].Int J Adv Manuf Technol,2000,16:491-497.
    [71]EVELYN C.BROWN,ROBERT T.SUMICHRAST.CF-GGA:a grouping genetic algorithm for the cell formation problem[J].International Journal of Production Research,2001,39(16):3651-3669.
    [72]Tabitha L James,Evelyn C Brown,Kellie B Keeling.A hybrid grouping genetic algorithm for the cell formation problem[J].Computers & Operations Research.2007,34:2059 -2079.
    [73]Aaron Luntala Nsakanda,Wilson L Price,Moustapha Diaby,Marc Gravel.Ensuring population diversity in genetic algorithms:A technical note with application to the cell formation problem[J].European Journal of Operational Research,2007,178:634-638.
    [74]吴晓丹,王云峰,朱昭贤,李杰.遗传算法在单元制造系统集成设计中的应用[J].计算机集成制造系统,2000,6(4):83-86.
    [75]姚倡锋,张定华,彭文利.基于遗传算法的网络化制造单元选择问题研究[J].计算机集成制造系统,2004,10(12):1555-1560.
    [76]张为民.单元化制造中的单元构造算法研究与实现[J].组合机床与自动化加工技术,2002,19(11):19-22.
    [77]马玉敏,陈炳森,张为民.动态环境下的单元化制造的数学建模[J].同济大学学报,2003,31(5):581-585.
    [78]Tavakkoli-Moghaddam R,Aryanezhad MB,et al.Solving a dynamic cell formation problem using metaheuristics[J].Appl.Math.Comput,2005,170(2):761-780.
    [79]Deming Lei,Zhiming Wu.Tabu search for multiple-criteria manufacturing cell design[J].Int J Adv Manuf Technol,2006,28:950-956.
    [80]Jiaxiang Luo Lixin Tang.A hybrid approach of ordinal optimization and iterated local search for manufacturing cell formation[J].Int J Adv Manuf Technol(2008),doi:10.1007/s00170-007-1346-8.
    [81]Kao Y,Li Y L.Ant colony recognition systems for part clustering problems[J].International Journal of Production Research,2008,46(15):4237-4258.
    [82]Zhao G,Jiang P,Zheng M,et al.Using swarm intelligence algorithm to solve a part clustering model based on weighted directed graph[J].International Journal of Production Research,2007,46(7):1911-1932.
    [83]Muruganandam A,Prabhaharan G,Asokan P,Baskaran V.A memetic algorithm approach to the cell formation problem[J].Int J Adv Manuf Technol,2005,25:988-997.
    [84]Aaron Luntala Nsakanda,Moustapha Diaby,Wilson L.Price.Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings[J].European Journal of Operational Research,2006,171:1051-1070.
    [85]王爱民,肖田元,范莉娅等.面向产品族的制造单元聚类规划研究[J].计算机集成制造系统,2004,10(10):1257-1262.
    [86]赵刚,江平宇.基于加权有向图的零件聚类模型研究[J].计算机集成制造系统,2006,12(7):1007-1012.
    [87]王素欣,高利,王丽杰,崔小光.基于粒子群优化的制造单元重构研究[J].现代制造工程,2007,1:76-79.
    [88]Zahir Albadawi.A mathematical approach for designing cell formation in cellular manufacturing systems[D].Quebec:Concordia university,2003.
    [89]Joines J.A.Manufacturing cell design using genetic algorithms[D].Raleigh:North Carolina State University,1993.
    [90]Jensen R.E.A dynamic programming algorithm for cluster analysis[J].Operations research,1969,12:1034-1057.
    [91]Kusiak A.and S.Heragu.The facility layout problem[J].European journal of operational research,1987,29:229-251.
    [92]Srinivasan G.,T.Narendren and B.Mahadevan.An assignment model for the part-families problem in group technology[J].International journal of production research,1990,28(1):145-152.
    [93]Das K.A comparative study of exponential distribution vs Weibull distribution in machine reliability analysis in a CMS design[J].Computers & Industrial Engineering,2008,54:12-33.
    [94] Steve Ahkioon, Akif Asil Bulgak,Tolga Bektas. Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration[J]. European Journal of Operational Research, 2009,192: 414-428.
    [95] Adil G. K.,D. Ragamani and D. Strong. Cell design considering alternative routings[J]. International journal of production research, 1996, 34(5):1361-1380.
    [96] Zahir Albadawi, Hamdi A. Bashir, Mingyuan Chen. A mathematical approach for the formation of manufacturing cells[J]. Computers & Industrial Engineering, 2005,48:3-21.
    [97] Papaioannou G, Wilson J M. Fuzzy extensions to Integer Programming models of cell-formation problems in machine scheduling[J]. Ann Oper Res(2008), doi: 10. 1007/sl0479-008-0423-l.
    [98] Fantahun M Defersha, Mingyuan Chen. A linear programming embedded genetic algorithm for an integrated cell formation and lot sizing considering product quality[J]. European Journal of Operational Research, 2008,187: 46-69.
    [99] Nima Safaei, Mohammad Saidi-Mehrabad, et al. A fuzzy programming approach for a cell formation problem with dynamic and uncertain conditions[J]. Fuzzy Sets and Systems, 2008,159: 215-236.
    
    [100] 李淑霞,单鸿波.基于敏捷制造单元的车间动态重构[J].计算机集成制造系统,2007,13(3):520—526.
    [101] Rajagopalan R, Barta J. Design of Cellular Production System: A Graphic-Theoretic Approach[J]. International Journal of Production Research, 1975,13(6):567-579.
    [102] Lee H. and A. Garcia-Diaz. A network flow approach to solve clustering problems in group technology[J]. International Journal of Production Research, 1993, 31(3):603—612.
    [103] Ng S. Worst-case analysis of an algorithm for cellular manufacturing[J]. European Journal of Operational Research, 1993,69(3):384-398.
    [104] Askin R, Chiu K. A graph partitioning procedure for machine assignment and cell formation[J]. International Journal of Production Research, 1990,28(8):1555-1572.
    [105] Vohra T, Chen D, et al. A network approach to cell formation in cellular manufacturing[J]. International Journal of Production Research, 1990,28(11):2075-2084.
    [106] Lee H. and A. Garcia-Diaz. Network flow procedures for the analysis of cellular manufacturing systems[J]. HE Transactions, 1996,28:333-345.
    [107] Selim H. M. Manufacturing cell formation problem: a graph partitioning approach[J]. Industrial Management & Data Systems,2002,102(6):341-352.
    [108] Mukhopadhyay S K, Ramesh Babu K, Vijai Sai K V. Modified Hamiltonian chain: a graph theoretic approach to group technology[J]. International Journal of Production Research, 2000, 38(11):2459-2470.
    [109]Sarker B R,Mondal S.Grouping efficiency measures in cellular manufacturing:A survey and critical review[J].International Journal of Production Research,1999,37(2):285 - 314.
    [110]Chandrasekharan M P,Rajagopalan R.MODROC:An extension of rank order clustering for group technology[J].International Journal of Production Research,1986b,24:1221 - 1233.
    [111]Kumar C S,Chandrasekharan M P.Grouping efficacy:A quantitative criterion for goodness of block diagonal forms of binary matrices in group technology[J].International Journal of Production Research,1990,28(2):233-243.
    [112]Miltenburg J,Zhang W.A comparative evaluation of nine well-known algorithms for solving the cell formation problem in group technology[J].Journal of Operations Management,1991,10(1):44-72.
    [113]Singh N,Rajamani D.Cellular manufacturing systems:Design,planning and control[M].London:Chapman & Hall,1996.
    [114]Nair G J K,Narendran T T.Grouping index:A new quantitative criterion for goodness of block-diagonal forms in group technology[J].International Journal of Production Research,1996,34(10):2767-2782.
    [115]McCormick W T,Schweitzer P J,White T W.Problem decomposition and data reorganization by a clustering technique[J].Operations Research,1972,20(5):993- 1009.
    [116]Hsu C P.Simililarity coefficient approaches to machine-component cell formation in cellular manufacturing:A comparative study[D].Milwaukee:University of Wisconsin-Milwauker,1990.
    [117]Sarker B R,Li Z.Measuring matrix-based cell formation considering alternative routings[J].Journal of the Operational Research Society,1998,49(9):953- 965.
    [118]Ahi A,et al.A novel approach to determine cell formation,intracellular machine layout and cell layout in the CMS problem based on TOPSIS method[J].Computers and Operations Research(2008),doi:10.1016/j.cor.2008.02.012.
    [119]马玉敏,陈炳森,张为民.单元化制造系统的评价体系[J].同济大学学报,2003,31(11):1323-1327.
    [120]Wemmerlov U,Johnson D J.Cellular manufacturing at 46 user plants:Implementation and performance improvements[J].International Journal of Production Research,1997,35(1):29-49.
    [121]Dreyfuss J.Profit machine[J].Bloomberg Markets,2003,10:29-38.
    [122]王国庆,胡新平.传动组件制造单元在首都航天机械公司的实践[J].航天制造技术,2006,1:3-7.
    [123]李杰.基于模糊技术的制造单元构建方法及其在变压器企业中的应用[D].天津:河北工业大学,2002.
    [124]Xu H,Wang H P.Part family formation for GT application based on fuzzy mathematics[J].International Journal of Production Research,1989,27(9):1637-1651.
    [125]G(u|¨)ng(o|¨)r Z,Arikan F.Application of fuzzy decision making in part - machine grouping[J].International Journal of Production Economics,2000,63:181-193.
    [126]Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact,well-separated clusters[J].Journal of Cybernetics,1974,3:32-57.
    [127]Bezdek J C.Pattern Recognition with Fuzzy Objective Algorithms[M].New York:Plenum Press,1981.
    [128]Dunn J C.Well-separated clusters and the optimal fuzzy partitions[J].Journal of Cybernetics,1974,4:95-104.
    [129]Davies D L,Bouldin D W.A cluster separation measure[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1979,1(2):224-227.
    [130]Bezdek J C.Clustering Validity with Fuzzy Sets[J].Journal of Mathematical Biology,1974,22(1):57-71.
    [131]Windham M P.Cluster validity for fuzzy clustering algorithms[J].Fuzzy Sets and Systems,1981,5:177-185.
    [132]Windham M P.Cluster validity for fuzzy c-means clustering algorithms[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1982,4(4):357-363.
    [133]Gunderson R.Applications of fuzzy ISODATA algorithms to star tracker printing systems[C].Proceedings of 7th Triennial World IFAC Cong,Helsinki,1978:1319-1323.
    [134]Xie X L and Beni G.A validity measure for fuzzy clustering[J].Transaction on Pattern Analysis and Machine Intelligence,1991,13(4):841-847.
    [135]Bensaid A M,et al.Validity-guided(re)clustering with applications to image segmentation[J].IEEE Trans.FS.,1996,4(2):112-122.
    [136]鲍正益.模糊聚类算法及其有效性研究[D].厦门:厦门大学,2006.
    [137]赵恒.数据挖掘中聚类若干问题研究[D].西安:西安电子科技大学,2005.
    [138]Bezdek J C.Cluster validity with fuzzy sets[J].Journal of Cybernetics,1974b,3:58-74.
    [139]Bezdek J C.Numerieal taxonomy with fuzzy sets[J].Journal of Mathematics Biology,1974a,1:57-71.
    [140]Fukuyama Y,Sugeno M.A new method of choosing the number of clusters for the fuzzy c-means method[C].Proceedings of Fifth Fuzzy Systems,Symposium,1989:247-250.
    [141]Xie X L,Beni G.A validity measure for fuzzy clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(8):841-847.
    [142]Bezdek J C.A physical interpretation of fuzzy ISODATA[J].IEEE SMC,1976,system-6:387-390.
    [143]Chan K P,Cheng Y S.Modified fuzzy ISODATA for the classification of handwritten Chinese characters[C].Proc Int Conf Chinese Comput,Singapore,1986:361-364.
    [144]Bezdek J C,Hathaway R,et al.Convergence theory for fuzzy c-means:counter examples and repairs[J].IEEE Trans.PAMI.,1987,17(5):873-877.
    [145]Pal N R,Bezdek J C.On cluster validity for the fuzzy c-means model[J].IEEE Transaction on Fuzzy Systems,1995,3(3):370-379.
    [146]Howon C,Jordan B J.On the optimal choice of parameters in a fuzzy c-means algorithm[C].IEEE International conference on fuzzy Systems,California,1992:349-353.
    [147]刘宜平等.一种FCM聚类算法的改进与优化[J].系统工程与电子技术,2000,22(4):1-3.
    [148]高新波,裴继红,谢维信.模糊c-均值聚类算法中加权指数m的研究[J].电子学报,2000,28(4):80-83.
    [149]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004.
    [150]宫改云.FCM算法参数研究及应用[D].西安:西安电子科技大学,2004.
    [151]Pal N R,Bezdek J C.Correction to on cluster validity for the fuzzy c-means model[J].IEEE Trans.Fuzzy Systems,1997,5:152-153.
    [152]张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868.
    [153]范九伦,吴成茂.FCM算法中隶属度的新解释及其应用[J].电子学报,2004,32(2):350-352.
    [154]潘天红,李少远.基于模糊聚类的PWA系统的模型辨识[J].自动化学报,2007,33(3):327-330.
    [155]Schaffer J D.Some experiments in machine learning using vector evaluated genetic algorithms[D].Nashville TN:Vanderbilt University,1984
    [156]Saaty T L.The Analytic Hierarchy Process[M].New York:McGraw-Hill press,1980.
    [157]玄光南,程润伟著.于歆杰,周根贵译.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [158]Scrnivas M,Patanik L M.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Trans.SMC,1994,24(4):656-667.
    [159]何宏,钱峰.基于寿命的变种群模糊遗传算法[J].小型微型计算机系统,2006,27(6):992-995.
    [160]蔡自兴,徐光佑.人工智能及其应用(第三版)[M].北京:清华大学出版社,2007.
    [161]AKT(U|¨)RK M S,BALKOSE H O.Part-machine grouping using a multi-objective cluster analysis[J].International Journal of Production Research,1996,34(8):2299-2315.
    [162]MAGHSUD S,PREM V,RAVI S.A multi-objective genetic algorithm approach to the design of cellular manufacturing systems[J].International Journal of Production Research,2004,42(7):1419- 1441.
    [163]Waghodekar P H,Sahu S.Machine-component cell formation in group technology MACE[J].International Journal of Production Research,1984,22,937-948.
    [164]Seifoddini H.Single linkage versus average linkage clustering in machine cells formation applications[J].Computers and Industrial Engineering,1989,16(3):419-426.
    [165]Kusiak A,Cho M.Similarity coefficient algorithm for solving the group technology problem[J].International Journal of Production Research,1992,30:2633-2646.
    [166] Kusiak A, Chow W. Efficient solving of the group technology problem[J]. Journal of Manufacturing Systems, 1987, 6(2): 117-124.
    [167] Boctor F. A linear formulation of the machine-part cell formation problem[J]. International Journal of Production Research, 1991, 29(2): 343-356.
    [168] Seifoddini H, Wolfe P M. Application of the similarity coefficient method in group technology[J]. HE Transactions, 1986,18(3): 266-270.
    [169] Chandrashekharan M P, Rajagopalan R. An ideal seed non-hierarchical clustering algorithm for cellular manufacturing[J]. International Journal of Production Research, 1986a, 24(2): 451-464.
    [170] Chandrashekharan M P, Rajagopalan R. MODROC: An extension of rank order clustering for group technology[J]. International Journal of Production Research, 1986b, 24(5): 1221-1233.
    [171] Askin R G, Subramanian S. A cost-based heuristic for group technology conf iguration[J]. International Journal of Production Research, 1987, 25: 101-113.
    [172] Stanfel L Machine clustering for economic production[J]. Engineering Costs and Production Economics, 1985, 9: 73-8.
    [173] McCormick W T, Schweitzer P J, White TW. Problem decomposition and data reorganization by a clustering technique[J]. Operations Research, 1972, 20: 993-1009.
    [174] Srinivasan G, Narendran T, Mahadevan B. An assignment model for the part-families problem in group technology[J]. International Journal of Production Research, 1990, 28: 145-152.
    [175] King J R. Machine-component grouping in production flow analysis: An approach using a rank order clustering algorithm[J]. International Journal of Production Research, 1980, 18(2): 213-232.
    [176] Carrie S. Numerical taxonomy applied to group technology and plant layout[J]. International Journal of Production Research, 1973, 11: 399-416.
    [177] Mosier C T, Taube L. Weighted similarity measure heuristics for the group technology machine clustering problem[J]. OMEGA, 1985b, 13(6): 577-583.
    [178] Kumar K R, Kusiak A, Vannelli A. Grouping of parts and components in flexible manufacturing systems[J]. European Journal of Operations Research, 1986, 24:387-397.
    [179] Boe W, Cheng C H. A close neighbor algorithm for designing cellular manufacturing systems[J]. International Journal of Production Research, 1991, 29(10): 2097-2116.
    [180] McCormick W T, Schweitzer P J, White T W. Problem decomposition and data reorganization by a clustering technique[J]. Operations Research, 1972,20: 993-1009.
    [181] Kumar K R, Vannelli A. Strategic subcontracting for efficient disaggregated manufacturing[J]. International Journal of Production Research, 1987, 25(12): 1715-1728.
    [182]Chandrasekharan M P,Rajagopalan R.ZODIAC--An algorithm for concurrent formation of part families and machine cells[J].International Journal of Production Research,1987,25(6):835-850.
    [183]Srinivasan G,Narendran T T.GRAFICS--A nonhierarchical clustering-algorithm for group technology[J].International Journal of Production Research,1991,29(3):463-478.
    [184]Cheng C H,Gupta Y P,Lee W H,Wong K F.A TSP-based heuristic for forming machine groups and part families[J].International Journal of Production Research,1998,36(5):1325-1337.
    [185]Onwubolu G C,Mutingi M.A genetic algorithm approach to cellular manufacturing systems[J].Computers and Industrial Engineering,2001,39(1-2):125-144.
    [156]Dimopoulos C,Mort N.A hierarchical clustering methodology based on genetic programming for the solution of simple cell-formation problems[J].International Journal of Production Research,2001,39(1):1-19.
    [187]马玉敏,陈炳森,张为民.单元制造系统的评价体系[J].同济大学学报,2003,31(11):1323-1327.
    [188]郭亚军.多属性综合评价[M].沈阳:东北大学出版社,1996.
    [189]李荣均.模糊多准则决策理论与应用[M].北京:科学出版社,2002.
    [190]虞晓芬,傅玳.多指标综合评价方法综述[J].统计与决策,2004,11:115-117.
    [191]刘树梅,何锦义.综合评价活动的发展,问题,建议[J].统计研究,2002,12(12):50-54.
    [192]王宗军.综合评价的方法、问题及其研究趋势[J].管理科学学报,1998,1(1):73-75.
    [193]姜晓鹏.可重构制造系统性能综合评价研究[D].西安:西北工业大学,2007.
    [194]Zadeh L A.Fuzzy sets[J].Information and Control,1965,8:338-353.
    [195]Bellman R,Zadeh L A.Decision making in a fuzzy environment[J].Management Science,1970,17:141-164.
    [196]胡宝清.模糊理论基础[M].武汉:武汉大学出版社,2004.
    [197]Postma Theo J B M,Liebl Franz.How to improve scenario analysis as a strategic management tool[J]? Technological Forecasting & Social Change,2005,72:161-173.
    [198]Chen S J,Hwang C L.Fuzzy Multiple Attribute Decision Making:Methods and Applications[M].Berlin:Springer-Verlag,1992
    [199]Shih Hsu-Shih.Incremental analysis for MCDM with an application to group TOPSIS[J].European Journal of Operational Research,2008,186:720-734.
    [200]Chen Hsing Hung,Lee Amy H I,Tong Yunhuan.Prioritization and operations NPD mix in a network with strategic partners under uncertainty[J].Expert Systems with Applications,2007,33:337-346.
    [201] Chu T C. Facility location selection using fuzzy topsis under group decisions[J]. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, 2002,10: 687-701.
    [202] Tsaur S H, Chang T Y, Yen C H. The evaluation of airline service quality by fuzzy MCDM[J]. Tourism Management, 2003,23: 107-115.
    [203] King J R, Nakornchai V. Machine - component group formation in group technology: review and extension[J]. International Journal of Production Research. 1982, 20 (2) : 117-133.
    [204] Fonseca C M, Fleming P J. Multi-objective genetic algorithms made easy: selection, sharing and mating restriction[C]. First IEE/IEEE international conference on genetic algorithms in engineering systems, Sheffield, England, 1995.
    [205] Schaffer J. Multiple objective optimization with vector evaluated genetic algorithms[C]. First international conference on genetic algorithms, Pittsburgh, 1985.
    [206] Horn J, Nafploitis N, Goldberg D E. A niched Pareto genetic algorithm for multi-objective optimization[C]. Proceedings of the first IEEE conference on evolutionary computation. Piscataway, NJ: IEEE Press, 1994: 82-88.
    [207] Knowles J, Corne D. The Pareto archived evolution strategy: a new baseline algorithm for multi-objective optimization[C]. Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1999: 98-105.
    [208] Srinivas N, Deb K. Multi-objective function optimization using non-dominated sorting genetic algorithms[J]. Evolutionary Computation, 1995, 2(3): 221-48.
    [209] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [210] Zitzler E, Evolutionary algorithms for multi-objective optimization: methods and applications[D], Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1999.
    [211] Zitzler E, Laumanns M, Thiele L SPEA2: improving the strength Pareto evolutionary algorithm[C]. evolutionary methods for design, optimization and control with applications to industrial problems, Athens, Greece, 2001: 95-100.
    [212] Deb Kalyanmoy, Lothar Thiele, Marco Laumanns and Eckart Zitzler. Scalable test problem for evolutionary multiobjective optimization[C]. Evolutionary multiobjective optimization. Theoretical advances and applications, Springer. 2005: 105-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700