嵌段共聚物多隔段胶束的耗散粒子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性嵌段共聚物能够在选择性溶剂中自组装成胶束。最近,多隔段胶束这一新型胶束备受人们关注。该种胶束具有一个水溶性的壳和微相分隔的憎水内核,独特的内部结构和新奇的形貌使得其在药物传输和纳米技术等方面具有广泛的应用价值。在本文中,我们采用计算机模拟的方法,研究了在溶液中嵌段共聚物混合体系自组装成多隔段混合胶束的行为。主要结论为:
     (1)采用耗散粒子动力学(DPD)方法,研究了星形和线形三嵌段共聚物混合体系中,混合比例对多隔段胶束的影响。模拟表明:共聚物间的混合比例是一项影响胶束最终形貌的重要因素,通过混合比例的小幅度调整,便形成了一系列具有全新形貌或结构的多隔段混合胶束。
     (2)在分子水平上追踪了多隔段混合胶束的形成动力学演化过程。发现采用不同的混合策略可以导致不同的胶束形成路径,对胶束体系达到平衡所需的时间也有影响。在模拟中发现了具有环/齿轮嵌套结构憎水核的环状多隔段胶束的两种形成机理:圆柱状胶束的弯曲闭合和饼状胶束的中间穿孔。不同的初始混合状态改变了混合胶束的形成路径,虽然胶束最终的大体形貌几乎没受到什么影响,但胶束的微细结构却有差异。
     (3)系统地研究了三嵌段共聚物混合体系中嵌段序列、嵌段比例、嵌段长度、分子构造等各种参数对多隔段混合胶束的影响,得到了利用这些参数对胶束进行形貌和结构控制的一些规律性结论。模拟结果表明:将多嵌段共聚物进行混合是控制多隔段胶束外在形貌和内部结构的一种有效手段。混合体系中,嵌段共聚物的嵌段序列、嵌段比例、嵌段长度和共聚物分子构造都对最终的胶束形貌和结构有着很大的影响。通过改变二元体系中某一组分的这些结构参数,来自不同组分的成核嵌段的混合程度、相对距离和参与成核的程度均可随之调整。从而得到了具有可调微区排列和大小尺寸的混合胶束。
     (4)讨论了星形和线形三嵌段共聚物混合体系在稀溶液中的扩散动力学,从分子水平上阐明了这些共聚物链自组装的动力学过程。结果显示:在混合体系中通过不同共聚物链的协同自组装获得混合胶束时,嵌段比例、嵌段长度和分子量对共聚物混和物的扩散速率都有很大的影响。通过改变这些特征参数,两种共聚物链在溶液中的扩散速率的差异会得到调控,进而影响体系中混合胶束或纯胶束的形成。此外,利用星形与线形共聚物对分子量的不同依赖程度,可对两种共聚物链的相对扩散速率进行控制。
Amphiphilic block copolymers can self-assemble into micelles in a selective solvent. Recently, multicompartment micelles have received great attention, which are composed of a water-soluble shell and a microphase-segregated hydrophobic core. Due to their novel morphologies and interesting structures, multicompartment micelles may find potential applications in drug delivery and nanotechnology. In this work, computer simulation is applied to study the self-assembly of mixed micelles from block copolymer blends in solution. The main results obtained are:
     (1) Dissipative particle dynamics simulations are performed on multicompartment micelles formed by blending star and linear triblock copolymers, in which the influence of blending ratio is discussed. The simulation confirms that the blending ratio is an important influencing factor on the morphology of mixed micelles. A slight change in the blending ratio can produce various mixed micelles with new morphologies and structures.
     (2) The dynamic processes of the formation of novel mixed multicompartment micelles are traced at the molecular level. The results demonstrate that different blending options lead to different formation pathways of mixed micelles and different time scale to reach the equilibration of the self-assembly system. Two possible evolution mechanisms of a multicompartment micelle with a ring/cogwheel core are identified, large cylindrical micelle curling then closing up and disc-like micelle perforation. The initial mixing state may have little effects on the final morphology; however, the fine structure can be affected to some extent.
     (3) The effects of block sequence, block ratio, block length as well as chain architecture on mixed multicompartment micelles are investigated systematically, and the knowledge of the morphology and structure control of micelle are obtained. The DPD simulation results show that blending of copolymers is an effective way to control the morphology and inner structure of multicompartment micelles, and block sequence, block ratio, chain architecture and block length all have large effects. By changing these parameters, different domain arrangement, mixed degree, relative distance, degree of participation and extensibility of two triblock copolymers in hydrophobic core can be tuned, and diverse morphologies of mixed micelles with alterable domain arrangements and overall size can be obtained.
     (4) Diffusion dynamics of star and linear polymer blends in dilute solution is studied. The dynamic processes are elucidated at the molecular level by tracing the trajectories of different kinds of copolymer chains. When mixed micelles are formed from the cooperative self-assembly of copolymer blends, the diffusivities of star and linear triblock copolymer chains are influenced greatly upon changing block ratio, block length and molecular weights, leading to evolution control in multicompartment micelles formation. By changing these factors, the diffusivity differences between star and linear copolymers can be tuned, and thus influence the formation of mixed or pure aggregates and the fraction of two kinds of copolymers incorporated in one aggregate; the relative diffusivities of star and linear triblock copolymers can be tuned due to their different molecular weight dependency.
引文
[1]刘世勇,江明.高分子胶束化的新途径及胶束的结构演化[J].高等学校化学学报,2001,22(006):1066-1072
    [2]Lim Soo P,Eisenberg A.Preparation of block copolymer vesicles in solution[J].Journal of Polymer Science Part B:Polymer Physics,2004,42(6):923-928
    [3]赵秀文,王运东,于养信.介观动力学模拟嵌段聚合物:形貌与动力学[J].清华大学学报:自然科学版,2007,47(009):1507-1510
    [4]Bates F S,Fredrickson G H.Block copolymer thermodynamics:theory and experiment[J].Annual Review of Physical Chemistry,1990,41(1):525-557
    [5]Brown R A,Masters A J,Price C.Comprehensive Polymer Science[M].London:Pergamon Press,1989.
    [6]Thomas E L.The ABCs of Self-Assembly[J].Science,1999,286(5443):1307
    [7]Goldacker T,Abetz V.Core-Shell Cylinders and Core-Shell Gyroid Morphologies via Blending of Lamellar ABC Triblock and BC Diblock Copolymers[J].Macromolecules,1999,32(15):5165-5167
    [8]Shefelbine T A,Vigild M E,Matsen M W,et al.Core-shell gyroid morphology in a poly (isoprene-block-styrene-block-dimethylsiloxane) triblock copolymer[J].J.Am.Chem.Soc,1999,121:8457-8465
    [9]Matsushita Y,Suzuki J,Seki M.Surfaces of tricontinuous structure formed by an ABC triblock copolymer in bulk[J].Physica B:Physics of Condensed Matter,1998,248(1-4):238-242
    [10]Riess G.Micellization of block copolymers[J].Progress in Polymer Science,2003,28(7):1107-1170
    [11]Zhang L,Eisenberg A.Multiple morphologies of "crew-cut" aggregates of polystyrene -b-poly(acrylic acid) block copolymers[J].Science,1995,268(5218):1728-1731
    [12]Zhang L,Eisenberg A.Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J].J.Am.Chem.Soc,1996,118(13):3168-3181
    [13]Zhang L,Yu K,Eisenberg A.Ion-Induced Morphological Changes in "Crew-Cut"Aggregates of Amphiphilic Block Copolymers[J].Science,1996,272(5269):1777-1779
    [14]Guo A,Liu G,Tao J.Star polymers and nanospheres from cross-linkable diblock copolymers[J].Macromolecules,1996,29(7):2487-2493
    [15]Hamley I W.The Physics of Block Copolymers[M].London:Oxford University Press,1998.
    [16]Hadjichristidis N,Iatrou H,Pitsikalis M,et al.Linear and non-linear triblock terpolymers.Synthesis,self-assembly in selective solvents and in bulk[J].Progress in Polymer Science,2005,30(7):725-782
    [17]Hadjichristidis N,Pispas S,Floudas G.Block copolymers:synthetic strategies,physical properties,and applications[M].Wiley-Interscience,2003.
    [18]Moffitt M,Khougaz K,Eisenberg A.Micellization of ionic block copolymers[J].Acc.Chem.Res,1996,29(2):95-102
    [19]施斌,方超,裴元英.两亲性嵌段共聚物胶束的研究进展[J].中国医药工业杂志,2005,36(004):239-243
    [20]周峻峰,王立,陈涛,等.经两亲嵌段共聚物自组装制备纳米胶束[J].化学进展,2005,17(006):1102-1109
    [21]Shen H,Eisenberg A.Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/dioxane/H2O[J].The Journal of Physical Chemistry B,1999,103(44):9473-9487
    [22]Shen H,Eisenberg A.Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O[J].Macromolecules,2000,33(7):2561-2572
    [23]Yu Y,Zhang L,Eisenberg A.Morphogenie effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers[J].Macromolecules,1998,31(4):1144-1154
    [24]Zhang L,Eisenberg A.Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions[J].Macromolecules,1996,29(27):8805-8815
    [25]Xu R,Winnik M A,Hallett F R,et al.Light-scattering study of the association behavior of styrene-ethylene oxide block copolymers in aqueous solution[J].Macromolecules,1991,24(1):87-93
    [26]Gao Z,Varshney S K,Wong S,et al.Block Copolymer "Crew-Cut" Micelles in Water[J].Macromolecules,1994,27(26):7923-7927
    [27]Utiyama H,Takenaka K,Mizumori M,et al.Light-Scattering Studies of a Polystyrene-Poly (methyl methacrylate) Two-Block Copolymer in Mixed Solvents[J].Macromolecules,1974,7(4):515-520
    [28]Antonietti M,Heinz S,Schmidt M,et al.Determination of the Micelle Architecture of Polystyrene/Poly(4-vinylpyridine) Block Copolymers in Dilute Solution[J].Macromolecules,1994,27(12):3276-3281
    [29]Zhou Z,Chu B.Anomalous micellization behavior and composition heterogeneity of a triblock ABA copolymer of(A) ethylene oxide and(B) propylene oxide in aqueous solution[J].Macromolecules,1988,21(8):2548-2554
    [30]Won Y Y,Davis H T,Bates F S.Giant wormlike rubber micelles[J].Science,1999,283(5404):960
    [31]Zhang L,Eisenberg A.Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution[J].Macromolecules,1999,32(7):2239-2249
    [32]Yu K,Eisenberg A.Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution[J].Macromolecules,1998,31(11):3509-3518
    [33]Yu K,Eisenberg A.Multiple morphologies in aqueous solutions of aggregates of polystyrene-block-poly(ethylene oxide) diblock copolymers[J].Macromolecules,1996,29(19):6359-6361
    [34] Yu K, Bartels C, Eisenberg A. Vesicles with hollow rods in the walls: A trapped intermediate morphology in the transition of vesicles to inverted hexagonally packed rods in dilute solutions of PS-b-PEO[J]. Macromolecules, 1998, 31(26): 9399-9402
    [35] Yu H, Zhu J, Jiang W. Effect of binary block-selective solvents on self-assembly of ABA triblock copolymer in dilute solution[J]. Journal of Polymer Science Part B: Polymer Physics, 2008,46(15): 1536-1545
    [36] Jain S, Bates F S. On the origins of morphological complexity in block copolymer surfactants[J]. Science, 2003, 300(5618): 460-464
    [37] Kragh-Hansen U. Structure and ligand binding properties of human serum albumin[J]. Danish medical bulletin, 1990, 37(1): 57-84
    [38] He X M, Carter D C. Atomic structure and chemistry of human serum albumin[J]. Nature, 1992, 358: 209-215
    [39] Laschewsky A. Polymerized micelles with compartments[J]. Current Opinion in Colloid & Interface Science, 2003, 8(3): 274-281
    [40] Lutz J F, Laschewsky A. Multicompartment micelles: Has the long-standing dream become a reality?[J]. Macromolecular Chemistry and Physics, 2005, 206(8): 813-817
    [41] Kubowicz S, Baussard J F, Lutz J F, et al. Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium[J]. Angew. Chem. Int. Ed., 2005,44(33): 5262-5265
    [42] Li Z, Kesselman E, Talmon Y, et al. Multicompartment micelles from ABC miktoarm stars in water[J]. Science, 2004, 306: 98-101
    [43] Stahler K, Selb J, Candau F. Multicompartment polymeric micelles based on hydrocarbon and fluorocarbon polymerizable surfactants[J]. Langmuir, 1999, 15(22): 7565-7576
    [44] Weberskirch R, Preuschen J, Spiess H W, et al. Design and synthesis of a two compartment micellar system based on the self-association behavior of poly(N-acylethyleneimine) end-capped with a fluorocarbon and a hydrocarbon chain[J]. Macromolecular Chemistry and Physics, 2000, 201(10): 995-1007
    [45] Kotzev A, Laschewsky A, Rakotoaly R H. Polymerizable surfactants and micellar polymers bearing fluorocarbon hydrophobic chains based on styrene[J]. Macromolecular Chemistry and Physics, 2001, 202(17): 3257-3267
    [46] Kotzev A, Laschewsky A, Adriaensens P, et al. Micellar polymers with hydrocarbon and fluorocarbon hydrophobic chains. A strategy to multicompartment micelles[J]. Macromolecules, 2002, 35(3): 1091-1101
    [47] Lutz J F, Geffroy S, Berlepsch H, et al. Investigation of a dual set of driving forces (hydrophobic+electrostatic) for the two-step fabrication of defined block copolymer micelles[J]. Soft Matter, 2007, 3(6): 694-698
    [48] Li Z, Hillmyer M A, Lodge T P. Synthesis and Characterization of Triptych μ-ABC Star Triblock Copolymers[J]. Macromolecules, 2004, 37(24): 8933-8940
    [49] Li Z, Hillmyer M A, Lodge T P. Morphologies of multicompartment micelles formed by ABC miktoarm star terpolymers[J]. Langmuir, 2006,22(22): 9409-9417
    [50] Li Z, Hillmyer M A, Lodge T P. Laterally nanostructured vesicles, polygonal bilayer sheets, and segmented wormlike micelles[J]. Nano Lett, 2006, 6(6): 1245-1249
    [51] Li Z, Hillmyer M A, Lodge T P. Control of Structure in Multicompartment Micelles by Blending μ-ABC Star Terpolymers with AB Diblock Copolymers[J]. Macromolecules, 2006, 39(2): 765-771
    [52] Boschet F, Branger C, Margaillan A, et al. Associative properties of perfluorooctyl end-functionalized polystyrene-poly (ethylene oxide) diblock copolymers[J]. Polymer International, 2005, 54: 90-95
    [53] Thünemann A F, Kubowicz S, von Berlepsch H, et al. Two-compartment micellar assemblies obtained via aqueous self-organization of synthetic polymer building blocks [J]. Langmuir, 2006, 22(6): 2506-2510
    
    [54] Cui H, Chen Z, Zhong S, et al. Block copolymer assembly via kinetic control[J]. Science, 2007, 317(5838): 647-650
    
    [55] Lodge T P, Rasdal A, Li Z, et al. Simultaneous, segregated storage of two agents in a multicompartment micelle[J]. J. Am. Chem. Soc, 2005, 127(50): 17608-17609
    [56] Hillmyer M A, Lodge T P. Synthesis and self-assembly of fluorinated block copolymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002,40(1): 1-8
    [57] Kubowicz S, Thunemann A F, Weberskirch R, et al. Cylindrical Micelles of a-Fluorocarbon- ω-hydrocarbon End-Capped Poly(N-acylethylene Imine)s[J]. Langmuir, 2005, 21(16):7214-7219
    [58] Brannan A K, Bates F S. ABCA tetrablock copolymer vesicles[J]. Macromolecules, 2004, 37(24): 8816-8819
    [59] Mao J, Ni P, Mai Y, et al. Multicompartment micelles from hyperbranched star-block copolymers containing polycations and fluoropolymer segment[J]. Langmuir, 2007, 23(9): 5127-5134
    [60] Stavrouli N, Triftaridou A I, Patrickios C S, et al. Multi-Compartment Unimolecular Micelles from (ABC)n Multi-Arm Star Triblock Terpolymers[J]. Macromolecular Rapid Communications, 2007, 28(5): 560-566
    [61] Hoogenboom R, Wiesbrock F, Leenen M A M, et al. Synthesis and aqueous micellization of amphiphilic tetrablock ter-and quarter poly(2-oxazoline)s[J]. Macromolecules, 2007, 40(8): 2837-2843
    [62] Fang B, Walther A, Wolf A, et al. Undulated Multicompartment Cylinders by the Controlled and Directed Stacking of Polymer Micelles with a Compartmentalized Corona[J]. Angew. Chem. Int. Ed., 2009,48: 2877-2880
    [63] Ma Z, Yu H, Jiang W. Bump-Surface Multicompartment Micelles from a Linear ABC Triblock Copolymer: A Combination Study by Experiment and Computer Simulation[J]. The Journal of Physical Chemistry B, 2009,113(11): 3333-3338
    
    [64] Talingting M R, Munk P, Webber S E, et al. Onion-type micelles from polystyrene- block-poly (2-vinylpyridine) and poly (2-vinylpyridine)-block-poly (ethylene oxide)[J]. Macromolecules, 1999,32(5): 1593-1601
    [65] Zhu J, Hayward R C. Wormlike Micelles with Microphase-Separated Cores from Blends of Amphiphilic AB and Hydrophobic BC Diblock Copolymers[J]. Macromolecules, 2008, 41(21): 7794-7797
    [66]Wall F T,Hiller A L,Wheeler D J.Statistical Computation of Mean Dimensions of Macromolecules[J].The Journal of Chemical Physics,1954,22:1036-1041
    [67]Milchev A,Bhattacharya A,Binder K.Formation of block copolymer micelles in solution:a Monte Carlo study of chain length dependence[J].Macromolecules,2001,34(6):1881-1893
    [68]He X,Liang H,Pan C.Monte Carlo simulation of morphologies of self-assembled amphiphilic diblock copolymers in solution[J].Physical review.E,2001,63:031804
    [69]Zehl T,Wahab M,Mogel H J,et al.Monte Carlo simulations of self-assembled surfactant aggregates[J].Langmuir,2006,22(6):2523-2527
    [70]Kim S H,Jo W H.A Monte Carlo simulation for the micellization of ABA-and BAB-type triblock copolymers in a selective solvent[J].Macromolecules,2001,34(20):7210-7218
    [71]Pool R,Bolhuis P G.Accurate Free Energies of Micelle Formation[J].The Journal of Physical Chemistry B,2005,109(14):6650-6657
    [72]Maillet J B,Lachet V,Coveney P V.Large scale molecular dynamics simulation of self-assembly processes in short and long chain cationic surfactants[J].Phys.Chem.Chem.Phys,1999,1:5277-5290
    [73]李韠,韩永才,张金利.大分子自组装特性计算机模拟的研究[J].化学进展,2004,16(003):431-437
    [74]Palmer B J,Liu J.Simulations of micelle self-assembly in surfactant solutions[J].Langmuir,1996,12(3):746-753
    [75]陈鹏飞,张丽华.高分子溶液中分子模拟技术的研究进展[J].中国胶粘剂,2007,16(007):52-56
    [76]Kuhn H,Breitzke B,Rehage H.A molecular modeling study of pentanol solubilized in a sodium octanoate micelle[J].Journal of Colloid and Interface Science,2002,249(1):152-161
    [77]Wymore T,Gao X F,Wong T C.Molecular dynamics simulation of the structure and dynamics of a dodecylphosphocholine micelle in aqueous solution[J].Journal of Molecular Structure,1999,485:195-210
    [78]Tieleman D P,Van der Spoel D,Berendsen H J C.Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes:micellar structure and chain relaxation[J].The Journal of Physical Chemistry A,2000,104(27):6380-6388
    [79]Bedrov D,Smith G,Douglas J F.Structural and dynamic heterogeneity in a telechelic polymer solution[J].Polymer,2004,45(11):3961-3966
    [80]Prabal K M,Yves L,Mathew A G,et al.Self-assembly in surfactant oligomers:A coarse-grained description through molecular dynamics simulations[J].Langmiur,2002,18(5):1908-1918
    [81]Srinivas G,Discher D E,Klein M L.Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics[J].Nature Materials,2004,3(9):638-644
    [82]Srinivas G,Shelley J C,Nielsen S O,et al.Simulation of diblock copolymer self-assembly,using a coarse-grain model[J].The Journal of Physical Chemistry B,2004,108(24):8153-8160
    [83]杨玉良,张红东.高分子科学中的Monte Carlo方法[M].上海:复旦大学出版社,1993.
    [84]Binder K.Monte Carlo and molecular dynamics simulations in polymer science[M].Oxford University Press,USA,1995.
    [85]Baschnagel J,Binder K,Doruker P,et al.Bridging the gap between atomistic and coarse-grained models of polymers:Status and perspectives[J].Advances in polymer science,2000,152:41-156
    [86]Fredrickson G H,Ganesan V,Drolet F.Field-theoretic computer simulation methods for polymers and complex fluids[J].Macromolecules,2002,35(1):16-39
    [87]Edwards S F.The statistical mechanics of polymers with excluded volume[J].Proceedings of the Physical Society,1965,85(4):613-624
    [88]何学浩.自缩聚乙烯基聚合及嵌段共聚物自组装的计算机模拟[D].合肥:中国科学技术大学,2003
    [89]Matsen M W.The standard Gaussian model for block copolymer melts[J].J.Phys.:Condens.Matter,2002,14(2):21-48
    [90]Schmid F.Self-consistent-field theories for complex fluids[J].J.Phys.:Condens.Matter,1998,10:8105-8138
    [91]韩志超,董侠.高分子材料研究新进展[J].当代石油石化,2006,14(005):7-10
    [92]Jiang Y,Chen T,Ye F,et al.Effect of polydispersity on the formation of vesicles from amphiphilic diblock copolymers[J].Macromolecules,2005,38(15):6710-6717
    [93]He X,Liang H,Huang L,et al.Complex microstructures of amphiphilic diblock copolymer in dilute solution[J].The Journal of Physical Chemistry B,2004,108(5):1731-1735
    [94]Monzen M,Kawakatsu T,Doi M,et al.Micelle formation in triblock copolymer solutions[J].Computational and Theoretical Polymer Science,2000,10(3-4):275-280
    [95]Zhu J,Jiang Y,Liang H,et al.Self-assembly of ABA amphiphilic triblock copolymers into vesicles in dilute solution[J].The Journal of Physical Chemistry B,2005,109(18):8619-8625
    [96]Wang R,Tang P,Qiu F,et al.Aggregate morphologies of amphiphilic ABC triblock copolymer in dilute solution using self-consistent field theory[J].The Journal of Physical Chemistry B,2005,109(36):17120-17127
    [97]Muller-Plathe F.Coarse-graining in polymer simulation:from the atomistic to the mesoscopic scale and back[J].ChemPhysChem,2002,3(9):754-769
    [98]Hoogerbrugge P J,Koelman J.Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics[J].Europhysics Letters,1992,19(3):155-160
    [99]Koelman J,Hoogerbrugge P J.Dynamic simulations of hard-sphere suspensions under steady shear[J].Europhysics Letters,1993,21:363-363
    [100]Espanol P,Warren P.Statistical mechanics of dissipative particle dynamics[J].Europhysics Letters,1995,30:191-191
    [101]李有勇,徐筱杰.介观层次上的计算机模拟和应用[J].化学进展,2000,12(004):361-375
    [102]杨小震.高分子的计算机模拟研究进展[J].计算机与应用化学,1999,16(005):321-324
    [103]Allen M P,Tildesley D J.Computer simulation of liquids[M].Oxford University Press,USA,1989.
    [104]Groot R D,Warren P B.Dissipative particle dynamics:Bridging the gap between atomistic and mesoscopic simulation[J].The Journal of Chemical Physics,1997,107(11):4423-4435
    [105]Pagonabarraga I,Frenkel D.Dissipative particle dynamics for interacting systems[J].The Journal of Chemical Physics,2001,115:5015-5026
    [106]Trofimov S Y,Nies E L F,Michels M A J.Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures[J].The Journal of Chemical Physics,2002,117:9383-9394
    [107]徐毅.复杂材料介观尺度的动力学模拟[D].上海:华东理工大学,2007
    [108]Nikunen P,Karttunen M,Vattulainen I.How would you integrate the equations of motion in dissipative particle dynamics simulations?[J].Comput.Phys.Commun.,2003,153(3):407-423
    [109]Vattulainen I,Karttunen M,Besold G,et al.Integration schemes for dissipative particle dynamics simulations:From softly interacting systems towards hybrid models[J].The Journal of Chemical Physics,2002,116:3967-3979
    [110]Maiti A,McGrother S.Bead-bead interaction parameters in dissipative particle dynamics:relation to bead-size,solubility parameter,and surface tension[J].The Journal of Chemical Physics,2004,120:1594-1601
    [111]Lowe C P.An alternative approach to dissipative particle dynamics[J].Europhysics Letters,1999,47(2):145-151
    [112]Den Otter W K,Clarke J H R.A new algorithm for dissipative particle dynamics[J].Europhysics Letters,2001,53(4):426-431
    [113]Pagonabarraga I,Hagen M H J,Frenkel D.Self-consistent dissipative particle dynamics algorithm[J].Europhysics Letters,1998,42(4):377-382
    [114]Goujon F,Malfreyt P,Tildesley D J.Dissipative particle dynamics simulations in the grand canonical ensemble:applications to polymer brushes[J].ChemPhysChem,2004,5(4):457-464
    [115]Groot R D.Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants[J].The Journal of Chemical Physics,2003,118:11265
    [116]刘大欢.复杂嵌段共聚物体系微相结构的耗散粒子动力学研究[D].北京:北京化工大学,2006
    [117]Groot R D,Madden T J.Dynamic simulation of diblock copolymer microphase separation[J].The Journal of Chemical Physics,1998,108:8713-8724
    [118]Groot R D,Madden T J,Tildesley D J.On the role of hydrodynamic interactions in block copolymer microphase separation[J].The Journal of Chemical Physics,1999,110:9739-9749
    [119]Elliott J A,Windle A H.A dissipative particle dynamics method for modeling the geometrical packing of filler particles in polymer composites[J].The Journal of Chemical Physics,2000,113:10367-10376
    [120]Qian H J,Lu Z Y,Chen L J,et al.Computer simulation of cyclic block copolymer microphase separation[J].Macromolecules,2005,38(4):1395-1401
    [121]Qian H J,Lu Z Y,Chen L J,et al.Dissipative particle dynamics study on the interfaces in incompatible A/B homopolymer blends and with their block copolymers[J].The Journal of Chemical Physics,2005,122:184907
    [122]Groot R D.Mesoscopic Simulation of Polymer-Surfactant Aggregation[J].Langmuir,2000,16(19):7493-7502
    [123] van Vliet R E, Hoefsloot H C J, Hamersma P J, et al. Pressure-induced phase separation of polymer-solvent systems with dissipative particle dynamics[J]. Macromolecular Theory and Simulations, 2000, 9(9): 698-702
    [124] Cao X, Xu G, Li Y, et al. Aggregation of Poly (ethylene oxide)-Poly (propylene oxide) Block Copolymers in Aqueous Solution: DPD Simulation Study [J]. The Journal of Physical Chemistry A, 2005, 109(45): 10418-10423
    [125] Yamamoto S, Maruyama Y, Hyodo S A. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules[J]. The Journal of Chemical Physics, 2002, 116:5842-5849
    [126] Yamamoto S, Hyodo S A. Budding and fission dynamics of two-component vesicles[J]. The Journal of Chemical Physics, 2003, 118: 7937
    [127] Shillcock J C, Lipowsky R. Tension-induced fusion of bilayer membranes and vesicles[J]. Nature materials, 2005,4(3): 225-228
    [128] Yamamoto S, Hyodo S. Mesoscopic simulation of the crossing dynamics at an entanglement point of surfactant threadlike micelles[J]. The Journal of Chemical Physics, 2005, 122: 204907
    [129] Sheng Y J, Nung C H, Tsao H K. Morphologies of star-block copolymers in dilute solutions[J]. The Journal of Physical Chemistry B, 2006, 110(43): 21643-21650
    [130] Wang B, Shang Y, Liu H, et al. Experiment and simulation studies on the mesostructures of gemini (12-3-12, 2Br-)-SDS-H2O ternary[J]. Fluid Phase Equilibria, 2005, 228: 109-119
    [131] Yan L T, Zhang X. Dissipative Particle Dynamics Simulations of Complexes Comprised of Cylindrical Polyelectrolyte Brushes and Oppositely Charged Linear Polyelectrolytes[J]. Langmiur, 2009,29: 3808-3813
    [132] Zhao Y, Liu Y T, Lu Z Y, et al. Effect of molecular architecture on the morphology diversity of the multicompartment micelles: A dissipative particle dynamics simulation study[J]. Polymer, 2008,49(22): 4899-4909
    [133] Xia J, Zhong C. Dissipative particle dynamics study of the formation of multicompartment micelles from ABC star triblock copolymers in water[J]. Macromolecular Rapid Communications, 2006, 27: 1110-1114
    [134] Xia J, Zhong C L. Multicompartment Micelles From π-Shaped ABC Block Copolymers[J]. Chinese Journal of Chemistry, 2007,25: 1732-1738
    [135] Xia J, Liu D, Zhong C. Multicompartment micelles and vesicles from π-shaped ABC block copolymers: a dissipative particle dynamics study[J]. Physical Chemistry Chemical Physics, 2007, 9(38): 5267-5273
    [136] Xin J, Liu D, Zhong C. Multicompartment Micelles from Star and Linear Triblock Copolymer Blends[J]. The Journal of Physical Chemistry B, 2007, 111(49): 13675-13682
    [137] Cui Y, Zhong C, Xia J. Multicompartment micellar solutions in shear: A dissipative particle dynamics study[J]. Macromolecular Rapid Communications, 2006,27: 1437-1441
    [138] Liu D, Zhong C. Novel two-compartment micelles formed by self-assembly of linear pentablock copolymers in selective solvents[J]. Macromolecular Rapid Communications, 2007, 28: 292-297
    [139] Liu D, Zhong C. Multicompartment micelles formed from star-dendritic triblock copolymers in selective solvents: A dissipative particle dynamics study[J]. Polymer, 2008, 49: 1407-1413
    [140] Bader H, Ringsdorf H, Schmidt B. Watersoluble polymers in medicine[J]. Die Angewandte makromolekulare Chemie, 1984, 123: 457-485
    [141] Cohen Stuart M A, Hofs B, Voets I K, et al. Assembly of polyelectrolyte-containing block copolymers in aqueous media[J]. Current Opinion in Colloid & Interface Science, 2005, 10(1-2): 30-36
    [142] Kubowicz S. Design and characterization of multicompartment micelles in aqueous solution [J]. Angew. Chem. Int. Ed, 2005, 44: 5262-5265
    [143] Ma J W, Li X, Tang P, et al. Self-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution: self-consistent field theory simulations[J]. The Journal of Physical Chemistry B, 2007, 111(7): 1552-1558
    [144] Liu D, Zhong C. Dissipative Particle Dynamics Simulation of Microphase Separation and Properties of Linear-Dendritic Diblock Copolymer Melts under Steady Shear Flow[J]. Macromolecular Rapid Communications, 2005, 26: 1960-1964
    [145] Liu D, Zhong C. Cooperative Self-Assembly of Nanoparticle Mixtures in Lamellar Diblock Copolymers: A Dissipative Particle Dynamics Study[J]. Macromolecular Rapid Communications, 2006,27:458-462
    [146] Schulz S G, Kuhn H, Schmid G, et al. Phase behavior of amphiphilic polymers: A dissipative particles dynamics study[J]. Colloid & Polymer Science, 2004,283(3): 284-290
    [147] Prinsen P, Warren P B, Michels M A J. Mesoscale simulations of surfactant dissolution and mesophase formation[J]. Phys. Rev. Lett., 2002, 89: 148302
    [148] Zhong C, Liu D. Understanding multicompartment micelles using dissipative particle dynamics simulation[J]. Macromolecular Theory and Simulations, 2007, 16: 141-157
    [149] Pochan D J, Chen Z, Cui H, et al. Toroidal triblock copolymer assemblies[J]. Science, 2004, 306(5693): 94-97
    [150] Uneyama T. Density functional simulation of spontaneous formation of vesicle in block copolymer solutions[J]. The Journal of Chemical Physics, 2007, 126: 114902
    [151] Schacher F, Walther A, Rupple M, et al. Multicompartment Micelles from ABCTriblock Terpolymers[J]. Polym. Mater. Sci. Eng., 2007, 96: 94-95
    [152] Zhong S, Cui H, Chen Z, et al. Helix self-assembly through the coiling of cylindrical micelles[J]. Soft Matter, 2008,4(1): 90-93
    [153] Saito N, Liu C, Lodge T P, et al. Multicompartment Micelles from Polyester-Containing ABC Miktoarm Star Terpolymers[J]. Macromolecules, 2008,41(22): 8815-8822
    [154] Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 1999,16(1-4): 3-27
    [155] Gomez E D, Rappl T J, Agarwal V, et al. Platelet Self-Assembly of an Amphiphilic A-B-C-A Tetrablock Copolymer in Pure Water[J]. Macromolecules, 2005,38(9): 3567-3570
    [156] Chou S H, Tsao H K, Sheng Y J. Morphologies of multicompartment micelles formed by triblock copolymers[J]. The Journal of Chemical Physics, 2006, 125: 194903
    [157] Zhang Y, Lin W, Jing R, et al. Effect of Block Sequence on the Self-Assembly of ABC Terpolymers in Selective Solvent[J]. The Journal of Physical Chemistry B, 2008, 112: 16455-16460
    [158] Tung P H, Kuo S W, Chen S C, et al. Micellar morphologies of self-associated diblock copolymers in acetone solution[J]. Polymer, 2007,48(11): 3192-3200
    [159] Aliferis T, Iatrou H. Aggregation phenomena of linear and miktoarm star copolymers of styrene and dimethylsiloxane: Influence of the architecture[J]. European Polymer Journal, 2008, 44(7): 2412-2417
    [160] Tomalia D A, Majoros I. Dendrimeric supramolecular and supramacromolecular assemblies [J]. J. Macromol. Sci. C-Polym. Rev., 2003,43: 411-477
    [161] Yan D, Zhou Y, Hou J. Supramolecular self-assembly of macroscopic tubes[J]. Science, 2004, 303(5654): 65-67
    [162] Spenley N A. Scaling laws for polymers in dissipative particle dynamics[J]. Europhysics Letters, 2000, 49(4): 534-540
    [163] Pivkin I V, Karniadakis G E. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems[J]. The Journal of Chemical Physics, 2006, 124: 184101
    [164] Chen X, Xu Z, Von Meerwall E, et al. Self-diffusion of linear and 4-and 18-armed star polyisoprenes in tetrachloromethane solution[J]. Macromolecules, 1984, 17(7): 1343-1348
    [165] Bosko J T, Prakash J R. Effect of molecular topology on the transport properties of dendrimers in dilute solution at ? temperature: A Brownian dynamics study[J]. The Journal of Chemical Physics, 2008, 128: 034902
    [166] Maibaum L, Dinner A R, Chandler D. Micelle formation and the hydrophobic effect[J]. The Journal of Physical Chemistry B, 2004,108: 6778-6781
    [167] Brown W, Stilbs P, Johnsen R M. Friction coefficients in self-diffusion, velocity sedimentation, and mutual diffusion for poly (ethylene oxide) in aqueous solution[J]. Journal of Polymer Science: Polymer Physics Edition, 1983, 21(7): 1029-1039
    [168] Nemoto N, Kishine M, Inoue T, et al. Self-diffusion and viscoelasticity of linear polystyrene in entangled solutions[J]. Macromolecules, 1991, 24(7): 1648-1654
    [169] Lodge T P. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers[J]. Physical Review Letters, 1999, 83: 3218-3221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700