燃料电池用质子交换膜制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)由于高效、环境友好等优点,在移动设备、汽车及固定装置的能源供应方面显示了很大的潜力。质子交换膜(PEM)是PEMFC的核心部件之
     在燃料电池中既作为电解质起到从阳极向阴极传输质子的作用,同时也充当燃料与氧化剂的隔膜。目前实际应用的是诸如DuPont公司生产的全氟磺酸型质子交换膜该类膜具有优良的化学稳定性及较高的电导率,但其昂贵的价格、较低的使用温度以及较高的甲醇透过性等缺点限制了其进一步推广。近年来,低成本高性能的PEM替代材料的开发成为研究者关注的焦点。其中,磺化聚芳醚砜(SPAES)类质子交换膜具有质子导电率高、热稳定性、化学稳定性好等优点;SPI类质子交换膜具有优异的成膜性,高的耐热性、机械性能及尺寸稳定性。这些优良的性能使得SPAES和SPI膜作为PEM替代材料,具有很高的应用潜力。但是当离子交换容量(IEC)较高时,SPAES在水中尤其是高温水中的尺寸稳定性较差,需要对其进行进一步改进才能满足PEMFC的需要。
     本论文将致力于高性能的基于SPAES类质子交换膜的开发及研究,通过交联,引入IPN结构,与SPI复合等方法,制备新型SPAES,质子交换膜,考察它们的尺寸稳定性、导电性及耐久性。在上述研究的基础上,合成了基于聚酰亚胺和磺化聚苯的多嵌段共聚物,并对其电导性、微观形态及耐久性等性能进行了研究。
     采用发烟硫酸直接磺化法,成功制备了3,3’-二磺化-4,4’-二氟二苯砜(SDFDPS)。考察了发烟硫酸用量、磺化时间、磺化温度等对磺化结果的影响,结果显示,最佳反应条件为SO_3/DFDPS摩尔比为3∶1,反应温度为110℃,反应时间为20 h。通过芳香族亲核取代反应,与4,4’-二氟二苯砜(DFDPS)及4,4’-联苯二酚(BP)经过高温缩聚,得到了高分子量的直链型SPAES聚合物。
     制备并表征了两种交联型SPAES膜—直接交联型及后交联型SPAES膜:一种是以DFDPS, SDFDPS, BP和1,3,5-三羟基苯(THB)为原料,而合成的一系列不同磺化度、不同交联度的新型直接交联型磺化聚芳醚砜(cSPAES)。采用~1HNMR和FTIR对聚合物结构进行了表征确认。与直链型SPAES相比,cSPAES膜在水中尤其是高温水中的尺寸稳定性得到了较大提高,并得到很高的质子导电率(IEC=2.43 meq/g时,60℃水中的沿膜面方向的质子电导率(σ//)达到261ms/cm,是相同条件下Nafion112σ//(139 ms/cm)的1.9倍)。另一类交联膜是通过向直链型SPAES聚合物中加入脱水剂,通过磺酸基团与高分子主链结构中的活性氢发生脱水交联而形成的通过交联前后聚合物在诸如DMSO、DMAc及NMP等溶剂中溶解性能的改变,证明交联结构被成功引入SPAES内。pSPAES膜在尺寸稳定性方面得到了非常大的提升:pSPAES60-9在130℃水中熟化24h后的径向和膜厚方向的尺寸变化仅有0.41和0.65,远小于cSPAES膜在相同条件下的尺寸变化值。
     以不同磺化度的直链型SPAES为基础,以P_2O_5为脱水剂,制备了两个系列具有IPN结构的磺化聚芳醚砜(SPAES-IPN)质子交换膜。扫描电子显微镜(SEM)结果表明,两种高分子具有良好的互溶性,复合膜中没有明显的相分离区域。对SPAES-IPN膜进行了系列性能测试,结果显示,SPAES-IPN膜Ⅰ_(11)70保持了较高的质子导电率(IEC=1.95meq/g,在60℃水中σ//=173 mS/cm),尺寸稳定性和水解稳定性得到了大幅度提高.Ⅰ_(11)70膜在130℃水中浸泡24 h后径向和膜厚方向的尺寸变化仅有0.45和0.51,在130℃浸泡200h后仍然保持了高强度等级。
     以SPAES(.或cSPAES)和SPI为原料,采用不同配比,合成了两种新型复合质子交换膜(SPAES/SPI和cSPAES/SPI)。SEM的观察没有发现明显相分离区域。复合处理后膜仍然保持了较高的热稳定性,两种复合膜的磺酸基团分解温度均在300℃左右,可以满足高温燃料电池使用的要求。复合膜在水中(尤其是热水中)和甲醇溶液中的稳定性比相应的纯SPAES(或cSPAES)得到了较大提高。与纯SPI相比,复合膜在整个相对湿度范围内均显示了较高的质子导电率
     以2.5-二氯-3’-磺化苯甲酮(DCSBP)和聚酰亚胺多聚体(PIO_(-n))为链段,通过耦合反应,设计合成了一系列新型的聚(2-(3-磺化)苯甲酰基-1,4-亚苯基)-嵌段-聚萘酰胺(PSP-b-PI)嵌段型共聚物膜。TEM结果表明,PSP-b-PI膜存在疏水区域与亲水区域形成的微相分离结构。PSP-b-PI共聚物膜在130℃下具有很好的水稳定性。尽管PSP-b-PI共聚物膜在尺寸变化方面呈现了很强的各向异性特点,而在电导率方面基本上为各向同性。这类膜在水中,甚至在较低的相对湿度下都具有非常高的垂直膜面方向的质子导电率。IEC为1.5 meq/g的PSP-b-PI膜在PEMFC中显示出很高的性能。
Proton exchange membrane fuel cells (PEMFC), due to their high efficiency and environmental friendship, have shown promise as alternative portable, automotive, and stationary power sources. One of the important components in a PEMFC is the proton exchange membrane (PEM), which serves as the electrolyte that transfers protons from the anode to the cathode and separates the fuel and oxidizer. The state-of-the art PEMs are perfluorosulfonic acid membranes such as Nafion manufactured by DuPont. These membranes showed excellent chemical stability as well as high proton conductivity. However, Nafion suffers from disadvantages, including high cost, high methanol permeability, and limited operating temperature (80℃), due to its depressed hydrated a relaxation temperature. In recent years, the increasing demands of PEMs with high performance and low cost have stimulated the intensive researches on the development of alternatives. Among them, sulfonated poly(arylene ether sulfon)s (SPAESs)were drawn the attraction because of their high proton conductivity, high chemical and thermal stabilities. While sulfonated polyimides (SPIs)were widely studied due to their good film-forming ability, excellent thermal and mechanical stability, and excellent dimensional stability in hydrated state. So. SPAES and SPI were considered as the promising alternatives for PEMFC applications. However, the SPAES with ion exchange capacity (IEC) excesses 1.80 meq/g tend to extremely swellingand lost its mechanical stability. Only the further improvement in PEMFC performance, SPAES-based membranes should be met the need for PEMFC.
     This dissertation focuses on the development of SPAES-based membranes by the methods including cross-linking, interpenetrating and blending.Their performances such as dimensional stability, proton conductivity and durability investigated. Based on the former study, novel sulfonated polyphenylene-b-polyimide (PSP-b-PI) block copolymers were developed and their proton conductivity, microphase and durability were also investigated.
     A well optimized synthetic method was developed for 3,3'-disulfonate-4,4'-difluorodiphenyl sulfone (SDFDPS) by direct sulfonated from industrial grade 4,4'-difluorodiphenyl sulfone (DFDPS) with fumic sulfuric acid. The optimized reaction condition was found as that the molar ratio of SO_3 to DFDPS is 3:1 with a reaction temperature of 110℃for 20 h. Poly (arylene ether sulfone) copolymer prepared from the synthesized SDFDPS showed a high relative viscosity.
     Two types of cross-linked SPAES-based membranes were successfully developed. One is named cSPAES, which were obtained from the directly compolymerization of DFDPS, 4,4-biphenol (BP), SDFDPS.and 1.3,5-trihydroxy benzene (THB), and the structure was confirmed by ~1HNMR and FTIR. Tough and flexible cSPAES membranes were obtained through solution casting method. Compare to line structure type of SPAES. cSPAES membranes showed higher dimensional stability in water especially in hot water. These membrane showed much high proton conductivity at some high IEC level(IEC=2.43 meq/g.σ//=261 mS/cm, which was 1.9 times to that of Nafion).. The other one is named pSPAESs, which were obtained via the dehydration reaction between the sulfonic acid groups and the activated hydrogen atoms of SPAES in the presence of phosphorus pentoxide. The crosslinked structure was confirmed by the insolubility in organic solvents such as DMSO, DMAc and NMP. pSPAES membranes showed greatly improved water stability. Forexample, after aging in water for 24 h at 130℃, the dimensional change in plane and thickness of pSPAES60-9 were just 0.41 and 0.65, respectively, which were much lower than those of cSPAES.
     A series of SPAES-based blend membranes (SPAES-IPN) with interpenetrating polymer network (IPN) structure were prepared successfully from SPAESs with various IEC level. The scanning electron microscopy (SEM) proved the miscibility of the system and membrane uniformity. The SPAES-IPN membranes exhibited significantly improvement in dimensional and hydrolytic stability, and reasonably high proton conductivity was maintained. (). For example, for In70(IEC=1.95 meq/g), which showed 173mS/cm in water at 60℃, after aging in water for 24 h at 130℃, the dimensional changes in plane and thickness direction were 0.45, and 0.51, respectively.And this membrane also displayed much high toughness after aging in 130℃water for 200 h.
     Two series of SPAES/SPI and cSPAES/SPI blend membranes were prepared from SPAES (or cSPAES) and SPI. The miscible structure of the blend membranes was confirmed by SEM. Thermogravimetry analysis demonstrated that the blend membranes were stable up to 300℃. By the introduction of SPI, the blend membranes showed much higher hydrolytic stability and methanol tolerance than the corresponding SPAES (or cSPAES) membranes. The blend membranes showed higher proton conductivity than the corresponding SPI membranes in the whole range of relative humidity.
     Novel poly (2-(3-sulfo) benzoyl-1,4-phenylene)-block-polynaphthalimide (PSP-b-PI) copolymers were successfully synthesized by Ni(0) catalytic copolymerization of 2,5-dichloro-3'-sulfo-benzophenone and dichloro-terminated naphthalimide oligomer. TEM results suggested that microphase-separated structure for the hydrophilic domain and hydrophobic domain were presented in these membranes. PSP-b-PI membranes showed good hydrolytic stability at 130℃Although with high isotropic performance for the dimensional change, PSP-b-PI membranes showed anisotropic performance for proton conductivity. These membranes showed high through-plane conductivity in water as well as under low relative humidity. The PSP-b-PI membrane with IEC of 1.5 meq/g showed high PEFC performance.
引文
[1]Rao V, Hariyanto, Cremers C, Stimming U. Investigation of the Ethanol Electro-Oxidation in Alkaline Membrane Electrode Assembly by Differential Electrochemical Mass Spectrometry [J]. Fuel Cells,2007,7(5):417-423.
    [2]窦志宇.新型燃料电池用质子交换膜的合成和性能研究[D].博士学位论文.长春:吉林大学,2006.
    [3]尹燕.关于高分子电解质型燃料电池用新型测链型磺化聚酰亚胺的合成及性能的研究[D].博士学位论文.天津:天津工业大学,2003.
    [4]Grove W R. On voltaic series and the combination of gases by platinum [J]. Philos. Mag.,1839,314:127-130.
    [5]Mond L, Langer C. A new form of gas battery [J]. JSTOR,1889,46:296-304.
    [6]Ostwald W. Die wissenschaftliche Elektrochemie der Gegenwart und die technische der Zukunft [J]. Z. Elektrochem,1894,1:122-124.
    [7]Los Angeles. Ballard Power Systems [J]. Fuel Cell Reformer Conference,1998
    [8]Patil P G. US Department of Energy fuel cell program for transportation applications [J]. J. Power Sources,1992,37(1-2):171-179.
    [9]Voss H, Huff J. Portable fuel cell power generater [J]. J. Power Sources,1997,65(1-2): 155-158.
    [10]Ahluwalia R, Wang X. Fuel Cell Systems for Transportation:Status and Trends [J]. J. Power Sources.2008,177 (1):167-176.
    [11]Meng H. Numerical Studies of Cold-start Phenomenon in PEM Fuel Cells [J]. Electrochim. Acta,2008,53(22):6521-6529.
    [12]李英,王林山.燃料电池(第1版)[M].北京:冶金工业出版社,2000.
    [13]黄倬,屠海令,张冀强,詹锋.质子交换膜燃料电池的研究开发与应用(第1版)[M].北京:冶金工业出版社,2000.
    [14]Unlu M, Zhou J, Kohl P. Anion exchange membrane fuel cells:experimental compaarison of hydroxide and carbonate conductive ions [J]. Electrochem. Solid-State Lett.,2009,12(3):B27-B30.
    [15]Costamagna P, Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000:Part I. Fundamental scientific aspects [J]. J. Power sources,2001,102(1-2):242-269.
    [16]Wang Z, Ni H, Zhao C, Zhang M, Na H. Physical and Electrochemical Behaviors of Directly Polymerized Sulfonated Poly(arylene ether ketone sulfone)s Proton Exchange Membranes with Different Backbone Structures [J]. J. Appl. Polym. Sci.,2009,112: 858-866.
    [17]Bernay C, Marchand M. Cassir M. Prosects of different fuel cell technologies for vehicle applications [J]. J. Power Sources,2002,108(1-2):139-152.
    [18]隋智通,隋升,罗冬梅.燃料电池及其应用(第1版)[M].北京:冶金工业出版社,2004.
    [19]衣宝廉.燃料电池——高效、环境友好的发电方式(第1版)[J].北京:化学工业出版社,2000.
    [20]Spiegel C. PEM Fuel Cell Modeling and Simulation Using MATLAB [M]. Elsevier: Academic Spiegel,2008.
    [21]Harrision W L, Hickner M A, Kim Y S, McGrath J E. Poly(arylene Ether Sulfone) Copolymers and Related Systems from Disulfonated Monomer Building Blocks: Synthesis, Characterization, and Performance-A Topical Review [J]. Fuel Cells,2005,5: 201-212.
    [22]衣宝廉.燃料电池-原理技术应用(第1版)[M].北京:化学工业出版社,2003.
    [23]Bos P B. Commercializing fuel cell:managing risks [J]. J. Power Sources,1996, 61(1-2):21-34.
    [24]李国欣.新型化学电源导论[M].上海:复旦大学出版社,1992.
    [25]Hsu W Y, Barkley J R, Meakin P. Ion Percolation and Insulator-to-Conductor Transition in Nafion Perfluorosulfonic Acid Membranes [J]. Macromolecules,1980,13:198-200.
    [26]Kariduraganavar M Y, Nagarale R K, Kittur A A, Kulkarni S S. Ion-exchange membranes:preparative methods for electrodialysis and fuel cell applications [J]. Desalination,2006,197(1-3):225-246.
    [27]Bae B, Kim D, Kim H J, Lim T H, Oh I H, Ha H Y. Surface characterization of argon-plasma-modified perfluorosulfonic acid membranes [J]. J. Phys. Chem. B,2006, 110(9):4240-4246.
    [28]Lin Y H, Li H D, Liu C P, Xing W, Ji X L. Surface-modified Nafion membranes with mesoporous SiO_2 layers via a facile dip-coating approach for direct methanol fuel cells [J]. J Power Sources,2008,185(2):904-908.
    [29]Yuan J J, Pu H T, Yang Z L. Studies on sulfonic acid functionalized hollow silica spheres/Nafion(?) composite proton exchange membranes [J]. J. Polym. Sci. Part A: Polym. Chem.,2009,47(10):2647-2655.
    [30]Rivin D, Kendrick C E, Gibson P W, Schneider N S. Solubility and transport behavior of water and alcohols in Nafion [J]. Polymer,2001,42(2):623-635.
    [31]Mahreni A, Mohamad A B, Kadhum A A H, Daud W R W, Iyuke S E. Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity [J]. J Membr. Sci.,2009,327(1-2):32-40.
    [32]Hasani-Sadrabadi M M, Dashtimoghadam E, Majedi F S, Kabiri K. Nafion(?)/bio-functionalized montmorillonite nanohybrids as novel polyelectrolyte [J]. J Power Sources,2009,190(2):318-321.
    [33]Krueger J J, Simon P P, Ploehn H J. Phase Behavior and Microdomain Structure in Perfluorosulfonated Ionomers via Self-Consistent Mean Field Theory [J]. Macromolecules,2002,35(14):5630-5639.
    [34]Umeda M, Ojima H, Mohamedi M, Uchida I. Methanol vapor-induced morphology and current-voltage characteristic changes in a cast-coated nafion film/interdigitated microarray electrode [J]. J. Polym. Sci.:Part B:Polymer Physics,2002,40(11): 1103-1109.
    [35]Haubold H G, Vad T, Jungbluth H, Hiller P. Nano structure of NAFION:a SAXS study [J]. Electrochimica Acta,2001,46(10-11):1559-1563.
    [36]Hodgdon R B, Enos Jr J F, Aiken E J. Sulfonated Polymers of d, B, B-Trifluorostyrene with Applications to Structures and Cells [P]. U. S. Patent:No.3341366,1967.
    [37]Agostino D. Trifluorostyrene sulfonic acid membranes [P]. U. S. Patent:No.4,012,303, 1977.
    [38]Gubler L, Slaski M, Wokaun A, Scherer G G. Advanced monomer combinations for radiation grafted fuel cell membranes [J]. Electrochem. Commun.,2006,8(8): 1215-1219.
    [39]Wei J, Stone C, Steck AE. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom [P]. U. S. Patent: No.5422411,1995.
    [40]Hietala S, Koel M, Skou E, Elomaa M, Sundholm F. Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride) [J]. J. Mater, Chem,1998,8:1127-1132.
    [41]Miyatake K, OyaizuK, Tsuchida E, Hay A S. Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers [J]. Macromolecules,2001, 34(7):2065-2071.
    [42]Miyatake K, Hay A S. Synthesis and properties of poly(arylene ether)s bearing sulfonic acid groups on pendant phenyl rings [J]. J. Polym. Sci.:Part A:Polmer Chemistry,2001, 39(19):3211-3217.
    [43]Kim D S, Robertson G P, Guiver M D, Lee Y M. Synthesis of highly fluorinated poly(arylene ether)s copolymers for proton exchange membrane materials [J]. J Membr. Sci.,2006,281(1-2):111-120.
    [44]陈晓勇.燃料电池用质子交换膜[J].化学推进剂与高分子材料,2009,7(3):16-21.
    [45]Johnson R N. In Encyclopedia of Polymer Science and Technology [M]. Bikales N M, Ed. New York,1969.
    [46]Dumais J J, Cholli A L, Jelinski L W, Hedrick J L, McGrath J E. Molecular basis of the (3-transition in poly(arylene ether sulfones) [J]. Macromolecules,1986,19(7), 1884-1889.
    [47]Cotter R J. Handbook of Polyarylethers Engineering Plastics [M]. Basel of Switzerland: Gordon& Breach,1995.
    [48]Roy A, Hickner M A, Einsla B R, Harrison W L, McGrath J E. Synthesis and Characterization of Partially Disulfonated Hydroquinone-Based Poly(arylene ether sulfone)s Random Copolymers for Application as Proton Exchange Membranes [J]. Journal of Polymer Science:Part A:Polymer Chemistry,2009,47:384-391.
    [49]王哲.用于燃料电池质子交换膜材料的系列磺化聚芳醚砜的合成与性能研究[D].博士学位论文.长春:吉林大学,2006.
    [50]Clagett D C. In Encyclopedia of Polymer Science and Engineering [M]. Mark H F, Bikales N M, Overberger C G, Menges G, Eds.; New York,1986.
    [51]Ueda M, Toyota H, Ouchi T, et al. Sythesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium [J]. J. Polym. Sci., Part A:polym. Chem.,1993, 31(4):853-858.
    [52]Wang F, Hickner M, Kim Y S, Zawodzinski T A, McGrath J E. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes [J]. J. Membr. Sci.,2002,197:231-242.
    [53]Jia L, Xu X, Zhang H, Xu J. Sulfonation of polyetheretherketone and its effects on permeation behavior to nitrogen and water vapor [J]. J. Appl. Polym. Sci.,1996,60: 1231-1237.
    [54]Jin X, Ellis T S, Bishop M T, Karasz F E. Sulphonated poly(arylether ketone) [J]. British Polymer Joural,1985,17(1):4-10.
    [55]Omran A, Rose J B. Synthesis and sulfonation of poly(phenylene ether ether sulfone)s containing methylated hydroquinone residues [J]. Polymer,1996,37(9):1735-1743.
    [56]Dimitrova P G, Baradie B, Foscallo D, Poinsifnon C, Sanchez J Y. Onomeric membranes for proton exchange membrane fuel cell (PEMFC):sulfonated polysulfone associated with phosphatoantimonic acid [J]. J. Membr. Sci.,2001,185(1):59-71.
    [57]Lee J, Marvel C S. Polyaromatic ether-ketone sulfonamides prepared from polydiphenyl ether-ketones by chlorosulfonation and treatment with secondary amines [J]. J. Polym. Sci. Polym. Chem. Ed.1984,22(2):295-301.
    [58]Johnson B C, Ylgor I, Tran C, Iqbal M, Wightman J P, Lioyd D R, McGrath J E. Synthesis and characterization of sulfonated poly(acrylene ether sulfones) [J]. J. Polym. Sci. Polym. Chem. Ed.,1984,22(3):721-737.
    [59]Noshay A, Robeson L M. Sulfonated polysulfone [J]. J. Appl. Polym. Sci.,1976, 20(7):1885-1903.
    [60]Litter M I, Marvel C S. Polyaromatic ether-ketones and polyaromatic ether-ketone sulfonamides from 4-phenoxybenzoyl chloride and from 4,4'-dichloroformyldiphenyl ether [J]. J. Polym. Sci. Polym. Chem. Ed.,1985,23(8):2205-2223.
    [61]Kerres J, Cui W, Reichle S. New sulfonated engineering polymers via the metalation route. I. Sulfonated poly(ether sulfone) PSU Udel(?) via metalation-sulfination-oxidation [J]. J.Polym.Sci., Part A:Polym. Chem.,1996,34(12): 2421-2438.
    [62]Kerres J, Ullrich A, Haring Th, Baldauf M, Gebhard U, Preidel W. Preparation, characterization and fuel cell application of new acid-base blend membranes [J]. J. New Mat. Electrochem. Systems.,2000,3:229-239.
    [63]Turbak A F. Polymer sulfonation without cross linking the sulfur trioxide-phosphate system [J]. Ind. Eng. Chem. Prod. Res. Dev.,1962,1(4):275-278.
    [64]Bishop M T, Karasz F E, Russo P S, Langley K H. Solubility and properties of a poly(aryl ether ketone) in strong acids [J]. Macromolecules,1985,18(1):86-93.
    [65]Ueda M, Toyota H, Ouchi T, Sugiyama J, Yonetake K, Masuko T, Teramoto T J. Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups [J]. J. Polym. Sci. Part A:Polym. Chem.,1993,31(4):853-858
    [66]Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M. Aliphatic/aromatic polyimide lonomers as a proton conductive membrane for fuel cell applications [J]. J. Am. Chem. Soc,2006,128(5):1762-1769.
    [67]Einsla B R, Hong Y T, Kim Y S, Wang F, Gunduz N, McGrath J E. Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and copolymer synthesis [J]. J. Polym. Sci. Part A:Polym. Chem., 2004,42 (4):862-874.
    [68]Fang J H, Guo X X, Harada S, Watari T, Tanaka K, Kita H, Okamoto K. Novel sulfonated polyimides as polyelectrolytes for fuel cell application.1. Synthesis, proton conductivity, and water stability of polyimides from 4,4'-Diaminodiphenyl Ether-2,2'-disulfonic acid [J]. Macromolecules,2002,35(24):9022-9028.
    [69]Guo X X, Fang J H, Watari T, Tanaka K, Kita H, Okamoto K. Novel sulfonated polyimides as polyelectrolytes for fuel cell application.2. Synthesis and proton conductivity of polyimides from 9,9-bis(4-aminophenyl) fluorine-2,7-disulfonic acid [J]. Macromolecules,2002,35(17):6707-6713.
    [70]Cornet N, Beaudoing G, Gebel G. Influence of the structure of sulfonated polyimide membranes on transport properties [J]. Separation and purification technology,2001, 22-23:681-687.
    [71]Faure S, Mercier R, Aldebert P, Prineri M, Sillion B. French Patent:No.9605707,1996.
    [72]Genies C, Mereier R, Sillion B, Comet N, Gebel G, Pineri M. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes [J]. Polymer, 2001,42(2):359-373.
    [73]Wainright J S, Wang J T, Weng D, Savinell R F, Litt M, J. Acid-doped polybenzimidazoles:a new polymer electrolyte [J]. Electrochem. Soc,1995,142(7): L121-L123.
    [74]Savinell R, Litt M. Proton conducting polymers used as membranes [P]. U.S. Patent: No.5525436,1996.
    [75]Litt M, Savinell R. Proton conducting polymers prepared by direct acid casting [P]. U.S. Patent:No.5716727,1998.
    [76]Savinell R, Litt M. Proton conducting solid polymer electrolytes prepared by direct acid casting [P]. U.S. Patent:No.6025085,2000.
    [77]Savinell R, Litt M. U.S. Proton conducting polymer electrolyte prepared by direct acid casting [P]. Patent:No.6099988,2000.
    [78]Genies C, Mercier R, Sillion B, Petiaud R, Cornet N, Gebel G, Pineri M. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium [J]. Polymer,2001,42(12):5097-5105.
    [79]任素贞.直接甲醇燃料电池用新型质子交换膜的研究[D].博士学位论文.大连:大连理工大学,2005.
    [80]Ye Y, Yen Y, Cheng C, Chen W, Tsai L, Chang F. Sulfonated poly(ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes [J]. Polymer,2009,50:3196-3203.
    [81]Wang F, Chen T L, Xu J P. Synthesis of Poly (ether ether ketone) containing sodium sulfonate groups as gas dehumidification membrane material [J]. Macromolecular Rapid Communications,1998,19(2):135-137.
    [82]Wang F, Chen T L, Xu J P. Sodium sulfonate-functionalized poly (ether ether ketone)s [J]. Macromolecular Chemistry and Physics,1998,199 (7):1421-1426.
    [83]Wang F, Li J K, Chen T L, Xu J P. Synthesis of Poly (ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics [J]. Polymer,1999, 40(3):795-799.
    [84]Ise M. Kreuer K D,Maier J. Electoosmotic drag in polymer electrolyte membranes:an electrophoretic NMR study [J]. Solid State Ionics,1999,125(1):213-223.
    [85]Kreuer K D. On the development of proton conducting Polymer membranes for hydrogen and methanol fuel cells [J]. J. Membr. Sci.,2001,185:29-39.
    [86]Haile S M. Fuel cell materials and components [J]. Acta Materialia,2003,51: 5981-6000.
    [87]Yang B, Manthiram A. Comparison of the small angle X-ray scattering study of sulfonated Poly (ether ether ketone) and Nation membranes for direct methanol fuel cells [J]. Journal of Power Sources,2005,153(1):29-35.
    [88]Yang B, Manthiram A. Sulfonated Poly (ether ether ketone) membranes for direct methanol fuel cells [J]. Electrochemical and Solid-State Letters,2003,6(11): A229-A231.
    [89]于非,张高文,周震涛.新型非氟芳环聚合物质子交换膜研究进展[J].化工新型材料,2006,34(3):1-4,7.
    [90]张玉祥,鲍冠苓,姬月萍,周诚,李丽荣.新型口腔粘合剂——磷酸二氢(甲基丙烯酰氧已)酯的合成及应用研究[J].中国胶粘剂,2000,9(5):16-18.
    [91]卿胜波,黄卫,颜得岳.芳杂环类聚合物质子交换膜的研究进展[J].化工新型材料,2006,34(12):39-43,47.
    [92]尹燕.关于高分子电解质型燃料电池用新型测链型磺化聚酰亚胺的合成及性能的研究[D].博士学位论文.天津:天津工业大学,2003.
    [93]Bae J M, Honma I, Murata M, Yamamoto T, Rikukawa M, Ogata N. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells [J]. Solid State Ionics,2002,147(1-2):189-194.
    [94]Miyatake K, Iyotani H, Yamamoto K, Tsuchida E. Synthesis of Poly(phenylene sulfide sulfonic acid) via Poly(sulfonium cation) as a Thermostable Proton-Conducting Polymer [J]. Macromolecules,1996,29(21):6969-6971.
    [95]Glipa X, Haddad M E, Jones D J, Roziere J. Synthesis and characterization of sulfonated polybenzimidazole:a highly conducting proton exchange polymer [J]. Solid State Ionics,1997,97(1-4):323-331.
    [96]Kawahara M, Rikukawa M, Sanui K. Relationship between absorbed water and proton conductivity in sulfopropylated poly(benzimidazole) [J]. Polym. Adv. TechnoL,2000, 11(8-12):544-547.
    [97]Sakaguchi Y, Kitamura K, Nakao J, Hamamoto S, Tachimori H, Takase S. Preparation and properties of sulfonated or phosphonated polybenzimidazoles and polybenzoxazoles [J]. Polym. Mater. Sci. Eng.,2001,84:899-900.
    [98]Qing S Q, Huang W, Yan D Y. Synthesis and characterization of thermally stable sulfonated polybenzimidazoles [J]. Eur. Polym. J.,2005,41(7):1589-1595.
    [99]Qing S B, Huang W, Yan D Y. Aynthesis and characterization of thermally stable sulfonated fluorine containing polybenzimidazoles [J]. Acta. Chim. Sinica,2005,63(7): 667-670.
    [100]袁园,于建佳,王姝姗,余欢,管蓉.交联质子交换膜研究进展[J].化工科技,2009,17(2):66-70.
    [101]Qiao J, Hamaya T, Okada T. Chemically modified poly (vinyl alcohol)-poly (2-acrylamido-2-methyl-l-propanesulfonic acid) as a novel proton-conducting fuel cell membrane [J]. Chem. Mater.,2005,17 (9):2413-2421.
    [102]Kang M S, Kim J H, Won J, Moon S H, Kang Y S. Highly changed proton exchange membranes prepared by using water soluble polymer blends for fuel cells [J]. J. Membr. Sci.,2005,247(1-2):127-135.
    [103]Qiao J, Hamaya T, Okada T. New highly proton-conducting membrane poly(vinyl pyrrolidone) (PVP) modified poly (vinylalcohol)/2-acrylamido-2-met hyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct met hanol fuel cells (DMFCc) [J]. Polymer,2005,46(24):10809-10816.
    [104]Hamaya T, Inoue S, Qiao J, Okada T. Novel proton-conducting polymer electrolyte membranes based on PVA/PAMPS/PEG400 blend [J]. J. Power Source,2006,156(2): 311-314.
    [105]Xu W, Liu C, Xue X, Su Y, Lv Y, Xing W, Lu T. New proton exchange membranes based on poly (vinyl alcohol) for DMFCs [J]. Solid State Ionics,2004, 171(1-2):121-127.
    [106]Rhim J W, Park H B, Lee C S, Jun J H, Kim D S, Lee YM. Crosslinked poly (vinyl alcohol) membranes containing sulfonic acid group:proton and methanol transport through membranes [J]. J. Membr. Sci.,2004,238 (1-2):143-151.
    [107]Kim D S, Park H B, Rhim J W, Lee Y M. Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications [J]. J. Membr. Sci.,2004,240(1-2):37-48.
    [108]Kim D S, Park H B, Rhim J W, Lee Y M. Proton conductivity and methanol transport behavior of cross21inked PVA/PAA/silica hybrid membranes [J]. Solid State Ionics, 2005,176(1-2):117-126.
    [109]Chang Y W, Wang E, Shin G, Han J E, Mather P T. Poly (vinyl alcohol) (PVA)/ sulfonated polyhedral oligosilsesquioxane (SPOSS) hybrid membranes for direct methanol fuel cell applications [J]. Adv. Technol.,2007,18(7):535-543.
    [110]Chikashige Y, Chikyu Y, Miyatake K, Watanabe M. Branched and Cross-Linked Proton Conductive Poly(arylene ether sulfone) Ionomers:Synthesis and Properties [J]. Macromol. Chem. Phys.,2006,207(15):1334-1343.
    [111]Yin Y, Hayashi S, Yamada O, Kita H, Okamoto K I. Branched/Crosslinked Sulfonated Polyimide Membranes for Polymer Electrolyte Fuel Cells [J]. Macromol. Rapid Commun.,2005,26:696-700.
    [112]吴雪梅,贺高红,顾爽,董春旭,姚平经.化学交联法在质子交换膜制备中的应用[J].高分子材料科学与工程,2006,22(4):28-31,35.
    [113]Mikhailenko S D, Wang K, Kaliaguine S, Xing P, Robertson G P, Guiver M D. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone)(SPEEK) [J]. J. Membr. Sci.,2004,233(1-2):93-99.
    [114]Fang J, Zhai F, Guo X, et al. A facile approach for the preparation of cross2linked sulfonated polyimide membranes for fuel cell application [J]. J. Mater. Chem.,2007,17 (11):1102-1108.
    [115]Seo J, Jang W, Lee S, et al. The stability of semi-interpenet rating polymer networks based on sulfonated polyimide and poly (ethylene glycol) diacrylate for fuel cell applications [J]. Polymer Degradation and stability,2008,93(1):298-304.
    [116]Kang M, Choi Y, Moon S. Water-swollen cation-exchange membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) [J]. J. Membr. Sci.,2002,207:157-170.
    [117]Chen S L, Krishnan L, Srinivasan S, Benziger J, Bocarsly A B. Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells [J]. J. Membr. Sci., 2004,243:327-333.
    [118]Deimede V, Voyiatzis G A, Kallitsis J K, Qingfeng L, Bjerrum N J. Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications [J]. Macromolecules,2000,33(20):7609-7617.
    [119]Kim D H, Kim S C. Transport Properties of Polymer Blend Membranes of Sulfonated and Nonsulfonated Polysulfones for Direct Methanol Fuel Cell Application [J]. Macromolecular Research,2008,16(5):457-466.
    [120]Arico A S, Baglio V, Blasi A D, et al. Influence of the acid base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cell [J]. Solid State Ionics,2003,161:251-265.
    [121]Honma I, Hirakawa S, Yamada K, Bae J M. Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes [J]. Solid Statet Ionics,1999,118(1-2):29-36.
    [122]Yoon S R, Hwang G H, Cho W I, et al. Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering [J]. J. Power Source,2002, 106:215-223.
    [123]Bae B, Miyatake K, Watanabe M. Synthesis and Properties of Sulfonated Block Copolymers Having Fluorenyl Groups for Fuel-Cell Applications [J]. ACS Appl. Mater. Interfaces,2009,1(6):1279-1286.
    [124]Hu Z, Yin Y, Yaguchi K, Endo N, Higa M, Okamoto K. Synthesis and properties of sulfonated multiblock copolynaphthalimides [J]. Polymer,2009,50:2933-2943.
    [125]Bai Z, Yoonesi M, Juhl S, Drummy L, Durstock M, Dang T. Synthesis and Characterization of Multiblock Sulfonated Poly(arylenethioethersulfone) Copolymers for Proton Exchange Membranes [J]. Macromoleculaes,2008,41:9483-9486
    [126]Li N, Liu J, Cui Z, Zhang S, Xing W. Novel hydrophilic-hydrophobic multiblock copolyimides as proton exchange membranes:Enhancing the proton conductivity [J]. Polymer,2009,50:4505-4511.
    [127]Badami A, Roy A, Lee H, Li Y, McGrath J. Morphological investigations of disulfonated poly(arylene ether sulfone)-b-naphthalene dianhydride-based polyimide multiblock copolymers as potential high temperature proton exchange membranes [J]. J. Membr. Sci.,2009,328:156-164.
    [128]Lee H, Roy A, Lane O, Dunn S, McGrath J. Hydrophilicehydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells [J]. Polymer,2008,49:715-723.
    [129]Roy A, Yu X, Dunn S, McGrath J. Influence of micro structure and chemical composition on proton exchange membrane properties of sulfonated-fluorinated, hydrophilic-hydrophobic multiblock copolymers [J]. J. Membr. Sci.,2009,327: 118-124.
    [130]Badami A, Lane O, Lee H, Roy A, McGrath J. Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic-hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells [J]. J. Membr. Sci.,2009,323:1-11.
    [131]Takimoto N, Takamuku S, Abe M, Ohira A, Lee H, McGrath J. Conductive area ratio of multiblock copolymer electrolyte membranes evaluated by e-AFM and its impact on fuel cell performance [J]. J. Power Sources,2009,194:662-667.
    [132]Roy A, Hickner M A, Yu X, et al. Influence of chemical composition and sequence length on the transport properties of proton exchange membranes [J]. J. Polym. Sci. Part B:Polym. Phys.,2006,44 (16):2226-2239.
    [133]Meier-Haack J, Taeger A, Vogel C, et al. Membranes from sulfonated block copolymers for use in fuel cells [J]. Sep. Purif. TechnoL,2005,41(3):207-220.
    [134]Deluca N W, Elabd Y A. Polymer electrolyte membranes for the direct methanol fuel cell:A review [J]. J. Polym. Sci. Part B:Polym. Phys.2006,44(16):2201-2225.
    [135]Lee H S, Roy A, Lane O, Dunn S, James E. McGrath. Hydrophilice-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells [J]. Polymer,2008,49: 715-723.
    [136]Nakano T, Nagaoka S, Kawakami H. Preparation of novel sulfonated block copolyimides for proton conductivity membranes [J]. Polym. Adv. TechnoL,2005, 16(10):753-757.
    [137]Asano N, Miyatake K, Watanabe M. Sulfonated block polyimide copolymers as a proton-conductive membrane[J]. J. Polym. Sci. Pol.Chem.,2006,44(8):2744-2748.
    [1]Harrision W L, Hickner M A, Kim Y S, McGrath J E. Poly(arylene Ether Sulfone) Copolymers and Related Systems from Disulfonated Monomer Building Blocks: Synthesis, Characterization, and Performance-A Topical Review [J]. Fuel Cells,2005,5: 201-212.
    [2]Maier G. Sulfonated Aromatic Polymers for Fuel Cell Membranes [M]. Berlin Heidelberg: Verlag Springer,2008.
    [3]Roy A, Hickner M A, Einsla B R, Harrison W L, McGrath J E. Synthesis and Characterization of Partially Disulfonated Hydroquinone-Based Poly(arylene ether sulfone)s Random Copolymers for Application as Proton Exchange Membranes [J]. J. Polym. Sci. Part A:Polym. Chem.,2009,47(2):384-391.
    [4]Nakabayashi K, Matsumoto K, Ueda M. Synthesis and properties of sulfonated multiblock copoly(ether sulfone)s by a chain extender. J. Polym. Sci. Part A:Polym. Chem.,2008,46(12):3947-3957.
    [5]王哲,李先锋,赵成吉,陆辉,倪卓,那辉,钱雅琴.新型燃料电池质子交换膜-含叔丁基的磺化聚芳醚砜[J].高等学校化学学报,2005,26(11):2149-2152.
    [6]Ueda M, Toyota H, Ouchi T, et al. Sythesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium [J]. J. Polym. Sci., Part A:polym. Chem.,1993, 31(4):853-858.
    [7]Sankir M, Bhanu V A, Harrison W L, et al. Sankir M, Bhanu V A, Harrison WL, et al. Synthesis and characterization of 3,3'-disulfonated-4,4'-dichlorodiphenyl sulfone (SDCDPS) monomer for proton exchange membranes (PEM) in fuel cell applications [J]. Appl. Polym. Sci.,2006,100(6):4595-4602.
    [8]Robeson L M, Matzner M. Flame retardant polyarylate compositions [P]:US:4380598. 1983-4-19.
    [9]毕慧平,陈守文,王佳力,张轩,高智琳,张莎,陶应勇,王连军.新型直接交联磺化聚芳醚砜燃料电池用质子交换膜的合成及性能[J].高等学校化学学报,2009,30(11):2306-2310.
    [10]Harrison W L, Wang F, Mecham J B, et al. Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I [J]. J. Polym. Sci. Pol. Chem.,2003,41(14):2264-2276.
    [11]Bae B, Miyatake K, Watanabe M. Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications [J]. J. Membr. Sci.,2008,310(1-2): 110-118.
    [12]Saito T, Hayamizu K, Yanagisawa M, Yamamoto O. Spectral Database for Organic Compounds SDBS [DB/OL]. Japan:National Institute of Materials and Chemical Research (NIMC). [2009-06-02]. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin direct_frame_top. cgi.
    [1]Savadogo O. Emerging Membranes for Electrochemical Systems (1):Solid polymer Electrolyte Membranes for Fuel Cell Systems [J]. J. New Mat. Electrochem. Systems, 1998,1(1):47-66.
    [2]Rikukawa M, Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers [J]. Prog. Polym. Sci.,2000,25(10):1463-1502.
    [3]Steele BCH, Heinzel A. Materials for fuel-cell technologies [J]. Nature,2001,414: 345-352.
    [4]高鹏,郭小霞,徐宏杰,房建华.非含氟型磺化聚合物质子交换膜材料的研究进展(上)[J].高分子通报,2007,4:1-13.
    [5]井丽巍,刘佰军,关绍巍,姜振华. 侧基磺酸型含氟聚芳醚的合成[J].高等学校化学学报,2008,29(5):1074-1076.
    [6]Wang F, Hickner M, Kim Y S, Zawodziski T A, MeGrath J E. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes [J]. J. Membr. Sci.,2002,197(1-2):231-242.
    [7]王哲,李先锋,赵成吉,陆辉,倪卓,那辉,钱雅琴.新型燃料电池质子交换膜-含叔 丁基的磺化聚芳醚砜[J].高等学校化学学报,2005,26(11):2149-2152.
    [8]邢丹敏,刘富强,于景荣,衣宝廉,张华民.磺化聚芳醚砜的燃料电池性能初步研究[J].膜科学与技术,2002,22(5):12-16,24.
    [9]Zhang X, Liu S, Yin J. Modified sulfonated poly(arylene ether sulfone)-b-polybutadiene (SPAES-b-PB) membrane for fuel cell applications [J]. J. Membr. Sci.,2006,275(1-2): 119-126.
    [10]Gogel V, Jorissen L, Chromik A, Schonberger F, Lee J, Schafer M, Krajinovic K, Kerres J. Ionomer Membrane and MEA Development for DMFC [J]. Sep. Sci. Technol.,2008,43: 3955-3980.
    [11]Badami A S, Roy A, Lee H S, Li Y, McGrath J E. Morphological investigations of disulfonated poly(arylene ether sulfone)-b-naphthalene dianhydride-based polyimide multiblock copolymers as potential high temperature proton exchange membranes [J].J. Membr. Sci.,2009,328(1-2):156-164.
    [12]Sanker N, Mecham J, Goff R, Harrison W, Claus R. Novel ductile polyaniline/sulfonated poly(arylene ether sulfone) composites [J]. Smart Mater. Struct.,2006,15:200-203.
    [13]Zhu X, Zhang H, Liang Y, Zhang Y, Luo Q, Bi C, Yi B. Challenging reinforced composite polymer electrolyte membranes based on disulfonated poly(arylene ether sulfone)-impregnated expanded PTFE for fuel cell applications [J]. J. Mater. Chem.,2007, 17:386-397.
    [14]Lee H S, Roy A, Lane O, Dunn S, James E. McGrath. Hydrophilice-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells [J]. Polymer,2008,49: 715-723.
    [15]Badami A S, Roy A, Lee H S, Li Y, McGrath J E. Morphological investigations of disulfonated poly(arylene ether sulfone)-b-naphthalene dianhydride-based polyimide multiblock copolymers as potential high temperature proton exchange membranes [J].J. Membr. Sci.,2009,328(1-2):156-164.
    [16]Roy A, Lee H, McGrath J E. Hydrophilic-hydrophobic multiblock copolymers based on poly (arylene ether sulfone)s as novel proton exchange membranes-Part B [J]. Polymer, 2008,49(23):5037-5044.
    [17]Schonberger F, Kerres J. Novel multiblock-co-ionomers as potential polymer electrolyte membrane materials [J]. J. Polym. Sci., Part A:Polym. Chem.,2007,45(22):5237-5255.
    [18]Chikashige Y, Chikyu Y, Miyatake K, Watanabe M. Branched and Cross-Linked Proton Conductive Poly(arylene ether sulfone) Ionomers:Synthesis and Properties [J]. Macromol. Chem. Phys.,2006,207(15):1334-1343.
    [19]Lee C, Min K, Park H, Hong Y, Jung B, Lee Y. Sulfonated poly(arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC) [J]. J. Membr. Sci. [J],2007,303(1-2):258-266.
    [20]Jorissen L, Gogel V, Kerres J, Garche J. New membranes for direct methanol fuel cells [J]. J. Power Sources,2002,105(2):267-273.
    [21]Kerres J, Ullrich A, Haring Th, Baldauf M, Gebhard U, Preidel W. Preparation, characterization and fuel cell application of new acid-base blend membranes [J]. J. New Mat. Electrochem. Systems.,2000,3:229-239.
    [22]Walker M, Baumgartner K M, Kaiser M, Kerres J, Ullrich A, Rauchle E. Proton-conducting polymers with reduced methanol permeation [J]. J. Appl. Polym. Sci., 1999,74(1):67-73.
    [23]Tang C M, Zhang W, Kerres J. Preparation and Characterization of Ionically Cross-Linked Proton-Conducting Membranes [J]. J. New Mater. Electrochem. Syst, 2004,7,287-298.
    [24]Kerres J, Cui W, Disson R, Neubrand W. Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by disproportionation of sulfinic acid groups [J]. J. Membr. Sci., 1998,139(2):211-225.
    [25]Kerres J, Cui W, Junginger M. Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes [J]. J. Membr. Sci.,1998, 139(2):227-241.
    [26]Kerres J, Zhang W, Ullrich A, Tang C M, Hein M, Gogel V, Frey T, Jorissen L. Synthesis and characterization of polyaryl blend membranes having different composition, different covalent and/or ionical cross-linking density, and their application to DMFC [J]. Desalination,2002,147(1-3):173-178.
    [27]Kerres J, Zhang W, Haering T. Covalently Cross-Linked Ionomer (Blend) Membranes for Fuel Cells [J]. J. New Mater. Electrochem. Syst.,2004,7:299-309.
    [28]Zhang W, Gogel V, Friedrich K A, Kerres J.Novel covalently cross-linked poly (etheretherketone) ionomer membranes [J]. J. Power Sources,2006,155(1):3-12.
    [29]Mikhailenko S D, Wang K, Kaliaguine S, Xing P, Robertson G P, Guiver M D. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone)(SPEEK) [J]. J. Membr. Sci.,2004,233(1-2):93-99.
    [30]Mikhailenko S D, Robertson G P, Guiver M D, Kaliaguine S. Properties of PEMs based on cross-linked sulfonated poly(ether ether ketone) [J]. J. Membr. Sci.,2006,285(1-2): 306-316.
    [31]Yin Y, Hayashi S, Yamada O, Kita H, Okamoto K I. Branched/Crosslinked Sulfonated Polyimide Membranes for Polymer Electrolyte Fuel Cells [J]. Macromol. Rapid Commun,2005,26:696-700.
    [32]毕慧平,陈守文,王佳力,张轩,高智琳,张莎,陶应勇,王连军.新型直接交联磺化聚芳醚砜燃料电池用质子交换膜的合成及性能[J].高等学校化学学报,2009,30(11):2306-2310.
    [33]Miyatake K, Chikashige Y, Higuchi E, Watanabe M. Tuned Polymer Electrolyte Membranes Based on Aromatic Polyethers for Fuel Cell Applications [J]. J. Am. Chem. Soc,2007,129(13),3879-3887.
    [34]Fang J, Zhai F, Guo X, et al. A facile approach for the preparation of cross2linked sulfonated polyimide membranes for fuel cell application [J]. J. Mater. Chem.,2007,17 (11):1102-1108.
    [35]毕慧平,陈守文,高智琳,张莎,王连军.3,3’-二磺化-4,4’-二氟二苯砜二钠盐的合成与表征[J].化工学报,2009,60(11):2937-2942.
    [36]庞金辉,张海博,刘佰军,李雪峰,姜振华.侧链型磺化聚芳醚酮质子交换膜材料的制备[J].高等学校化学学报,2009,30(2):430-432.
    [37]Einsla B R, Hong Y T, Kim Y S, Wang F, Gunduz N, McGrath J E. Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and copolymer synthesis [J]. J. Polym. Sci. Part A:Polym. Chem., 2004,42 (4):862-874.
    [38]Wang F, Hickner M, Ji Q, et al. Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization [J]. Macromol. Symp., 2001,175:387-395.
    [39]Harrison W L, Wang F, Mecham J B, et al. Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I [J]. J. Polym. Sci. Pol. Chem.,2003,41(14):2264-2276.
    [40]Hu Z, Yin Y, Kita H, Okamoto K, Suto Y, Wang H, Kawasato H. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for polymer electrolyte fuel cell application [J]. Polymer,2007,47:1962-1971.
    [41]Chen S, Yin Y, Tanaka K, Kita H, Okamoto K. Synthesis and properties of novel side-chain-sulfonated polyimides from bis [4-(4-aminophenoxy)-2-(3-sulfobenzoyl)] phenyl sulfone [J]. Polymer,2006,47:2660-2669.
    [42]Le X T. Permselectivity and microstructure of anion exchange membranes [J]. J. Colloid Interface Sci.,2008,325:215-222.
    [43]Yin Y, Yamada O, Tanaka K, Okamoto K. On the Development of Naphthalene-Based Sulfonated Polyimide Membranes for Fuel Cell Applications [J]. Polymer J.,2006,38(3): 197-219.
    [1]Sperling L H. Interpenetrationg polymer networks and related materials. Moscow:Mir, 1984.
    [2]Wu X, He G, Gao L, Gu S. Hu Z. Yao P. Synthesis and Water Uptake of Sulfonated Poly (phthalazinone ether sulfone ketone)/Polyacrylic Acid Proton Exchange Membranes [J]. Chin. Chem. Lett.,2006,17(7):965-968.
    [3]Cho K Y, Jung H Y, Shin S S, Choi N S, Sung S J, Park J K, et al. Proton conducting semi-IPN based on Nafion and crosslinked poly (AMPS) for direct methanol fuel cell [J]. Electrochim. Acta,2004,50(2-3):588-593.
    [4]Surya Prakash G K, Smart M C, Wang Q J, Atti A, Pleynet V, Yang B, et al. High efficiency direct methanol fuel cell based on poly (styrenesulfonic) acid (PSSA)-poly (vinylidene fluoride) (PVDF) composite membranes [J]. J Fluorine Chem.,2004, 125(8):1217-1230.
    [5]Seo J, Jang W, Lee S, et al. The stability of semi-interpenet rating polymer networks based on sulfonated polyimide and poly (ethylene glycol) diacrylate for fuel cell applications [J]. Polymer Degradation and stability,2008,93(1):298-304.
    [6]毕慧平,陈守文,王佳力,张轩,高智琳,张莎,陶应勇,王连军.新型直接交联磺化聚芳醚砜燃料电池用质子交换膜的合成及性能[J].高等学校化学学报,2009,30(11):2306-2310.
    [7]毕慧平,陈守文,高智琳,张莎,王连军.3,3’-二磺化-4,4’-二氟二苯砜二钠盐的合 成与表征[J].化工学报.2009,60(11):2937-2942.
    [8]Sutou Y. Yin Y Hu Z. Chen S, Kita H, Okamoto K, Wang H, Kawasato H. Synthesis and properties of sulfonated polyimides derived from bis (sulfophenoxy) benzidines [J]. J. Polym. Sci. Part A:Polym. Chem.,2009,47(5):1463-1477.
    [9]Endo N, Matsuda K, Yaguchi K, Hu Z, Chen K, Higa M, Okamoto K. Cross-Linked Sulfonated Polyimide Membranes for Polymer Electrolyte Fuel Cells [J]. J. Electrochem. Soc,2009,156(5):B628-B633.
    [10]Hu Z, Yin Y, Yaguchi K, Endo N, Higa M, Okamoto K. Synthesis and properties of sulfonated multiblock copolynaphthalimides [J]. Polymer,2009,50(13):2933-2943.
    [11]Yin Y, Suto Y, Sakabe T. Water Stability of Sulfonted Polyimide Membranes [J]. Macromolecules.2006,39(3):1189-1198.
    [12]Kim D H, Kim S C. Transport Properties of Polymer Blend Membranes of Sulfonated and Nonsulfonated Polysulfones for Direct Methanol Fuel Cell Application[J]. Macromolecular Research,2008,16(5):457-466.
    [1]Badami A S, Roy A, Lee H S, Li Y, McGrath J E. Morphological investigations of disulfonated poly(arylene ether sulfone)-b-naphthalene dianhydride-based polyimide multiblock copolymers as potential high temperature proton exchange membranes [J].J. Membr. Sci.,2009,328(1-2):156-164.
    [2]Tigelaar D M, Palker A E, Jackson C M, Anderson K M, Wainright J, Savinell R F. Synthesis and Properties of Novel Proton-Conducting Aromatic Poly(ether sulfone)s That Contain Triazine Groups [J]. Macromolecules,2009,42(6):1888-1896.
    [3]Roy A, Yu X, Dunn S, McGrath J E. Influence of micro structure and chemical composition on proton exchange membrane properties of sulfonated-fluorinated, hydrophilic-hydrophobic multiblock copolymers [J]. J. Membr. Sci.,2009,327(1-2): 118-124.
    [4]Takamuku S, Akizuki K, Abe M, Kanesaka H. Synthesis and characterization of postsulfonated poly(arylene ether sulfone) diblock copolymers for proton exchange membranes [J]. J. Polym. Sci., Part A:Polym. Chem,2009,47(3):700-712.
    [5]Bae B, Miyatake K, Watanabe M. Effect of the Hydrophobic Component on the Properties of Sulfonated Poly(arylene ether sulfone)s [J]. Macromolecules,2009,42(6): 1873-1880.
    [6]Sutou Y, Yin Y, Hu Z, Chen S, Kita H, Okamoto K, Wang H, Kawasato H. Synthesis and properties of sulfonated polyimides derived from bis (sulfophenoxy) benzidines [J]. J. Polym. Sci. Part A:Polym. Chem.,2009,47(5):1463-1477.
    [7]Chen X B, Yin Y, Chen P, Kita H, Okamoto K I. Synthesis and properties of novel sulfonated polyimides derived from naphthalenic dianhydride for fuel cell application [J]. J. Membr. Sci.,2008,313(1-2):106-119.
    [8]Saito J, Miyatake K, Watanabe M. Synthesis and properties of polyimide ionomers containing 1H-1,2,4-triazole groups [J]. Macromolecules,2008,41(7):2415-2420.
    [9]Zhai F X, Guo X X, Fang J H, Xu H J. Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application [J]. J. Membr. Sci.,2007, 296(1-2):102-109.
    [10]Savard O, Peckham T J, Yang Y, Holdcroft S. Structure-property relationships for a series of polyimide copolymers with sulfonated pendant groups [J]. Polymer,2008,49(23): 4949-4959.
    [11]Yuka O, Sounai A,Hori M. Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells [J]. J. Power Sources,2009,189(2):943-949.
    [12]Xu H J, Chen K C, Guo X X, Fang J H, Yin Y. Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application [J]. J. Polymer,2007,48(19):5556-5564.
    [13]Peron J, Ruiz E, Jones D J, Roziere. J. Solution sulfonation of a novel polybenzimidazole: A proton electrolyte for fuel cell application [J].2008,314(1-2):247-256.
    [14]庞金辉,张海博,刘佰军,李雪峰,姜振华.侧链型磺化聚芳醚酮质子交换膜材料的制备[J].高等学校化学学报,2009,30(2):430-432.
    [15]Jeong M H, Lee K S, Lee J S. Selective and quantitative sulfonation of poly(arylene ether ketone)s containing pendant phenyl rings by chlorosulfonic acid [J]. J. Membr. Sci.,2008, 314(1-2):212-220.
    [16]Zhao C J, Li X F, Haidan L, Ke S, Na H. Sulfonated poly(arylene ether ketone)s prepared by direct copolymerization as proton exchange membranes:Synthesis and comparative investigation on transport properties [J]. J. Appl. Polym. Sci.,2008,108(1):671-680.
    [17]Harrision W L, Hickner M A, Kim Y S, McGrath J E. Poly(arylene Ether Sulfone) Copolymers and Related Systems from Disulfonated Monomer Building Blocks: Synthesis, Characterization, and Performance-A Topical Review [J]. Fuel Cells,2005,5: 201-212.
    [18]张妮,刘惠玲,李君敬,夏至,王向宇.用于燃料电池的磺化聚芳醚砜质子交换膜材料的直接合成与性能研究[J].高分子学报,2009,(4):375-380.
    [19]Watari T, Fang J H, Tanaka K, Kita H, Okamoto K I, Hirano T. Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid [J]. J. Membr. Sci.,2004,230 (1-2):111-120.
    [20]Yin Y, Fang J H, Watari T, Tanaka K, Kita H, Okamoto K. Synthesis and properties of highly sulfonated proton conducting polyimides from bis(3-sulfopropoxy)benzidine diamines [J]. J Mater. Chem.,2004,14 (6):1062-1070.
    [21]潘海燕,梁勇芳,李健丰,朱秀玲,蹇锡高,宣根海.含二氮杂萘酮结构磺化聚酰亚胺共聚物的合成及其膜性能研究[J].高分子学报,2007,(8):742-745.
    [22]高启君,王宇新,许莉,卫国强,王志涛.SPEEK/PES-C, SPEEK/SPES-C共混质子交换膜研究[J].高分子学报,2009,(1):45-52.
    [23]Deimede V, Voyiatzis G A, Kallitsis J K, Qingfeng L, Bjerrum N J. Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications [J]. Macromolecules,2000,33(20):7609-7617.
    [24]Wang L, Yi B L, Zhang H M, Xing D M. Characteristics of Polyethersulfone/Sulfonated Polyimide Blend Membrane for Proton Exchange Membrane Fuel Cell [J]. J. Phys. Chem. B,2008,112:4270-4275.
    [25]Kim D H, Choi J, Hong Y T, Kim S C. Phase separation and morphology control of polymer blend membranes of sulfonated and nonsulfonated polysulfones for direct methanol fuel cell application [J]. J. Membr. Sci.2007,299(1-2):19-27.
    [26]Tsai J C, Cheng H P, Kuo J F, Huang Y H, Chen C Y. Blended Nafion(?)/SPEEK direct methanol fuel cell membranes for reduced methanol [J]. J. Power Sources,2009,189: 958-965.
    [27]Yin Y, Suto Y, Sakabe T. Water Stability of Sulfonted Polyimide Membranes [J]. Macromolecules,2006,39(3):1189-1198.
    [28]毕慧平,陈守文,高智琳,张莎,王连军.3,3’-二磺化-4,4’-二氟二苯砜二钠盐的合成与表征[J].化工学报,2009,60(11):2937-2942.
    [29]毕慧平,陈守文,王佳力,张轩,高智琳,张莎,陶应勇,王连军.新型直接交联磺化聚芳醚砜燃料电池用质子交换膜的合成及性能[J].高等学校化学学报,2009,30(11):2306-2310.
    [30]Endo N,. Matsuda K, Yaguchi K, Hu Z, Chen K, Higa M, Okamoto K. Cross-Linked Sulfonated Polyimide Membranes for Polymer Electrolyte Fuel Cells [J]. J. Electrochem. Soc,2009,156(5):B628-B633.
    [31]Hu Z, Yin Y, Yaguchi K, Endo N, Higa M, Okamoto K. Synthesis and properties of sulfonated multiblock copolynaphthalimides [J]. Polymer,2009,50(13):2933-2943.
    [32]Johnson B C, Ylgor I, Tran C, Iqbal M, Wightman J P, Lioyd D R, McGrath J E. Synthesis and characterization of sulfonated poly(acrylene ether sulfones) [J]. J. Polym. Sci. Polym. Chem. Ed.,1984,22(3):721-737.
    [33]Einsla B R, Hong Y T, Kim Y S, Wang F, Gunduz N, McGrath J E. Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and copolymer synthesis [J]. J. Polym. Sci. Part A:Polym. Chem., 2004,42 (4):862-874.
    [34]Wang F, Hickner M, Ji Q, et al. Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization [J]. Macromol. Symp., 2001,175:387-395.
    [35]Harrison W L, Wang F, Mecham J B, et al. Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I [J]. J. Polym. Sci. Pol. Chem.,2003,41(14):2264-2276.
    [36]Chen S, Yin Y, Tanaka K, Kita H, Okamoto K. Synthesis and properties of novel side-chain-sulfonated polyimides from bis [4-(4-aminophenoxy)-2-(3-sulfobenzoyl)] phenyl sulfone [J]. Polymer,2006,47:2660-2669.
    [37]Hu Z, Yin Y, Kita H, Okamoto K, Suto Y, Wang H, Kawasato H. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for polymer electrolyte fuel cell application [J]. Polymer,2007,47:1962-1971.
    [38]Wiles K B, Wang F, McGrath I E. Directly copolymerized poly(arylene sulfide sulfone) disulfonated copolymers for PEM-based fuel cell systems. I. Synthesis and characterization [J]. J. Polym. Sci. Pol. Chem.,2005,43(14):2964-2976.
    [39]Yin Y, Yamada O, Tanaka K, Okamoto K. On the Development of Naphthalene-Based Sulfonated Polyimide Membranes for Fuel Cell Applications [J]. Polymer J.,2006,38(3): 197-219.
    [40]Chen S W, Yin Y,Kita H, Okamoto K. Synthesis and properties of sulfonated polyimides from homologous sulfonated diamines bearing bis (aminophenoxyphenyl)sulfone [J]. J. Polym. Sci., Part:A:Polym. Chem.,2007,45(13):2797-2811.
    [41]Kim D H, Kim S C. Transport Properties of Polymer Blend Membranes of Sulfonated and Nonsulfonated Polysulfones for Direct Methanol Fuel Cell Application [J]. Macromolecular Research,2008,16(5):457-466.
    [42]Kim Y S, Wang F, Hickner M, et al. Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton-exchange membranes for fuel-cell use above 100 ℃ [J]. J. Polym. Sci. Part B:Polym. Phys.,2003, 41(22):2816-2828.
    [43]Bonis C, D'Eoifanio A, Di Vona M L, D'Ottavi C, Mecheri B, Traversa E, Trombetta M, Licoccia S. Proton conducting hybrid membranes based on abomatic polymers blends for direct memthanol fuel cell applications. Fuel Cells,2009,9(4):387-393.
    [1]Ghassemi H, McGrath J E. Zawodzinski T A. Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell [J]. Polymer.2006,47(11): 4132-4139.
    [2]Nakabayashi K. Matsumoto K, Ueda M. Synthesis and properties of sulfonated multiblock copoly(ether sulfone)s by a chain extender. J. Polym. Sci. Part A:Polym. Chem.,2008,46(12):3947-3957.
    [3]Roy A, Lee H, McGrath J E. Hydrophilic-hydrophobic multiblock copolymers based on poly (arylene ether sulfone)s as novel proton exchange membranes-Part B [J]. Polymer, 2008,49(23):5037-5044.
    [4]Schonberger F, Kerres J. Novel multiblock-co-ionomers as potential polymer electrolyte membrane materials [J]. J. Polym. Sci., Part A:Polym. Chem.,2007,45(22):5237-5255.
    [5]Einsla M L, Kim Y S, Hawley M, Lee H.S, McGrath J E. Liu B, Guiver M D, Pivovar B S. Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity [J]. Chem. Mater.,2008,20(17):5636-5462.
    [6]Goto K, Rozhanskii I, Yamakawa Y, Otsuki T, Naito Y. Development of Aromatic Polymer Electrolyte Membrane with High Conductivity and Durability for Fuel Cell [J]. Polymer J.,2009,41(2):95-104.
    [7]Bae J M, Honma I, Murata M, Yamamoto T, Rikukawa M, Ogata N. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells [J]. Solid State Ionics,2002,147(1-2):189-194.
    [8]Ghassemi H, McGrath J E. Synthesis and properties of new sulfonated poly(p-phenylene) derivatives for proton exchange membranes. I [J]. Polymer,2004,45(17):5847-5854.
    [9]Wu S, Qiu Z, Zhang S, Yang X, Yang F, Li Z. The direct synthesis of wholly aromatic poly(p-phenylene)s bearing sulfobenzoyl side groups as proton exchange membranes [J]. Polymer,2006,47(20):6993-7000.
    [10]Yin Y, Yamada O, Tanaka K, Okamoto K. On the Development of Naphthalene-Based Sulfonated Polyimide Membranes for Fuel Cell Applications [J]. Polymer J.,2006,38(3): 197-219.
    [11]Sutou Y, Yin Y, Hu Z, Chen S, Kita H, Okamoto K, Wang H, Kawasato H. Synthesis and properties of sulfonated polyimides derived from bis (sulfophenoxy) benzidines [J]. J. Polym. Sci. Part A:Polym. Chem.,2009,47(5):1463-1477.
    [12]Endo N, Matsuda K, Yaguchi K, Hu Z, Chen K, Higa M, Okamoto K. Cross-Linked Sulfonated Polyimide Membranes for Polymer Electrolyte Fuel Cells [J]. J. Electrochem. Soc,2009,156(5):B628-B633.
    [13]Hu Z, Yin Y, Yaguchi K, Endo N, Higa M, Okamoto K. Synthesis and properties of sulfonated multiblock copolynaphthalimides [J]. Polymer,2009,50(13):2933-2943.
    [14]Qiu Z, Wu S, Li Z, Zhang S, Xing W, Liu C. Sulfonated poly(arylene-co-naphthalimide)s synthesized by copolymerization of primarily sulfonated monomer and fluorinated naphthalimide dichlorides as novel polymers for proton exchange membranes [J]. Macromolecules,2006,39(19):6425-6432.
    [15]Zhang F, Cui Z, Li N, Dai L, Zhang S, Synthesis of sulfonated poly(arylene-co-naphthalimide)s as novel polymers for proton exchange membranes [J]. Polymer,2008,49(15):3272-3278.
    [16]Li W, Cui Z, Zhou X, Zhang S, Dai L, Xing W. Sulfonated poly(arylene co-imide)s as water.stable proton exchange membrane materials for fuel cells [J]. J. Membr. Sci.,2008, 315(1-2):172-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700