可预防骨不连的骨修复用新型形状记忆聚氨酯-脲的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨是自然界中一种复杂的生物材料,当骨组织因创伤、感染等原因需要实施手术剔除病变骨组织后,会造成大块骨缺损,仅仅依靠骨自身的修复能力已经无法愈合,需要通过骨移植手术,将合适的骨材料填充于缺损部位,以便新骨生成。在骨移植修复过程中,骨不连是热点问题之一。从骨不连发生的原因来讲,在植入体与机体之间存在的间隙,或不规则骨产生的不规则界面,导致骨修复过程中成骨细胞迁移能垒的存在,是其中一个重要的因素。本研究将形状记忆聚氨酯脲(SMPUU)用于骨修复过程中,探索形状记忆聚氨酯脲在骨不连预防方面的效果,目的是利用SMPUU的形状记忆性能,即SMPUU在体温作用下可以恢复至预设的形状,实现植入体与机体之间的空隙填充,降低上述成骨细胞迁移能垒的存在,从而降低了骨不连发生的几率。
     形状记忆聚氨酯/聚脲是能感知外界温度变化并发生形状改变的新型智能材料,因其良好的形状记忆功能而成为功能材料研究的热点之一,在生物医学领域,尤其是微创手术中具有重要的应用价值。本文基于SMPUU预聚体(HO-P(LA-co-PDO)-OH)合成了一系列的可生物降解SMPUU,并对SMPUU进行化学结构的表征,力学性能、形状记忆性能、体外生物降解性、体外细胞相容性、体内安全性的评价,最终采用兔下颌骨建立骨不连模型,对SMPUU在骨修复中的骨不连预防效果进行评价。主要研究内容和结论如下:
     1.以D,L-丙交酯、对二氧环己酮为原料,Sn(Oct)2为引发剂,乙二醇为助引发剂,制备了SMPUU预聚体(HO-P(LA-co-PDO)-OH),考察了D,L-丙交酯/对二氧环己酮的比例、助引发剂用量、制备方法对SMPUU预聚体的热性能及分子量的影响,并对助引发剂作用下两种单体的反应机理进行深入阐述。
     ①红外与核磁共振结果表明,本研究中一步法与两步法均可制得SMPUU预聚体(HO-P(LA-co-PDO)-OH);其分子量可以通过控制合成方法、两种单体的比例、助引发剂的用量加以调节;
     ②DSC结果表明,SMPUU预聚体的玻璃化转变温度具有单体比例依赖性,与其分子量也具有重要关系;一步法与两步法分别制得无规与嵌段的SMPUU预聚体。
     2.以SMPUU预聚体为软段,1,6-六亚甲基二异氰酸酯(HDI)和丁二胺(BDA)为硬段,制备一系列的SMPUU,并深入研究了SMPUU合成的影响因素。
     ①FTIR、1HNMR结果表明,SMPUU预聚体与异氰酸酯反应,丁二胺扩链后成功制得SMPUU;
     ②改变软硬段比例、软段结构可以制得不同理化性能的SMPUU;
     ③DSC分析结果表明,SMPUU的玻璃化转变温度、热塑性与其结构有重要关系,通过调节软/硬段比例、软段结构、软段的分子量,可以控制SMPUU的结构,从而调控其玻璃化转变温度,使其可以控制在合适的应用温度,包括体温附近;
     ④SMPUU理化性能测试结果表明,采用亲水性溶剂和疏水性所合成的溶剂进行SMPUU的合成,所得的SMPUU化学结构基本相同,但力学性能、形状记忆功能完全不同;相对于常用的DMF体系,使用本研究中新型的甲苯-异丙醇体系,制得了具有优良性能的SMPUU。
     3.通过拉伸试验、压缩试验,考察了分子组成、软段分子量、软硬段的比例、变形量、变形温度、回复温度对于形状记忆性能的影响。
     ①SMPUU具有良好的力学特性。硬段含量增加时,模量增加、断裂伸长率下降;
     ②SMPUU呈现良好的形状记忆性能。在合适的操作条件下,固定率、回复率可稳定在95%以上;软段分子量提高,固定率下降;硬段含量提高,固形率上升,回复率下降;
     ③形状记忆性能受变形量、变形温度、回复温度的影响。形变量为50%-200%时,回复率稳定在95%以上,但形变量为400%,回复率明显下降;变形温度高于玻璃化转变温度15℃时,回复率较高,但是当变形温度高于玻璃化转变温度25℃时,回复率显著下降;形状回复时间随着回复温度的增加而缩短;
     4.考察了SMPUU的亲/疏水性和降解性。在降解性考察过程中,本研究创新性的通过核磁共振氢谱法考察了SMPUU的降解位点。
     ①SMPUU的静态水接触角、吸水率测试结果表明其亲水性优于PDLLA,并且随着硬段含量(酰胺基和脲基含量的增加)呈上升趋势;
     ②体外降解实验结果表明,与PDLLA相比,SMPUU在降解前期,失重率、分子量变化、pH变化大,但是随后降解速率减缓,主要是由于降解后期SMPUU释放的碱性物质能够中和酸性物质,从而降低了酸致自催化作用,说明SMPUU的降解过程受到亲水性与降解产物两方面的影响;
     ③SMPUU降解材料表面形貌表明,降解8周后,SMPUU膜材表面出现孔洞,且随着硬段含量的增加,孔洞的尺寸及数量呈下降趋势;
     ④核磁共振氢谱分析结果显示,SMPUU的降解最先发生在硬段的酰胺基和脲基部位,然后发生在SMPUU的软段部分,或同时发生在SMPUU的硬段和软段部分,但软段的降解速率明显低于硬段。
     5.本研究从细胞生长行为和功能行为角度,对大鼠成骨细胞与PDLLA及SMPUU的细胞相容性进行了系统比较。并针对SMPUU的形状记忆性能,研究了SMPUU形状记忆变形过程对成骨细胞生长行为的影响。
     ①与PDLLA相比,SMPUU不利于早期黏附与铺展,成骨细胞对SMPUU表面的适应期较长,因此进入分裂增殖期的时间也较晚;
     ②SMPUU更能促进成骨细胞的分化、矿化,且并不缩短细胞的生长分化周期;
     ③通过拉伸变形、固形、复形的方法制作具有形状记忆变形的SMPUU膜材,并通过细胞生长行为对形状记忆变形的响应进行考察,结果表明具有规则微结构的基底材料促进了细胞的黏附与增殖,并使细胞骨架重组,使细胞的生长具有一定的取向性,细胞尺寸均匀,这一结果为SMPUU在组织工程中的应用提供又一有利基础。
     6.通过全身急性毒性试验和皮肤致敏实验考察了SMPUU的体内安全性,并通过肌肉植入试验研究了SMPUU的体内生物相容性,最后在确定其体内安全性及生物相容性的基础上,通过在兔下颌骨建立的骨不连模型进行骨修复研究,从而确定具有形状记忆性能的SMPUU在骨修复中预防骨不连的效果。
Bone is one of the most complicated composite in the nature. Bone, not only provides mechanical support but also elegantly serves as a reservoir for minerals, particularly calcium and phosphate. It is a good example of a dynamic tissue, since it has a unique capability of self-regenerating or self-remodeling to a certain extent throughout the life. However, many circumstances call for bone grafting owing to bone defects either from traumatic or from non-traumatic destruction. In the case of severe defects and loss of volume, bone can’t heal by itself and grafting is required to restore function without damaging living tissues. In the repair, non-union is one of the hot problems. The one most reason of non-union is that the common bone repair materials result in gap between body and graft, or the irregular interfaces in the irregular defect, which will result in the energy barrier, and non-union. In my study, SMPUU is used in the bone repair for its shape memory property.
     Shape memory polyurethane is a novel intelligent material that is able to response to external temperature change and exhibit shape memory property. It has received wide attentions in biomedical fields, especially in minimally invasive surgery because of its shape memory property.
     In this paper, several kinds of biodegradable poly (urethane urea) (SMPUU) based on HO-P(LA-co-PDO)-OH is synthesized. The mechanical property, shape memory property, degradation, compatibility, biological safety and medical application in jaw bone of the rabbit were investigated. The main works and conclusions are included as follows:
     1. HO-P(LA-co-PDO)-OH was synthesized by melt ring-opening polymerization of D, L-lactide and PDO using Sn(Oct)2 as initiator and EG as coinitiator. Then, an extensive investigation effort was expended in understanding the effects of ratio of D, L-lactide to PDO, dosage of coinitiator on the molecular weight, preparation methods on the Mw and thermal properties were characterized. Otherwise, the reaction mechanism of D, L-lactide and PDO was studied furtherly.
     ①FTIR, NMR showed that SMPUU prepolymer was successfully prepared by one-step method and two-step method. Hydroxyl value, GPC-MALLS analysis indicated that SMPUU prepolymer with different molecular could synthesized by varying the dosage of coinitiator, ratio of D, L-lactide to PDO, and preparation method;
     ②The results of DSC indicated that the glass transition temperature (Tg) molecular weight of SMPUU prepolymer are affected by the ratio of D, L-lactide to PDO; random copolymer and block copolymer were prepared by one-step method and two-step method, respectively.
     2. SMPUU was synthesized by polymerizing of SMPUU prepolymer, hexamethylene diisocyanate (HDI) and butanediamine (BDA). The effects of solvent kinds, content of catalyst and the reactive temperature, ratio of hard segment/soft segment on the reactive activity of SMPUU prepolymer and HDI were discussed, and the structure and thermal properties of SMPUU were characterized.
     ①FTIR, 1HNMR exhibited that the SMPUU can be successfully synthesized; By varying the molecular weight of soft segment and the ratio of soft segment/hard segment, the SMPUU with different physicochemical properties could be synthesized.
     ②The result of physical property of SMPUU indificated that the chemical structure of SMPUU from the hydrophilic solvent or hydrophobic solvent are similar, however, the shape memory property, mechanical property are different. The SMPUU with suitable properties can be synthesized in the toluene-IPA solvent.
     ③The results of thermal analysis showed that Tg, thermoplasticity were affected by the structure, Mw of SMPUU, and can be regulated by the ratio of hard segment/soft segment, structure of soft segment, Mw of soft segment and SMPUU.
     3. The mechanical and shape memory properties of SMPUU were characterized by mechanical tensile tests, compression test and bending test. The paper primarily investigated the influences of molecular weight of soft segment, the ratio of soft segment/hard segment, shape deformation and temperature on the shape memory fixation and recovery ratio.
     ①The results indicated that SMPUU have nice mechanical properties. The modulus and maximum stress increased with the increasing of the hard segment content, while the elongation at break had the opposite trend.
     ②SMPUU had good shape memory properties. Shape recovery ratio and fixation ratio were more than 95%. Meanwhile, the shape memory properties were affected by the components and the hard segment content. The fixation ratio of SMPPU showed slightly downward trend with the increasing of the molecular weight of soft segment; the shape recovery ratio decreased with the increasing of the hard segment content, however, the shape fixation ratio increased.
     ③The deformation strain, deformation/recovery temperature had important effects on the shape memory properties. With the deformation strain increasing, the shape recovery ratio decreased. When the deformation range was from 50 to 200%, the shape memory properties are nice, however, when the deformation increased to 400%, the shape recovery ratio decreased to 85%; SMPUU showed good shape memory behavior when the deformation temperature was Tg+15℃, while the shape recovery ratio had apparent decrease, when the deformation temperature was above Tg+25℃; Shape recovery time shortened with the increasing of the recovery temperature.
     4. The surface wettability and biodegradation of SMPUU were investigated. Moreover, the degradation positions were confirmed by 1H NMR in my study.
     ①The wettability of SMPUU was smaller than PDLLA controls. Meanwhile, the wettability had a uptrend with the increasing of hard segment content.
     ②Comparing with the PDLLA, the weight loss ratio, Mw, and pH value changes of SMPUU decreased fast at prophase, and then, the changes ratio of SMPUU decreased, which can be attributed to the alkaline substance during the degradation of SMPUU could eliminate or weaken the acid induced auto-catalysis.
     ③During the degradation, the SEM showed that the surface of SMPUU appeared the pores after 8 weeks. The amount of pores decreased with the increasing of content of hard segment, which can generate the alkaline group.
     ④The results of 1H NMR indicated that, the degradation of SMPUU started from the hard segment, or in the hard segment and soft segment simultaneously, however, the degradation rate in soft segment was lower than in the hard segment, so the -NH2 in degradation product can release the acidity during degradation.
     5. In addition, the cytocompatibility of SMPUU was studied by employing primary SD rat osteoblasts as the model cells and poly (DL-lactic acid) (PDLLA) as the control. The growth behavior and function behavior were detected to indicate the cytocompatibility of SMPUU. Furthermore, the effects of stretching-shape recovering process of SMPUU on ostoblasts behaviors were also examined.
     ①Initial morphology, adhesion, spreading and proliferation of osteoblasts on all SMPUU films is no better than those on PDLLA film. Despite this, the cell doubling rate and migration rate on SMPUU elevated with the increasing culture time. Furthermore, with the increased amount of hard segments in SMPUU, both cell doubling rate and migration rate correspondingly increased, which is mostly possibly attributed to the improved hydrophilicity.
     ②Osteoblast on different SMPUU films all exhibited lower physiological functions compared to those on PDLLA films within the first 10 days after seeding. Thereafter, however, the osteoblasts on SMPUU demonstrated better differentiation and mineralization than those on PDLLA films, and SMPUU3 > SMPUU2 > SMPUU1.
     ③The AFM results showed that there were obvious and regular phase separation resulted from soft segments and hard segments in SMPUU, and some groove-ridge architectures within a scale of micrometers were produced by the stretching-shape recovering process. These special micropatterned structures promoted osteoblasts adhesion and proliferation, and also resulted in partially oriented cell growth along the grooves. Stretching-shape recovering process could change the surface morphology of SMPUU films and contribute to enhanced cell adhesion and proliferation, and even produce oriented arrangement of osteoblasts.
     6. The safety of SMPUU in vivo was evaluated by sensitization test, acute toxicity tests; the biocompatibility in vivo was evaluated by the implantation experiment in muscle; at last, the bone repair function for preventing non-union was confirmed by implanting in the jaw bone of rabbit.
引文
[1] Praemer A, Furner S, Rice DP, et al. Musculoskeletal injures [A]. In: Musculoskeletal conditions in the United States [C]. Park Ridge: American Academy of Orthopedic Surgeons, 1992: 85-124.
    [2]刘利民,付立新,苏曼,谢里夫.骨不连相关因素分析[J].中国骨与关节损伤杂志, 2009, 24(5): 451-452.
    [3]张新明.镶嵌式外固定器一期骨延长治疗大段骨缺损性骨不连的临床研究[D].重庆.中南大学硕士学位论文, 2008.
    [4]滕加文.腕舟骨骨不连的诊疗进展[J].研究进展, 2009, 6(33): 8-9.
    [5]李云鹏,姜俊杰.对骨不连致因的在认识[J].骨与关节损伤杂志, 2001, 16(6): 39-43.
    [6] Einhorn TA.The cell and molecular biology of fracture healing [J].Clin orthop relat res, 1998, 355:7-21.
    [7] Claes LE, Heigele CA, et al. Effects of mechanical factors on the fracture healing process [J].Clin orthop relat res, 1998, 355: 132-147.
    [8] Hayda RA, Brighton CT, Esterhai JL. Pathophysiology of delayed healing [J].Clin orthop relat res, 1998, 355: 31-40.
    [9]邹剑章,朱轶,张长青.交锁髓内钉固定治疗肱骨干骨折术后并发症分析[J].中华骨科杂志, 2006, 8: 535
    [10] Vitale BC, Miola M, Balagna C. 3D-glass-ceramic scafflolds with antibacterial properties for bone grafting [J]. Chem Eng J, 2008, 137: 129-136.
    [11] Wen L, Mohamed N, Rahaman. Bioactive borate glass scaffold for bone tissue engineering [J]. J Non-Cryst Solids, 2008, 354: 1690-1696.
    [12] Shishkovsky I, Morozov Y, Smurov I. Nanofractal surface structure under laser sintering of titanium and nitinol for bone tissue engineering [J]. Appl Surf Sci, 2007, 254: 1145-1149.
    [13] Xiao YM, Li DX, Fan HS. Preparation of nano-HA/PLA composite by modified–PLA for controlling the growth of HA crystals [J]. Biomaterials, 2007, 61: 59-62.
    [14] Zhang SM, Liu J, Zhou W. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites [J]. Curr Appl Phys, 2005, 5: 516-518.
    [15] Laurence MM, Thomas L, Mueller. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27: 905-916.
    [16] Tang CY, Chen DZ, Yue TM. Water absorption and solubility of PHBHV/HA nanocomposites [J]. Comopos Sci Technol, 2008, 68(7-8): 1927-1934.
    [17] Vasiliev AN, Eugene Z. Chemisorption of silane compounds on hydroxyapatites of various morphologies [J]. Scripta Mater, 2008, 58 (12): 1039-1042.
    [18] Domingo C, Loste E, Fraile J. Grafting of trialkoxysilane on the surface of nanoparticles by conventional wet alcoholic and supercritical carbon dioxide deposition methods [J]. J Supercrit fluid, 2006, 37: 72-86.
    [19] Domingo C, Arcis RW, Osorio E. Hydrolytic stability of experimental hydroxyapatite-filled dental composite materials [J]. Dent Mater, 2003, 19: 478-486.
    [20] Liu Q, Ding J, Francis K. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique [J]. Biomaterials, 2002, 23: 3103-3011.
    [21] Wang M, Deb S, Bonfield W. Chemically coupled hydroxyapatite-polyethlene composites: processing and characterization [J]. Mater Lett, 2000, 44: 119-124.
    [22] Yuan XY, Authur F, Mark T,Li JL. Formation of bone-like apatite on poly (L-lactide acid) fibers by a biomimetic process [J]. J Biomed Mater Res, 2001, 57 (1): 140-150.
    [23] Ma ZW, Gao CY, Gong YH. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor [J]. Biomaterials, 2005, 26: 1253-1259.
    [24] Ma ZW, Gao CY, Gong YH. Immobilization of natural macromolecules on poly-l-lactic acid membrane surface in order to improve its cytocompatibility [J]. J Biomed Mater Res (Appl Biomater), 2002, 63:838-847.
    [25] Lin Y, Wang LL, Zhang PB. Surface modification of poly (L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin [J]. Acta Biomater, 2006, 2: 155-164.
    [26] Toworfe G K, Composto R J, Shapiro I M. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers [J]. Biomaterials, 2006, 27: 631-642.
    [27] Fukue N, Tatsuya M, Yoshiyuki Y. A method to fabricate hydroxyapatite/poly(lactic acid) microspheres intended for biomedical application [J]. J Eur Ceram Soc, 2006, 26: 533-535.
    [28] Yaowalak B, Hiroya A, Kazuyoshi S. Controlled release of bovine serum albumin from hydroxyapatite microspheres for protein delivery system [J]. Mater Sci Eng B, 2008, 148: 162-165.
    [29] Franziska G, Simone F, Jochen R. Emulsion-based synthesis of PLGA-microspheres for the in vitro expansion of porcine chondrocytes [J]. Biomol Eng, 2007, 24: 515-520.
    [30]甘少磊,冯庆玲.卡拉胶/纳米羟基磷灰石/胶原可注射性骨修复材料的制备与表征[J].中国医学科学院学报, 2006, 28 (6): 710-713.
    [31]赵建华,柳峰,王远亮.生物复合人工骨及其制备工艺[P]. CN1329925A, 2002.
    [32]王小红,冯庆玲,崔福斋.一种骨修复材料[P]. CN1470247A, 2004.
    [33] Silva GA, Ducheyne P. Materials in particulate form for tissue engineering.1. Basic concepts [J]. J Tissue Eng Regen Med, 2007, 1: 4-24.
    [34] Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering [J]. Biomed Mater Res A, 2006, 7: 196–205.
    [35] Chen QZ, Thompson ID, Boccaccini AR. Bioglass-derived glass–ceramic scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 26: 2121-2126.
    [36] Wu C, Ramaswamy Y, Kwik D, et al. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties[J]. Biomaterials, 2007, 28: 3171–3181.
    [37] Youngmee J, Sangsoo K, Youngha K. A poly (lactic acid)/calcium metaphosphate composite for bone tissue engineering [J]. Materials. 2005, 26: 6314-6322.
    [38] Li XM, Feng QL,Cui FZ. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres [J]. Mater Sci Eng, 2006, 26: 716-720.
    [39] Lefebvre CA. Biocompatibility of visible light-cured resin systems in prosthodontics [J]. Prosthet Dent, 2004, 71: 178-184.
    [40] Joo HS, Chang CS. Production of an oxidant and SDS-stable alkaline protease from an alkalophilic Bacillus clausii I-52 by submerged fermentation: feasibility as a laundry detergent additive [J]. Enzyme Microb Technol, 2006, 38: 176-183.
    [41] Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering [J]. Biomed Mater Res A, 2006, 7: 196-205.
    [42] Gelinsky M, Welzel PB, Simon P. Porous three-dimensional scaffolds made of mineralised collagen: Preparation and proper-ties of a biomimetic nanocomposite material for tissue engineering of bone [J]. Chem Eng J, 2008, 137: 84-96.
    [43] Wu C, Chang J, Zhai W, et al. Porous akermanite scaffolds for bone tissue engineering:preparation,characterization,and in vitro studies [J]. Biomed Mater Res B Appl Biomater, 2006, 1: 47–55.
    [44] Flinkkila T, Ristiniemi J, Hamalainen M. J Trauma, 2001, 50 (3): 540-544.
    [45]纪正春.内置式记忆合金加压髓内针[P].CN96241814.5,1996.11.06.
    [46] Wang ZG, Liu J, Hu YY, et al. Chin J Traumatol, 2003, 6 (2): 91-98.
    [47] Soucacos PN, Dailiana Z, et al. Vascularised bone grafts for the management of non-union [J]. Injury, Int. J. Care Injured, 2006, 37: S41-S50.
    [48]曹阳,王力平等.等离子喷涂羟基磷灰石涂层的骨桥接性研究[J].生物医学工程杂志,2004,21(6):957-959.
    [49] Lendlein A, Kelch S. Shape-memory polymers as stimuli-sensitive implant materials [J]. ClinHemorheol Micro, 2005, 32:105-116.
    [50] Lendlein A, Kelch S. Shape-Memory Polymers [J]. Angew Chem Int Ed, 2002, 41:2034-57.
    [51] Elahinia MH, Ahmadian M. Design of a Kalman filter for rotary shape memory alloy actuators [J]. Smart Mater Struct, 2004, 13: 691-697.
    [52] Pandit P, Gupta SM, Shape-memory effect in PMN-PT (65/35) ceramic [J]. Solid State Commun, 2004, 131: 665-670.
    [53] Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers [J]. J Mater Chem, 2007, 17: 1543-1558.
    [54] Choi NY, Kelch S, Lendlein A. Synthesis, shape-memory functionality and hydrolytical degradation studies on polymer networks from poly (rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates [J]. Adv Environ Res, 2006, 8 (5): 439-445.
    [55] Wang HH, Yuen UE. Synthesis of thermoplastic polyurethane and its physical and shape memory properties [J]. J Appl Polym Sci, 2006, 102(2): 607-615.
    [56] Liu GQ, Zhao XP, Tang T. Stimuli-response of gelatin hydrogel under direct current electric field [J]. Acta Polym Sin, 2003, 3: 398-402.
    [57]秦瑞丰,朱光明,杜宗罡等.电致形状记忆聚己内酯/炭黑复合导电高分子材料的研究[J].中国塑料, 2005, 19 (5): 23-28.
    [58] Lendlein A, Jiang H, Junger O, et al. Light-induced shape-memory polymers [J]. Nature, 2005, 434: 879-882.
    [59] Nagata M, Yamamoto Y. Synthesis and characterization of photocrosslinked poly (ε-caprolactone)s showing shape-memory properties [J]. J Polym Sci, Part A: Polym Chem, 2009, 47: 2422-2433.
    [60] Mohr R, Kratz K, Weigel T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10): 3540-3545.
    [61] Schmidt AM. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles [J]. Macromol Rapid Commun, 2006, 27(14): 1168-1172.
    [62] Zheng XT, Zhou SB, Xiao Y, et al. Shape memory effect of poly(d,l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles [J]. Colloids Surf B: Biointerfaces, 2009, 71(1): 67-72.
    [63] Chen MC, Tsai WH, Chang Y, et al. Rapidly self-expandable polymeric stents with a shape-memory property [J]. Biomacromolecules, 2007, 8(9): 2774-2780.
    [64] Lv HB, Liu YJ, Zhang DX, et al. Solution-responsive shape-memory polymer driven by forming hydrogen bonding [J]. Adv Mat Res, 2008, 47(50): 258-261.
    [65] Petrovic ZS, Budinski-Simendic J. Study of the effect of soft-segment length and concentration on properties of poly (ether urethanes). I. The effect on physical and morphological properties [J]. Rubber Chem Technol, 1985, 58: 685-700.
    [66] Petrovic ZS, Budinski-Simendic J. Study of the effect of soft-segment length and concentration on properties of polyetherurethanes.II. The effect on mechanical properties [J]. Rubber Chem Technol, 1985, 58: 701-712.
    [67] Samuels SL, Wilkes GL. Superstructure above the domain level in segmented polyurethane [J]. Polym Pre, 1971, 12: 694-706.
    [68] Lai YC, Quinn ET. Control of hard segment size in polyurethane formation. [J]. Polym Sci Poly Chern, 1995, 33: 1767-1772.
    [69] Cheong LW, Kong HC. Synthesis and Characterization of Polyurethane-Urea Nanoparticles Containing Methylenedi-p-phenyl Diisocyanate and Isophorone Diisocyanate [J]. Polym Sci Poly Chem, 2004, 42: 4353-4369.
    [70] Sung, CSP, Hu CB Wu CS. Properties of segmented poly (urethane ureas) based on 2,4-toluene diisocyanate I. Thermal transitions, X-ray studies and comparison with segmented poly(urethanes) [J]. Macromolecules, 1980, 13: 111-116.
    [71] Wilkes GL, Abouzahr S. SAXS studies of segmented polyether poly (urethaneurea) elastomers [J]. Macromolecules, 1981, 14: 456-458.
    [72]赵菲,孙学红.聚氨酯弹性体的力学性能影响因素研究[J].聚氨酯工业, 2001, 16(1): 9-12.
    [73] Yilgor E, Yilgor I. Hydrogen bonding: a critical parameter in designing silicone copolymers [J]. Polymer, 2001, 42: 7953-7959.
    [74] Lee HS, Wang YK, Hsu SL. Behavior of model polyurethanes [J]. Macromolecules, 1987, 20: 2089-2095.
    [75] Ning L, Ning WD, Kang YS. Hydrogen-bonding properties of segmented polyether poly (urethane urea) copolymer [J]. Macromolecules, 1997, 30: 4405-4409.
    [76] Lendlein A, Langer R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications [J]. Science, 2002, 296: 1673-1676.
    [77] Ping P, Wang WS, Chen XS, Jing XB. The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes [J]. Polym Sci Part B: Polym Phys, 2007, 45(5): 557-570.
    [78] Agrawal CM, Athanasiou KA. Technique to control PH in vicinity of biodegrading PLA-PGA implants [J]. J Biomed Mat Res.1997, 38: 105-114.
    [79] Lendlein A, Kelch S. Shape-Memory Polymers [J]. Angew Chem Int Ed, 2002, 41:2034–57.
    [80] Shikinami Y. Shape memory biodegradable and absorbable material [P]. US 6,281,262E1, 2001.
    [81] Wong YS, Xiong Y, Venkatraman SS, Boey FYC. Shape memory in un-cross-linked biodegradable polymers [J]. J Biomater Sci Polymer Edn, 2008, 19(2): 175-191.
    [82] Lu XL, Cai W, Gao ZY, et al. Shape memory property of poly(L-lactide-co-ε-caprolactone) copolymers Mater [J]. Mater Sci Eng A, 2006: 857-861.
    [83] Dobrzynski P, Kasperczyk J. Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. V. Multiblock and random copolymers of L-lactide with trimethylene carbonate obtained in copolymerizations initiated with zirconium (IV) acetylacetonate [J]. J Polym Sci, Part A: Polym. Chem, 2006, 44: 3184-3201.
    [84] Pospiech D, Komber H, Jehnichen D, et al. Multiblock copolymers of L-lactide and trimethylene carbonate [J]. Biomacromolecules, 2005, 6: 439-446.
    [85] Cohn D. Biodegradable multiblock PEO/PLA thermoplastic elastomers: molecular design and properties [J]. Polymer, 2005, 46(7): 2068-2075.
    [86] Cohn D. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers [J]. Biomaterials, 2005, 26(15): 2297-2305.
    [87] Qin XM, Fang F, et al. Synthesis and characterization of polyurethane urea based on fluorine-containing bisphenoxydiamine [J]. J Appl poly sci, 2006, 102(2): 1863-1869.
    [88] Ping P, Wang WS, Chen XS, et al. Poly (ε-caprolactone) polyurethane and its shape-memory property [J]. Biomacromolecules, 2005, 6: 587-592.
    [89] Wang WS, Ping P, Chen XS, et al. Polylactide-based polyurethane and its shape-memory behavior [J]. Eur Polym J, 2006, 142: 1240-1249.
    [90] Wang WS, Ping P, Chen XS, et al. Biodegradable Polyurethane Based on Random Copolymer of L-Lactide andε-Caprolactone and Its Shape-Memory Property [J]. J Appl Polym Sci, 2007, 104: 4182-4187.
    [91] Min CC, Cui WJ, Bei JZ, et al. Biodegradable shape-memory polymer polylactide-co- poly (glycolide-co-caprolactone) multiblock copolymer [J]. Polym Adv Technol, 2005, 16: 608-615.
    [92] Feng YK, Marc B, Steffen K, et al. Biodegradable multiblock copolymers based on oligodepsipeptides with shape-memory properties [J]. Macromol Biosci, 2009, 9: 45-54.
    [93] Andreas L, Annette MS, Michael S, et al. Shape-memory polymer networks from oligo(ε-caprolactone)dimethacrylates [J]. J Polym Sci, Part A: Polym Chem, 2005, 43: 1369-1381.
    [94] Christopher MY, Robin S, David S, et al. Strong, tailored, biocompatible shape-memory polymer networks [J]. Adv Funct Mater, 2008, 18: 2428-2435.
    [95] Steffen K, Susi S, Annette MS, et al. Shape-memory polymer networks from oligo [(ε-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustablehydrolytic degradation rate [J]. Biomacromolecules, 2007, 8: 1018-1027.
    [96] Subrata M. Recent developments in temperature responsive shape memory polymers [J]. Mini-Rev Med Chem, 2009, 6: 114-119.
    [97] Koji N, Yuichi U, Tatsuro O, et al. Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release [J]. Biomacromolecules, 2009, 10: 1789-1794.
    [98] Luo HY, Fan MM, Yu ZJ, et al. Preparation and properties of degradable shape memory material based on partiala-cyclodextrin-poly (ε-caprolactone) inclusion complex [J]. Macrom ol Chem Phys, 2009, 210: 669-676.
    [99] Marc B, Ute R, Feng YK, et al. Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components [J]. Soft Matter, 2009, 5: 676-684.
    [100] Zhang W, Chen L, Zhang Y. Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer [J]. Polymer, 2009, 50: 1311-1315.
    [101] Yang KK, Wang XL, Wang YZ, et al. Kinetics of thermal degradation and thermal oxidative degradation of poly (p-dioxanone) [J]. Eur Polym J, 2003, 39(8): 1567-1574.
    [102] Yang KK, Wang XL, Wang YZ, et al. Effects of molecular weights of poly (p-dioxanone) on its thermal, rheological and mechanical properties and in vitro degradability [J]. Mater Chem Phys, 2004, 87(1): 218-221.
    [103] Lai Q, Wang YZ, Yang KK, et al. Chain-extension and thermal behaviors of poly(p-dioxanone) with toluene-2,4-diisocyanate[J]. Reactive and Functional Polymers, 2005, 65(3): 309-315.
    [104] Chen SC, Zhou ZX, Wang YZ, et al. A novel biodegradable poly (p-dioxanone)-grafted poly (vinyl alcohol) copolymer with a controllable in vitro degradation [J]. Polymer, 2006, 47 (1): 32-36.
    [105]李斌,杨科珂,唐松平等.聚对二氧环己酮和聚乳酸的多嵌段共聚物的合成[J].高分子材料科学与工程, 2008, 24(1): 44-46.
    [106] Zhou ZX, Wang XL, Wang YZ. Thermal properties and non-isothermal crystallization behavior of biodegradable poly (p-dioxanone)/poly (vinyl alcohol) blends. Polym Int, 2006, 55: 383-390.
    [107] Luo YF, Wang Y L, Niu XF, et al. Synthesis and characterization of a novel biomaterial: maleic anhydride-modified poly (d,l-lactic acid). Chin Chem Lett, 2004, 15: 521-524.
    [108] Gertzman, A; Thompson, D.R. Annealed polydioxanone surgical device and method for producing the same [P]. US4591630, 1986.
    [109] Cachia, V.V.; Juan, M.S. Bone fixation device [P]. US5893850, 1999.
    [110]王素军.新型药物控释材料—端羟基聚(丙交酯-co-对二氧环己酮)及其微球制备的研究聚[D].重庆.重庆大学硕士学位论文, 2008.
    [111] Zhang X, MacDonald DA, Goosen MFA. Mechanism of lactide polymerization in the presence of stannous octoate: the effect of hydroxy and carboxylic acid substances [J]. J Polym Sci Pol Chem. 1994, 32: 2965-2970.
    [112] Korhonen H, Helminen A, Seppala JV. Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups [J]. Polymer, 2001, 42: 7541-7549.
    [113] Chen MC, Tsai HW, Chang Y, et al. The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents [J]. Biomaterials, 2009, 30(1): 79-88.
    [114] Kricheldorf HR, Kreiser-Saunders I, Stricker A. Polylactones 48. SnOct2-initiated polymerizations of lactide: a mechanistic study [J]. Macromolecules, 2000, 33: 702-709.
    [115] Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin (II) octoate, 1. polymerization ofε-caprolactone[J]. Macromol Rapid Commun, 1998, 19: 567-572.
    [116] Kowalski A, Duda A, Penczek S. Mechanism of cyclic ester polymerization initiated with Tin (II) octoate. 2. Macromolecules fitted with Tin (II) alkoxide species observed directly in MALDI-TOF spectra [J]. Macromolecules, 2000, 33: 689-695.
    [117] Baimark Y, Molloy R. Synthesis and characterization of poly (l-lactide-co-ε-caprolactone) copolymers: effects of stannous octoate initiator and diethylene glycol coinitiator concentrations [J]. Sci Asia. 2004, 30: 327-33.
    [118]牛旭锋.聚(D,L-乳酸)基仿生细胞外基质的骨组织工程基质材料研究[D].重庆.重庆大学博士学位论文, 2006, 17-18.
    [119]董炎明.高分子分析手册[M].北京:中国石化出版社, 2004: 94-97.
    [120]陈泉水,罗太安,刘晓东著.高分子材料实验技术[M].北京:化学工业出版社, 2006: 219-221.
    [121]王家琴,姜林.三羟复酯及聚醚中羟基的测定[J].合成润滑材料, 1995, 4: 11-15.
    [122]叶成果,龚素华.准确测定聚醚多元醇中间品的羟值应注意的问题[J].福建分析测试, 2005, 14: 2178-2180.
    [123]潘祖仁.高分子化学(第二版)[M].北京:化学工业出版社, 1997: 65-69.
    [124] Nishida, H.;Yamoshita, M.;Endo, T.;et al. Equilibrium polymerization behavior of 1, 4-dioxan-2-one in bulk [J]. Macromolecules, 2000, 33: 6982-6986.
    [125]林尚安,陆耘,梁兆熙.高分子化学[M].北京:科学出版社, 1998: 589-590.
    [126] Lendlein A, Kelch S. Shape-Memory Polymers [J]. Angew Chem Int Ed. 2002 41: 2034-2057.
    [127] Marc B, Lendlein A. Shape-Memory Polymers [J]. Materialstody, 2007, 10(4): 20-28.
    [128]中华人民共和国化工行业标准[S]. HG/T2409-92.
    [129]李永刚.具有形状记忆功能的D,L-聚乳酸基输卵管避孕材料的制备与研究[D].重庆.重庆大学博士学位论文, 2009.
    [130] He GB, Yan N. Effect of moisture content curing kinetics of pMDI resin and wood mixtures. Int J Adhes Adhes, 2005, 25: 450-455.
    [131] Jeong HM, Ahn BK, Kim BK. Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin [J]. Eur Polym J, 2001, 37: 2245-2252.
    [132] Meng Q, Hu JL, Zhu Y, et al. Polycaprolactone-based shape memory segmented polyurethane fiber [J]. J Appl Polym Sci, 2007, 106: 2515–2523.
    [133] Mondal S, Hu JL. Segmented shape memory polyurethane and its water vapor transport properties [J]. Des Monom Polym, 2006, 9 (6): 527.
    [134] Merline JD, Nair CPR, Gouri C, et al. Poly (urethane-oxazolidone): synthesis, characterizati on and shape memory properties [J]. Eur Polym J, 2007, 43: 3629-3637.
    [135] Yang JH, Chun BC, Chung YC, et al. Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment [J]. Polymer, 2003, 44: 3251-3258.
    [136] Yang B, Huang WM, Li C, et al. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer [J]. Polymer, 2006, 47:1348-1356.
    [137]鲁玺丽.可生物降解形状记忆聚L-乳酸及其共聚物的结构与性能[D].博士论文, 74-75
    [138] Liu G, Ding X, Cao Y, et al. Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes [J]. Macromolecules, 2004, 37: 2228-2232.
    [139] Guan JJ, Sacks MS, Beckman EJ, et al. Biodegradable poly (ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility [J]. Biomaterials, 2004, 25: 85-96.
    [140] Lu XL, Cai W, Gao ZY, et al. Shape memory effects of poly(L-lactide) and its copolymer with poly(ε-caprolactone) [J]. Polym Bull, 2007, 58: 381-391.
    [141] Takahashi T, Hayashi N, Hayashi S. Structure and properties of shape-memory polyurethane block copolymers [J]. J Appl Polym Sci, 1996, 60: 1061-1069.
    [142] Small Iv W, Wilson T, Benett W, et al. Laser-activated shape memory polymer intravascular thrombectomy device [J]. Opt Express, 2005, 13(20): 8204-8213.
    [143] Liang C, Rogers CA, Malafew E. Investigation of shape memory polymers and their hybrid composites [J]. J Intell Mat Struct, 1997, 8(4): 380-386.
    [144] Akella P, Chen X, Cheng W. Modeling and control of smart structures with bonded piezoelectric sensors and actuators [J]. Smart Mater Struct, 1994, 3(3): 344-353.
    [145] Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state ofthe art and future perspectives [J]. J Biomater Sci Polym E, 2001, 12(1): 107-124.
    [146]杨子彬.基础医学卷-生物医学工程学[M].黑龙江:黑龙江科学技术出版社, 2000: 396-397.
    [147] Suganuma J, Alexander H. Biological response of intramedullary bone to poly-L-lactic acid. [J] J Appl Biomater, 1993, 4: 13-27.
    [148]程侣柏,胡家振,姚蒙正等.精细化工产品的合成及应用[M].大连:大连理工大学出版社, 1992: 118-121.
    [149]蔡晴,贝建中,王身国等.乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究[J].功能高分子学报, 2000, 13 (3): 249-254.
    [150] Ara M, Watanabe M, Imai Y. Effect of blending calcium compounds on hydrolytic degradation of poly (D, L-lactic acid-co-glycolic acid) [J]. Biomaterials, 2002, 23: 2479-2483.
    [151]张亮,靳安民,郭志民.三维多孔骨修复材料D,L-PLA及β-TCP/DL-PLA的体外降解研究[J].骨与关节损伤杂志, 2001, 16 (3): 184-186.
    [152] Jiang H L, Zhu K J. Synthesis, characterization and in vitro degradation of a new family of alternative poly (ester-anhydrides) based on aliphatic and aromatic diacids [J]. Biomaterials, 2001, 22: 211-218.
    [153] Wu X S, Wang N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. PartⅡ: Biodegradation [J]. J Biomater Sci Polymer Edn, 2001, 12 (1): 21-34.
    [154] Rozema F R, Bergsma J E, Bos R R, et al. Late degradation simulation of poly (L-lactide) [J]. J Mater Sci: Mater Med, 1994, 5: 575-581.
    [155] Nagata M, Okano F, Sakai W, et al. Separation and enzymatic degradation of blend films of poly (l-lactic acid) and cellulose [J]. J Polym sci. Part A: Poly Chem, 1998, 36: 1861-1864.
    [156] Gazzetti P, Laaaerini G. Degradation products of poly (ester-ether-ester) block copolymers do not alter endothelial metabolism in vitro [J]. J Mater Sci: Mater Med, 1995, 6: 824-828.
    [157] Wachem PBV, Hogt AH, Beugeling T, et al. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge [J]. Biomaterials, 1987, 8(5): 323-328.
    [158] Lee JH, Khang G, Lee JW, et al. Interaction of different types of cells on polymer surfaces with wettability gradient [J]. J Coll Interf Sci. 1998, 205(2): 323-330.
    [159] Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading and cytoskeletal organization [J]. J Biomed Mater Res. 1998, 41(3): 422-430.
    [160] Peluso G, Petillo O, Anderson JM, et al. The differential effects of poly (2-hydroxyethyl methacrylate) and poly (2-hydroxyethyl methacrylate)/poly (caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts [J]. J Biomed Mater Res, 1997, 34(3): 327-336.
    [161]郭圣荣.医药用生物降解性高分子材料[M].北京:化学工业出版社, 2004: 1-8.
    [162]李玉宝.生物医学材料[M].北京:化学工业出版社, 2003, 265-269.
    [163]愈耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社, 2000, 12-24.
    [164]杨晓芳,奚廷裴.生物材料生物相容性评价研究进展[J].生物医学工程学杂志, 2001, 18(1): 123-128.
    [165] Collignon H, Davicco MJ, Barlet JP. Isolation of cells from ovine fetal long bone and characterization of their osteoblastic activities during in vitro mineralization [J]. Arch Physiol Biochem, 1997, 105(2) : 158-166.
    [166]颜泽萱.骨修复用形状记忆聚氨酯的细胞相容性研究[D].重庆.重庆大学硕士学位论文. 2009.
    [167] Pablo A, Iglesias A, Andre L. Modeling the cell's guidance system [J]. Sci. STKE, 2002, 148: 1-12.
    [168] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays [J]. J Immunol Meth, 1983, 65(1-2): 55-63.
    [169] Winn SR, Hollinger JO. An osteogenic cell culture system to evaluate the cytocompatibility of osteoset, a calcium sulfate bone void filler [J]. Biomaterials, 2000, 21: 2413-2425.
    [170] Oxlund H, Mosekilde L, Ouoft G, et al. Reduced concentration of collagen reducible cross links in human trabecullar bone with respect to age and osteoporosis [J]. Bone, 1996, 19: 479- 484.
    [171] Garnero P, Sornay-rendu E, Hapuy MC, et al. Increased bone turnover in late post-menopausal women is a major determinant of osteoporosis [J]. J Bone Miner Res, 2006, 11: 337-349.
    [172] Bellows CG, Aubin JEM, Antosa ME. Mineralized bonenodules formed in vitro from enzymatically released ratcalvaria populations [J]. Calcif T issue Int, 1996, 38: 143-146.
    [173]戴建国.生物材料生物相容性的分子生物学研究进展[J].国外医学生物医学工程分册, 2004, 27(6): 360-364.
    [174] Hallab NJ, Bundy KJ, O’Connor K, et al. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion [J]. Tissue Eng. 2001, 7(1): 55-71.
    [175] Deligianni DD, Katsala ND, Koutsoukos PG, et al. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation anddetachment strength [J]. Biomaterials, 2001, 22(1): 87-96.
    [176] Curtis A, Wilkinson C. Topographical control of cells [J]. Biomaterials, 1997, 18(24): 1573-1583.
    [177] Flemming RG, Murphy CJ, Abrams GA, et al. Effects of synthetic micro- and nano-structured surfaces on cell behavior [J]. Biomaterials, 1999, 20(6): 573-588.
    [178] Small JV, Stradal T, Vignal E, et al. The lamellipodium: where motility begins [J]. Trends Cell Biol, 2002, 12: 112.
    [179] Critchley DR, Holt MR, Barry ST, et al. Integrin-mediated cell adhesion: The cytoskeletal connection [J]. Biochem Soc Symp, 1999, 65: 7.
    [180]牛旭锋,王远亮,潘君.成骨细胞在生物活性材料中黏附性能研究进展[J].生物医学工程杂志,2005,22(4):848-852.
    [181]邓霞.新型骨组织工程类细胞外基质复合生物材料的研究[D].四川大学博士学位论文,2006.
    [182] Atarashiya.Aluminum nitride/metal composites using ultra-fine aluminum particles and their application for joining [J]. J Mater Proc Technol, 1995, 54 (1-4): 54-59.
    [183] Anselme K, Bigerelle M, Noel B, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses [J]. J Biomed Mater Res, 2000, 49: 155-166.
    [184] Langer R, Lüthen F, Beck U, et al. Cell-extracellular matrix interaction and physicochemical characteristics of titanium surfaces depend on the roughness of the material [J]. Biomolecular Engineering, 2002, 19: 255.
    [185] Christophe LC, Dominique P, Marie-France C. ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays [J]. PNAS, 2003, 100: 6337.
    [186] Holmes KC. A molecular model for muscle contraction [J]. Acta Crystallogr A, 1998, 54: 789.
    [187] Palecek SP, Loftus JC, Ginsberg MH, et al. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness [J]. Nature, 1997, 385: 537-540.
    [188] Binning G, Quate CF, Gerber C, et al. Atomic Force Microscope [J]. Physics Review Letter, 1986, (4): 930-933.
    [189] Karbach A, Drechsler D. Atomic Force Microscopy-Powerful Tool for Industrial Applications [J]. Surface and interface analysis, 1999, 27: 401-409.
    [190]马荣骏.原子力显微镜及其应用[J].矿冶工程,2005,25(4):62-65.
    [191]鲍俊杰,高明志,周海峰等.原子力显微镜在SMPUU性能分析中的应用[J].弹性体, 2006, 16(3): 53-57.
    [192]李立民,黄象安.应用原子力显微镜研究热塑性聚氨酯的微相分离[J].东华大学学报(自然科学版), 2004, 3(2): 9-13.
    [193]李慧琴,金承钰,范文春.PC-b-PDMS-b-PCL复合环氧树脂的表面结构[J].物理化学学报,2009, 5(6): 1070-1074.
    [194]董炎明,毕丹霞,陈江溪.原子力显微镜在高分子领域的应用进展[J].商丘师范学院学报, 2005, 21(2): 6-11.
    [195] Reifer D, Windeit R, Kumpf RJ, et al. AFM and TEM investigations of polypropylene/ polyur- ethane blends [J]. Thin Solid Films, 1995, 26 (4): 148-152.
    [196] Mclean S,Scott S, Bryan B. Tapping mode AFM studies using phase detection for resolution of nanophase in segmented polyurethane and other block copolymer [J]. Macromolecules, 1997, 30: 8314-8317.
    [197]杨宇润,陈永林,王得宁等.丁苯-丁腈基聚氨酯的形态与性能[J].高分子学报,2002,12 (6): 795-800.
    [198]文庆珍,朱金华,王源升等.高阻尼性能聚氨酯的结构设计与研究[J].武汉理工大学学报, 2005, 27(3): 9-11.
    [199] Chen BL, Wang DA, Feng LX. Topology of tissue engineering material surface for cell compatibility [J]. Journal of Clinical Rehabilitative Tissue Eng. Res, 2007, 11(8): 3653-3656.
    [200] Jennifer BR, Justin CR, et al. Oriented astroglial cell growth on micropatterned polystyrene substrates [J]. Biomaterials, 2004, 25: 2753-2767.
    [201]丁金勇.兔间充质干细胞诱导分化成骨细胞复合BG支架的组织相容性研究[D].第一军医大学硕士学位论文,2006.
    [202] Walboomers XF, Monaghan W, Curtis ASG. Attachment of fibroblasts on smooth and microgrooved polystyrene [J]. Biomed Mater Res, 1999, 46: 212-220.
    [203] Ying PQ, Jin G, Tao ZL. MC3T3-E1 Osteoblasts adhesion to micropatterned surfaces [J]. Biomed Eng, 2002, 19 (3): 370-373.
    [204] Dunn GA, Brown AF. Alignment of fibroblasts on grooved surfaces described by a simple geomet rict ransformation [J]. Cell Sci, 1986, 83: 313-340.
    [205]陈曦,秦廷武.表面改性及微沟槽技术对肌腱细胞生长与取向的影响[J].生物医学工程学杂志, 2008, 25(2): 382-387.
    [206] Recknor JB, Recknor JC, Sakaguchi DS, et al. Oriented astroglial cell growth on micropatterned polystyrene subst rates [J]. Biomaterials, 2004, 25: 2754-2767.
    [207]朱邦尚,录庆华,王宗光.不同的基质表面形貌对细胞生长行为的影响[J].细胞生物学杂志, 2003, 25(4): 228-230.
    [208] Kang IK, Kwon BK, Lee JH, et al. Immobilization of proteins on poly(methyl methacrylat e) films [J]. Biomaterials, 1993, 14(10): 787-792.
    [209] Zhu YB, Gao CY, Liu XY, et al. Immobilization of biomacromolecules onto aminolyzed poly (L-lactic acid) toward acceleration of endothelium regeneration [J]. Tissue Eng, 2004, 10(1-2): 53.
    [210]王雪梅,黄绪亮,赵克森.一种新型医用功能敷料的全身和细胞毒性反应[J].医疗卫生装备, 1998, 5(1): 6-8.
    [211]杨维东,陈富林,陶凯等.兔动物模型在组织工程骨、软骨研究中的应用[J].实用口腔医学杂志, 1999, 15(5): 375-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700